DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING K.S.R. COLLEGE OF ENGINEERING: TIRUCHENGODE – 637 215. COURSE / LESSON PLAN SCHEDULE

NAME : P.THILAGAVATHI

CLASS : II – ECE

SUBJECT CODE/NAME :18EC313/ ELECTRONIC DEVICES AND CIRCUITS

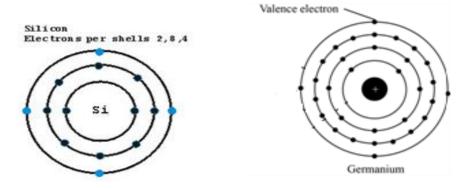
TEXT BOOKS:

- 1. Sedra / Smith, "Micro Electronic Circuits" Oxford University Press, 7th Edition ,2017
- 2. Anil K Maini.Varsha Agarwal,"Electronic Devices and Circuits", John Wiley India, Reprint 2012. **REFERENCE BOOKS:**
- Robert L. Boylestad and Louis Nasheresky, "Electronic Devices and Circuit Theory", 11th Edition, PHI, 2015
- 2. David A. Bell, "Solid State Pulse Circuits", 4th Edition PHI, 2012.
- 3. Donald A.Neamen."Electronic Circuit Analysis and Design", 2nd Edition,Tata McGraw Hill, 2009.
- 4. Millman.J. and Halkias C.C, "Integrated Electronics", Tata McGraw Hill, 48th Reprint 2008
- 5. NPTEL Course Link:http://nptel.ac.in/courses/117101106/7

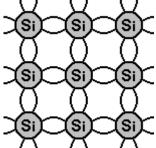
EXTRA REFERENCE BOOK:

1. R.S.Sedha,"Applied Elecctronics", S.Chand & Company Ltd,

LEGEND:


L	- Lecture	PPT	- Power Point
BB	- Black Board	OHP	- Over Head Projector
рр	- Pages	Rx	- Reference

Sl. No	Lecture Hour	Topics to be covered	Teaching Aid Required	Book No./Page No
		UNIT-I SEMICONDUCTOR	R DIODES	
1.	L1	Types of semiconductor : Intrinsic and extrinsic semiconductor	BB	T _{X1} /pp 53-56,R _{X1} /pp 7-8
2.	L2	P-type and N-type semiconductor	BB	T _{X1} /pp 56-59,R _{X1} /pp 8-10,
3.	L3	Carrier concentration	BB	R _{X4} /pp 27-43
4.	L4	Fermi energy level, Variation of Fermi level with temperature	BB	T _{x2} /pp 4-10
5.	L5	Electrical conductivity	BB	T _{X2} /pp 10-18
6.	L6	Drift and diffusion current	BB	T _{X1} /pp 59-65
7.	L7	PN Junction: Forward bias and reverse bias	BB	T _{x1} /pp 71-79,108-112 R _{x1} /pp 10-30
8.	L8	Diode current equation	BB	T _{X2} /pp 30-32
9.	L9	Capacitance	BB	T _{X1} /pp 79-82,R _{X1} /pp 31-33
		UNIT- II TRANSISTO	RS	
10.	L10	NPN and PNP operations	BB	T _{X1} /pp 164-179,R _{X1} /pp 115-117
11.	L11	Configurations	BB	T _{X1} /pp 179-193,R _{X1} /pp 117-130
12.	L12	Biasing methods	BB	T _{X1} /pp 223-229,R _{X1} /pp 144-181
13.	L13	Bias compensation techniques	BB	T _{X2} /pp 144-152
14.	L14	Hybrid parameter for CE amplifier	BB	T _{X1} /pp 274-282,T _{X2} /pp 307- 325,R _{X1} /pp 327-339
15.	L15	Miller's theorem	BB	Т _{х2} /pp 366-369
16.	L16	Darlington amplifier and bootstrapping emitter follower		T _{x2} /pp 338-343
17.	L17	Hybrid π equivalent model		T _{X1} /pp 290-295
18.	L18	Low and high frequency response of CE amplifier		T _{x1} /pp 296-308,T _{x2} /pp 345-351, T _{x2} /pp 357-362


19. L19 JFET types BB Txt/pp 477-480 20. L20 Operation of N-channel JFET BB Txt/pp 485-490 21. L21 Operation of P-channel JFET BB Txt/pp 485-490 22. L22 Velocity Saturation BB Txt/pp 480-485 23. L23 MOSFET Types BB Txt/pp 344-346, 24. L24 Operation of MOSFET BB Txt/pp 347-359 25. L25 CMOS Operation BB Txt/pp 359-368 26. L26, CMOS Inverter, voltage transfer curve and prevention OHP Txt/pp 130-136 27. L28, L29 Rectifiers – Analysis of half wave, full wave and bridge rectifiers with resistive load BB Txt/pp 130-136 28. L30, L31 Analysis for ripple voltage with C, L, LC, CLC filters PPT Txt/pp 130-136 29. L32 Voltage regulators: Zener diode regulator BB Txt/pp 130-136 31. L34 Current limiting and over voltage OHP Txt/pp 130-136 31. L34 Current limiting and over voltage OHP Txt/pp 126-141 <			UNIT – III FET		
20. L20 Operation of N-channel JFET BB $T_{XI/pp}$ 485-490 21. L21 Operation of P-channel JFET BB $T_{XI/pp}$ 485-480 22. L22 Velocity Saturation BB $T_{XI/pp}$ 483-487 23. L23 MOSFET Types BB $T_{XI/pp}$ 343-346, $T_{XI/pp}$ 369-372,473-477 24. L24 Operation of MOSFET BB $T_{XI/pp}$ 359-368 26. L26, CMOS operation BB $T_{XI/pp}$ 359-368 26. L26, CMOS Inverter, voltage transfer curve and prevention OHP $T_{XI/pp}$ 453-457 27. L28, L29 Rectifiers – Analysis of half wave, full wave and bridge rectifiers with resistive load BB $T_{XI/pp}$ 136-141 28. L30, L31 Analysis for ripple voltage with C, L, LC, CLC filters PT $T_{XI/pp}$ 166-141 27. L32 Voltage regulators: Zener diode regulator BB $T_{XI/pp}$ 156-141 30. L33 Transistor Series and Shunt Regulators BB $T_{XI/pp}$ 166-141 32. L36 Switched Mode Power Supply (SMPS) P	19.	L19	IEET types	BB	T _{X1} /pp 477-480
Operation of N-channel JFE1 R_{X1}/p 238-243 21. L21 Operation of P-channel JFET BB R_{X1}/p 248-246 22. L22 Velocity Saturation BB T_{X1}/p 480-485 23. L23 MOSFET Types BB T_{X1}/p 483-487 23. L24 Operation of MOSFET BB T_{X1}/p 369-322,473-477 24. L24 Operation of MOSFET BB T_{X1}/p 369-368 25. L25 CMOS operation BB T_{X1}/p 389-392 27. L28, L29 Rectifiers – Analysis of half wave, full wave and bridge rectifiers with resistive load OHP T_{X1}/p 130-136 27. L28, L29 Rectifiers – Analysis of half wave, full wave and bridge rectifiers with resistive load BB T_{X1}/p 130-136 28. L30, L31 Analysis for ripple voltage with C, L, LC, LC, PPT T_{X1}/p 136-141 28. L30, L31 Analysis for series and Shunt Regulators BB T_{X2}/p 558-568,571-576 31. L34 Current limiting and over voltage OHP T_{X2}/p 582-564 33.			JFET types		
21. L21 Operation of P-channel JFET BB Tx:/pp 480-485 22. L22 Velocity Saturation BB Tx:/pp 483-487 23. L23 MOSFET Types BB Tx:/pp 483-487 24. L24 Operation of MOSFET BB Tx:/pp 369-372,473-477 24. L24 Operation of MOSFET BB Tx:/pp 369-372,473-477 24. L26 CMOS operation BB Tx:/pp 369-372,473-477 24. L26 CMOS Inverter, voltage transfer curve and prevention DHP Tx:/pp 369-372,473-477 25. L27 threshold voltage, Latch up problem and prevention DHP Tx:/pp 389-392 26. L26, CMOS Inverter, voltage transfer curve and bridge rectifiers with resistive load OHP Tx:/pp 130-136 27. L28, L29 Rectifiers – Analysis of half wave, full wave and bridge rectifiers with resistive load BB Tx:/pp 130-136 28. L30, L31 Analysis for ripple voltage with C, L, LC, PPT Tx:/pp 136-141 Tx:/pp 136-141 27. L28, L29 Notage regulators: Zener diode regulator	20.	L20	Operation of N-channel IFET	BB	
Operation of P-channel JFE1 $R_{X1}/pp 243-246$ 22. L22 Velocity Saturation BB $T_{X1}/pp 483-487$ 23. L23 MOSFET Types BB $T_{X1}/pp 344-346$, $T_{X1}/pp 347-359$ 24. L24 Operation of MOSFET BB T_{X1}/pp 347-359 25. L25 CMOS peration BB $T_{X1}/pp 347-359$ 26. L26, CMOS Inverter, voltage transfer curve and prevention OHP $T_{X1}/pp 389-392$ 27. L28, L29 Rectifiers – Analysis of half wave, full wave and bridge rectifiers with resistive load BB $T_{X1}/pp 130-136$ 28. L30, L31 Analysis for ripple voltage with C, L, LC, CLC filters PPT $T_{X1}/pp 136-141$ 29. L32 Voltage regulators: Zener diode regulator BB $T_{X1}/pp 558-565$ 29. L32 Voltage regulators: Zener diode regulators BB $T_{X1}/pp 568-571$ 30. L33 Transistor Series and Shunt Regulators BB $T_{X1}/pp 582-584$ UNIT V- SPECIAL SEMICONDUCTOR DEVICES 33. L37 Zener and Tunnel diode </td <td></td> <td></td> <td>Operation of N-enamier 31 E1</td> <td></td> <td></td>			Operation of N-enamier 31 E1		
22. L22 Velocity Saturation BB T_{x1}/pp 483-487 23. L23 MOSFET Types BB T_{x1}/pp 369-372,473-477 24. L24 Operation of MOSFET BB T_{x1}/pp 372,473-477 24. L25 CMOS operation BB T_{x1}/pp 372,473-477 25. L25 CMOS operation BB T_{x1}/pp 372,473-59 26. L26, CMOS Inverter, voltage transfer curve and threshold voltage, Latch up problem and prevention OHP T_{x1}/pp 389-392 27. L28, L29 Rectifiers – Analysis of half wave, full wave and bridge rectifiers with resistive load BB T_{x1}/pp 130-136 28. L30, L31 Analysis for ripple voltage with C, L, LC, CLC filters PPT T_{x1}/pp 136-141 29. L32 Voltage regulators: Zener diode regulator BB T_{x1}/pp 156-568, 571-576 31. L34 Current limiting and over voltage OHP T_{x2}/pp 568-5671 32. L35, L36 Switched Mode Power Supply (SMPS) PPT T_{x2}/pp 568-571 33. L37 Zener and Tunnel	21.	L21	Operation of P-channel IFET	BB	
23. L23 MOSFÉT Types BB T_{xx}/pp 344-346, T_{xx}/pp 369-372,473-477 24. L24 Operation of MOSFET BB T_{xx}/pp 347-359 25. L25 CMOS operation BB T_{xx}/pp 389-392 26. L26, L27 CMOS Inverter, voltage transfer curve and threshold voltage, Latch up problem and prevention OHP T_{xx}/pp 389-392 27. L28, L29 Rectifiers – Analysis of half wave, full wave and bridge rectifiers with resistive load BB T_{xx}/pp 130-136 28. L30, L31 Analysis for ripple voltage with C, L, LC, CLC filters PPT T_{xx}/pp 136-141 29. L32 Voltage regulators: Zener diode regulator BB T_{xx}/pp 558-565 29. L32 Voltage regulators: Zener diode regulator BB T_{xx}/pp 568-561 31. L34 Current limiting and over voltage protection circuits DHP T_{xx}/pp 58-565 23. L35, L36 Switched Mode Power Supply (SMPS) PPT T_{xx}/pp 58-571 32. L35, L36 Switched Mode Power Supply (SMPS) PT T_{xx}/pp 53-38			f		
Image: Constraint of the second state of t					
24. L24 Operation of MOSFET BB T_{x1}/pp 347-359 25. L25 CMOS operation BB T_{x1}/pp 359-368 26. L26, CMOS Inverter, voltage transfer curve and prevention OHP T_{x1}/pp 389-392 7. L27 threshold voltage, Latch up problem and prevention OHP T_{x1}/pp 453-457 27. L28, L29 Rectifiers – Analysis of half wave, full wave and bridge rectifiers with resistive load BB T_{x1}/pp 130-136 28. L30, L31 Analysis for ripple voltage with C, L, LC, CLC filters PPT T_{x1}/pp 136-141 29. L32 Voltage regulators: Zener diode regulator BB T_{x1}/pp 156-568,571-576 31. L34 Current limiting and over voltage protection circuits BB T_{x2}/pp 58-565 29. L32 Voltage regulators: Zener diode regulator BB T_{x1}/pp 127-129 30. L33 Transistor Series and Shunt Regulators BB T_{x2}/pp 565-568,571-576 31. L34 Current limiting and over voltage protection circuits PPT T_{x2}/pp 53-538	23.	L23	MOSFET Types	BB	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24	1.24	Output in a MOSEET	DD	
26.L26, L27CMOS Inverter, voltage transfer curve and threshold voltage, Latch up problem and preventionOHP $T_{x1/pp} 389-392$ $T_{x1/pp} 453-457$ UNIT - IV RECTIFIERS AND POWER SUPPLIES27.L28, L29Rectifiers – Analysis of half wave, full wave and bridge rectifiers with resistive loadBB $T_{x1/pp} 130-136$ $R_{x1/pp} 71-77$ 28.L30, L31Analysis for ripple voltage with C, L, LC, CLC filtersPPT $T_{x1/pp} 136-141$ $T_{x2/pp} 558-565$ 29.L32Voltage regulators: Zener diode regulator protection circuitsBB $T_{x1/pp} 156-568,571-576$ 31.L34Current limiting and over voltage protection circuitsOHP $T_{x2/pp} 582-584$ 23.L35, L36Switched Mode Power Supply (SMPS)PPT $T_{x2/pp} 582-584$ 33.L37Zener and Tunnel diode $T_{x1/pp} 126-130,T_{x2/pp} 51-53$ $Rx1/pp 35-38$ 34.L38PIN and Varactor diode $T_{x2/pp 50-51$ 35.L39LED,LCD $T_{x2/pp 23-290,Rx1/pp 38-42$ 36.L40LASER $E_{x1/pp 24-286$ 37.L41Photo diode and Phototransistor $T_{x2/pp 255-258$ 38.L42Photoconductive and Photovoltaic cells $T_{x2/pp 220-229,Rx1/pp 84-874$ 40.L44DIAC and TRIAC $T_{x2/pp 220-235,Rx1/pp 840-883$					
L27threshold voltage, Latch up problem and prevention $T_{XI}/pp 453-457$ UNIT - IV RECTIFIERS AND POWER SUPPLIES27.L28, L29Rectifiers – Analysis of half wave, full wave and bridge rectifiers with resistiveBB BB $T_{XI}/pp 130-136$ $R_{XI}/pp 130-136$ 28.L30, L31Analysis for ripple voltage with C, L, LC, CLC filtersPPT $T_{XI}/pp 136-141$ $T_{X2}/pp 558-565$ 29.L32Voltage regulators: Zener diode regulatorBB $T_{XI}/pp 127-129$ 30.L33Transistor Series and Shunt RegulatorsBB $T_{X2}/pp 565-568,571-576$ 31.L34Current limiting and over voltage protection circuitsOHP $T_{X2}/pp 568-571$ 32.L35, L36Switched Mode Power Supply (SMPS)PPT $T_{X2}/pp 582-584$ UNIT V- SPECIAL SEMICONDUCTOR DEVICES33.L37Zener and Tunnel diode $T_{X2}/pp 50-51$ 35.L39LED,LCD $T_{X2}/pp 279-290,Rx1/pp 38-42$ 36.L40LASER $E_{X1/pp 284-286$ 37.L41Photo diode and Phototransistor $T_{X2}/pp 255-258$ 39.L43SCR $T_{X2}/pp 220-229,Rx1/pp 84-874$ 40.L44DIAC and TRIAC $T_{X2}/pp 229-235,Rx1/pp 880-883$					
Interview of the text of the preventionUNIT - IV RECTIFIERS AND POWER SUPPLIES27.L28, L29Rectifiers – Analysis of half wave, full wave and bridge rectifiers with resistive loadBB T_{x1}/pp 130-136 R_{x1}/pp 71-7728.L30, L31Analysis for ripple voltage with C, L, LC, CLC filtersPPT T_{x1}/pp 136-141 T_{x2}/pp 558-56529.L32Voltage regulators: Zener diode regulatorBB T_{x1}/pp 136-141 T_{x2}/pp 558-56530.L33Transistor Series and Shunt RegulatorsBB T_{x2}/pp 565-568,571-57631.L34Current limiting and over voltage protection circuitsOHP T_{x2}/pp 568-57132.L35, L36Switched Mode Power Supply (SMPS)PPT T_{x2}/pp 582-584UNIT V- SPECIAL SEMICONDUCTOR DEVICES33.L37Zener and Tunnel diode T_{x1}/pp 126-130, T_{x2}/pp 51-53 Rx1/pp 35-3834.L38PIN and Varactor diode T_{x2}/pp 50-5135.L39LED,LCD T_{x2}/pp 259-264, T_{x2}/pp 268-270, Rx1/pp 38-4236.L40LASER E_{x1}/pp 284-28637.L41Photo diode and Phototransistor T_{x2}/pp 259-264, T_{x2}/pp 268-270, Rx1/pp 893-89738.L42Photoconductive and Photovoltaic cells T_{x2}/pp 220-229,Rx1/pp 864-87440.L44DIAC and TRIAC T_{x2}/pp 229-235,Rx1/pp 880-883	20.			OHP	
UNIT - IV RECTIFIERS AND POWER SUPPLIES27.L28, L29Rectifiers – Analysis of half wave, full wave and bridge rectifiers with resistive loadBB T_{x1}/pp 130-136 R_{x1}/pp 71-7728.L30, L31Analysis for ripple voltage with C, L, LC, CLC filtersPPT T_{x1}/pp 136-141 T_{x2}/pp 558-56529.L32Voltage regulators: Zener diode regulatorBB T_{x1}/pp 127-12930.L33Transistor Series and Shunt RegulatorsBB T_{x2}/pp 565-568,571-57631.L34Current limiting and over voltage protection circuitsOHP T_{x2}/pp 582-584UNIT V- SPECIAL SEMICONDUCTOR DEVICES33.L37Zener and Tunnel diode T_{x1}/pp 126-130, T_{x2}/pp 51-53 Rx1/pp 35-3834.L38PIN and Varactor diode T_{x2}/pp 290-290,Rx1/pp 38-4236.L40LASEREx1/pp 284-28637.L41Photo diode and Phototransistor T_{x2}/pp 259-264, T_{x2}/pp 268-270, Rx1/pp 893-89738.L42Photoconductive and Photovoltaic cells T_{x2}/pp 220-229,Rx1/pp 864-87440.L44DIAC and TRIAC T_{x2}/pp 229-235,Rx1/pp 880-883		L27	o i i		1 _{X1} /pp 433-437
27. L28, L29 Rectifiers – Analysis of half wave, full wave and bridge rectifiers with resistive load BB T_{XI}/pp 130-136 28. L30, L31 Analysis for ripple voltage with C, L, LC, CLC filters PPT T_{XI}/pp 136-141 29. L32 Voltage regulators: Zener diode regulator BB T_{XI}/pp 127-129 30. L33 Transistor Series and Shunt Regulators BB T_{X2}/pp 558-565 31. L34 Current limiting and over voltage protection circuits OHP T_{X2}/pp 568-571 32. L35, L36 Switched Mode Power Supply (SMPS) PPT T_{X2}/pp 582-584 UNIT V- SPECIAL SEMICONDUCTOR DEVICES 33. L37 Zener and Tunnel diode T_{X2}/pp 50-51 34. L38 PIN and Varactor diode T_{X2}/pp 290, Rx1/pp 38-42 36. L40 LASER $E_{X1/pp}$ 126-130, T_{X2}/pp 268-270, $Rx1/pp$ 893-897 38. L42 Photo diode and Phototransistor T_{X2}/pp 259-264, T_{X2}/pp 268-270, $Rx1/pp$ 893-897 38. L42 Photoconductive and Photovoltaic cells T_{X2}/pp 220-229, $Rx1/pp$ 864-874 40. L44 DIAC and TRIAC T_{X2}/pp 220-2235			1	VER SUP	PLIES
wave and bridge rectifiers with resistive load R_{x1}/pp 71-77 28. L30, L31 Analysis for ripple voltage with C, L, LC, CLC filters PPT T_{x1}/pp 136-141 29. L32 Voltage regulators: Zener diode regulator BB T_{x1}/pp 127-129 30. L33 Transistor Series and Shunt Regulators BB T_{x2}/pp 568-568,571-576 31. L34 Current limiting and over voltage protection circuits OHP T_{x2}/pp 568-571 32. L35, L36 Switched Mode Power Supply (SMPS) PPT T_{x2}/pp 582-584 UNIT V- SPECIAL SEMICONDUCTOR DEVICES 33. L37 Zener and Tunnel diode T_{x1}/pp 126-130, T_{x2}/pp 51-53 34. L38 PIN and Varactor diode T_{x2}/pp 50-51 35. L39 LED,LCD T_{x2}/pp 290,Rx1/pp 38-42 36. L40 LASER E_{x1}/pp 284-286 37. L41 Photo diode and Phototransistor T_{x2}/pp 259-264, T_{x2}/pp 268-270, Rx1/pp 893-897 38. L42 Photoconductive and Photovoltaic cells T_{x2}/pp 220-229,Rx1/pp 864-874 4	27.	L28. L29			
load Image: Second Secon				22	
28. L30, L31 Analysis for ripple voltage with C, L, LC, CLC filters PPT T_{x1}/pp 136-141 29. L32 Voltage regulators: Zener diode regulator BB T_{x1}/pp 127-129 30. L33 Transistor Series and Shunt Regulators BB T_{x2}/pp 565-568,571-576 31. L34 Current limiting and over voltage protection circuits OHP T_{x2}/pp 568-571 32. L35, L36 Switched Mode Power Supply (SMPS) PPT T_{x2}/pp 582-584 UNIT V- SPECIAL SEMICONDUCTOR DEVICES 33. L37 Zener and Tunnel diode T_{x1}/pp 126-130, T_{x2}/pp 51-53 34. L38 PIN and Varactor diode T_{x2}/pp 50-51 35. L39 LED,LCD T_{x2}/pp 279-290,Rx1/pp 38-42 36. L40 LASER Exi/pp 284-286 37. L41 Photo diode and Phototransistor T_{x2}/pp 259-264, T_{x2}/pp 268-270, Rx1/pp 893-897 38. L42 Photoconductive and Photovoltaic cells T_{x2}/pp 225-258 39. L43 SCR T_{x2}/pp 220-229,Rx1/pp 864-874 40. L44 DIAC and TRIAC T_{x2}/pp 229-235,Rx1/pp 880-88			•		
CLC filters T_{x2}/pp 558-565 29. L32 Voltage regulators: Zener diode regulator BB T_{x1}/pp 127-129 30. L33 Transistor Series and Shunt Regulators BB T_{x2}/pp 568-568,571-576 31. L34 Current limiting and over voltage protection circuits OHP T_{x2}/pp 568-571 32. L35, L36 Switched Mode Power Supply (SMPS) PPT T_{x2}/pp 582-584 UNIT V- SPECIAL SEMICONDUCTOR DEVICES 33. L37 Zener and Tunnel diode T_{x1}/pp 126-130, T_{x2}/pp 51-53 34. L38 PIN and Varactor diode T_{x2}/pp 50-51 35. L39 LED,LCD T_{x2}/pp 279-290,Rx1/pp 38-42 36. L40 LASER E_{x1}/pp 284-286 37. L41 Photo diode and Phototransistor T_{x2}/pp 259-264, T_{x2}/pp 268-270, Rx1/pp 893-897 38. L42 Photoconductive and Photovoltaic cells T_{x2}/pp 220-229,Rx1/pp 864-874 40. L44 DIAC and TRIAC T_{x2}/pp 220-235,Rx1/pp 880-883	28	L30 L31		PPT	T _{x1} /pp 136-141
29. L32 Voltage regulators: Zener diode regulator BB T_{x1}/pp 127-129 30. L33 Transistor Series and Shunt Regulators BB T_{x2}/pp 565-568,571-576 31. L34 Current limiting and over voltage protection circuits OHP T_{x2}/pp 568-571 32. L35, L36 Switched Mode Power Supply (SMPS) PPT T_{x2}/pp 582-584 UNIT V- SPECIAL SEMICONDUCTOR DEVICES 33. L37 Zener and Tunnel diode T_{x1}/pp 126-130, T_{x2}/pp 51-53 34. L38 PIN and Varactor diode T_{x2}/pp 50-51 35. L39 LED,LCD T_{x2}/pp 279-290,Rx1/pp 38-42 36. L40 LASER E_{x1}/pp 284-286 37. L41 Photo diode and Phototransistor T_{x2}/pp 259-264, T_{x2}/pp 268-270, Rx1/pp 893-897 38. L42 Photoconductive and Photovoltaic cells T_{x2}/pp 220-229,Rx1/pp 864-874 40. L44 DIAC and TRIAC T_{x2}/pp 229-235,Rx1/pp 880-883	20.	200, 201			
30. L33 Transistor Series and Shunt Regulators BB T_{x2}/pp 565-568,571-576 31. L34 Current limiting and over voltage protection circuits OHP T_{x2}/pp 568-571 32. L35, L36 Switched Mode Power Supply (SMPS) PPT T_{x2}/pp 582-584 UNIT V- SPECIAL SEMICONDUCTOR DEVICES 33. L37 Zener and Tunnel diode T_{x1}/pp 126-130, T_{x2}/pp 51-53 34. L38 PIN and Varactor diode T_{x2}/pp 50-51 35. L39 LED,LCD T_{x2}/pp 279-290,Rx1/pp 38-42 36. L40 LASER E_{x1}/pp 284-286 37. L41 Photo diode and Phototransistor T_{x2}/pp 259-264, T_{x2}/pp 268-270, Rx1/pp 893-897 38. L42 Photoconductive and Photovoltaic cells T_{x2}/pp 220-229,Rx1/pp 864-874 40. L44 DIAC and TRIAC T_{x2}/pp 229-235,Rx1/pp 880-883	29	L32		BB	
31.L34Current limiting and over voltage protection circuitsOHP $T_{x2}/pp 568-571$ 32.L35, L36Switched Mode Power Supply (SMPS)PPT $T_{x2}/pp582-584$ UNIT V- SPECIAL SEMICONDUCTOR DEVICES33.L37Zener and Tunnel diode $T_{x1}/pp 126-130, T_{x2}/pp 51-53$ Rx1/pp 35-3834.L38PIN and Varactor diode $T_{x2}/pp 50-51$ 35.L39LED,LCD $T_{x2}/pp 279-290, Rx1/pp 38-42$ 36.L40LASER $E_{x1}/pp 284-286$ 37.L41Photo diode and Phototransistor $T_{x2}/pp 259-264, T_{x2}/pp 268-270, Rx1/pp 893-897$ 38.L42Photoconductive and Photovoltaic cells $T_{x2}/pp 225-258$ 39.L43SCR $T_{x2}/pp 220-229, Rx1/pp 864-874$ 40.L44DIAC and TRIAC $T_{x2}/pp 229-235, Rx1/pp 880-883$					
Image and the formation of the formation o			ě		
32. L35, L36 Switched Mode Power Supply (SMPS) PPT $T_{x2}/pp582-584$ UNIT V- SPECIAL SEMICONDUCTOR DEVICES 33. L37 Zener and Tunnel diode $T_{x1}/pp 126-130, T_{x2}/pp 51-53$ Rx1/pp 35-38 34. L38 PIN and Varactor diode $T_{x2}/pp 50-51$ 35. L39 LED,LCD $T_{x2}/pp 279-290, Rx1/pp 38-42$ 36. L40 LASER $E_{x1}/pp 284-286$ 37. L41 Photo diode and Phototransistor $T_{x2}/pp 259-264, T_{x2}/pp 268-270, Rx1/pp 893-897$ 38. L42 Photoconductive and Photovoltaic cells $T_{x2}/pp 220-229, Rx1/pp 864-874$ 40. L44 DIAC and TRIAC $T_{x2}/pp 229-235, Rx1/pp 880-883$	51.	L3-	6 6	OIII	1x2 pp 500 571
UNIT V- SPECIAL SEMICONDUCTOR DEVICES 33. L37 Zener and Tunnel diode $T_{x1}/pp \ 126-130, T_{x2}/pp \ 51-53$ Rx 1/pp 35-38 34. L38 PIN and Varactor diode $T_{x2}/pp \ 50-51$ 35. L39 LED,LCD $T_{x2}/pp \ 279-290, Rx 1/pp \ 38-42$ 36. L40 LASER $E_{x1}/pp \ 284-286$ 37. L41 Photo diode and Phototransistor $T_{x2}/pp \ 259-264, T_{x2}/pp \ 268-270, Rx 1/pp \ 893-897$ 38. L42 Photoconductive and Photovoltaic cells $T_{x2}/pp \ 255-258$ 39. L43 SCR $T_{x2}/pp \ 220-229, Rx 1/pp \ 864-874$ 40. L44 DIAC and TRIAC $T_{x2}/pp \ 229-235, Rx 1/pp \ 880-883$	32	135 136	1	PPT	Typ/nn582-584
33.L37Zener and Tunnel diode $T_{x1}/pp \ 126-130, T_{x2}/pp \ 51-53$ $Rx1/pp \ 35-38$ 34.L38PIN and Varactor diode $T_{x2}/pp \ 50-51$ 35.L39LED,LCD $T_{x2}/pp \ 279-290, Rx1/pp \ 38-42$ 36.L40LASER $E_{x1}/pp \ 284-286$ 37.L41Photo diode and Phototransistor $T_{x2}/pp \ 259-264, T_{x2}/pp \ 268-270, Rx1/pp \ 893-897$ 38.L42Photoconductive and Photovoltaic cells $T_{x2}/pp \ 255-258$ 39.L43SCR $T_{x2}/pp \ 220-229, Rx1/pp \ 864-874$ 40.L44DIAC and TRIAC $T_{x2}/pp \ 229-235, Rx1/pp \ 880-883$	52.	L33, L30			
Image: Second and Control	33	I 37			
34.L38PIN and Varactor diode $T_{x2}/pp 50-51$ 35.L39LED,LCD $T_{x2}/pp 279-290,Rx1/pp 38-42$ 36.L40LASER $E_{x1}/pp 284-286$ 37.L41Photo diode and Phototransistor $T_{x2}/pp 259-264,T_{x2}/pp 268-270, Rx1/pp 893-897$ 38.L42Photoconductive and Photovoltaic cells $T_{x2}/pp 255-258$ 39.L43SCR $T_{x2}/pp 220-229,Rx1/pp 864-874$ 40.L44DIAC and TRIAC $T_{x2}/pp 229-235,Rx1/pp 880-883$	55.				
35. L39 LED,LCD T_{x2}/pp 279-290,Rx1/pp 38-42 36. L40 LASER E_{x1}/pp 284-286 37. L41 Photo diode and Phototransistor T_{x2}/pp 259-264, T_{x2}/pp 268-270, Rx1/pp 893-897 38. L42 Photoconductive and Photovoltaic cells T_{x2}/pp 255-258 39. L43 SCR T_{x2}/pp 220-229,Rx1/pp 864-874 40. L44 DIAC and TRIAC T_{x2}/pp 229-235,Rx1/pp 880-883	34.	L38	PIN and Varactor diode		
36. L40 LASER E_{X1}/pp 284-286 37. L41 Photo diode and Phototransistor T_{X2}/pp 259-264, T_{X2}/pp 268-270, Rx1/pp 893-897 38. L42 Photoconductive and Photovoltaic cells T_{X2}/pp 255-258 39. L43 SCR T_{X2}/pp 220-229,Rx1/pp 864-874 40. L44 DIAC and TRIAC T_{X2}/pp 229-235,Rx1/pp 880-883					**
37. L41 Photo diode and Phototransistor T_{x2}/pp 259-264, T_{x2}/pp 268-270, Rx1/pp 893-897 38. L42 Photoconductive and Photovoltaic cells T_{x2}/pp 255-258 39. L43 SCR T_{x2}/pp 220-229,Rx1/pp 864-874 40. L44 DIAC and TRIAC T_{x2}/pp 229-235,Rx1/pp 880-883					
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					**
38. L42 Photoconductive and Photovoltaic cells T_{x2}/pp 255-258 39. L43 SCR T_{x2}/pp 220-229,Rx1/pp 864-874 40. L44 DIAC and TRIAC T_{x2}/pp 229-235,Rx1/pp 880-883					
39. L43 SCR Tx2/pp 220-229,Rx1/pp 864-874 40. L44 DIAC and TRIAC Tx2/pp 229-235,Rx1/pp 880-883	38.	L42	Photoconductive and Photovoltaic cells		
40. L44 DIAC and TRIAC Tx2/pp 229-235,Rx1/pp 880-883	39.	L43			T _{x2} /pp 220-229,Rx1/pp 864-874
	40.	L44			
	41.	L45	UJT		T _{x2} /pp 215-220,Rx1/pp 883-893

PART-A UNIT I -SEMICONDUCTOR DIODES

1. Demonstrate the structure of silicon atom. (Understanding)

2. Illustrate the silicon crystal arrangement. (Understanding)

- Illustrate Semiconductors with examples. (or) What are Semiconductors? (Understanding)
 The materials whose electrical property lies between those of conductors and insulators are known as Semiconductors. Ex germanium, silicon.
 Differentiate between intrinsic and extrinsic semiconductor. (Understanding)
 CO1
- **4. Differentiate between intrinsic and extrinsic semiconductor.** (*Understanding*) Pure form of semiconductors are said to be intrinsic semiconductor. Ex: germanium, silicon. It has poor conductivity

If certain amount of impurity atom is added to intrinsic semiconductor the resulting semiconductor is Extrinsic or impure Semiconductor. It has good conductivity

- 5. Define doping. (*Remembering*) CO1 Process of adding impurity to an intrinsic semiconductor atom is doping. The impurity is called dopant
- 6. Justify why N type or pentavalent impurities are called as Donor impurities?(*Evaluating*) CO1 N- type impurities will donate the excess negative charge carriers (Electrons) and therefore they are referred to as donor impurities.
- Justify why P-type or trivalent impurities are called as acceptor impurity? (*Evaluating*)
 P- type impurities make available positive carriers because they create holes which can accept electron, so these impurities are said to be as acceptor impurity.

8. Recall the diode current equation.(*Remembering*) The diode current equation relating the voltage V and current

The diode current equation relating the voltage V and current I is given by V = V = V

$I = I_0 (e^{(V/\eta V_T)} - 1)$

Where I = Diode Current,

 I_0 = Diode reverse saturation current at room temperature,

V= External voltage applied to the diode,

 $V_T = kT/q = T/11600$ volt- equivalent of temperature,

k – Boltzmann's constant (1.38066 X 10 $^{\text{-}23}$ J/K

 $q = charge of the electron (1.60219 X 10^{-19} C)$

 \hat{T} = temperature of the diode junction (K) = (°C+273°).

9. What is storage capacitance? (*Remembering*)

In forward biased condition, the width of the depletion region decreases and holes from p-side get diffused in the n-side, while electrons from n-side move in to the p-side. As the applied voltage increases, concentration of injected charged particles increases. This rate of change of the injected charge with applied voltage is defined as a capacitance called diffusion capacitance or storage capacitance (C_D). CD=dQ/dV

10. Define drift current. (*Remembering*)

When an electric field is applied across the semiconductor, the holes move towards the negative terminal of the battery and electron move towards the positive terminal of the battery. This drift movement of charge carriers will result in a current termed as drift current

11. Give the expression for drift current density. (*Remembering*)

Drift current density due to electrons $Jn = q n \mu nE$

- Where, Jn drift current density due to electron
- q- Charge of electron μ n Mobility of electron
- E applied electric field

CO1

CO1

CO1

Drift current density due to holes. $Jp = q p \mu p E$ Where, Jn - drift current density due to holes q - Charge of holes μp - Mobility of holes E - applied electric field **12.** Define the diffusion current. (*Remembering*) **CO1** A concentration gradient exists, if the number of either electrons or holes is greater in one region of a semiconductor as compared to the rest of the region. The holes and electron tend to move from region of higher concentration to the region of lower concentration. This process in called diffusion and the current produced due this movement is diffusion current. 13. Give the expression for diffusion current density. (*Remembering*) **CO1** Diffusion current density due to electrons Jn = q Dn dn / dxWhere Jn - diffusion current density due to electron q - Charge of an electron Dn – diffusion constant for electron dn / dx – concentration gradient Diffusion current density due to holes Jp = -q Dp dp / dxWhere Jp - diffusion current density due to holes q - Charge of a hole Dp – diffusion constant for hole dn / dx – concentration gradient 14. Differentiate between drift and diffusion currents. (Understanding) **CO1** Drift current 1. It is developed due to potential gradient. 2. This phenomenon is found both in metals and semiconductors Diffusion current 1. It is developed due to charge concentration gradient. 2. This phenomenon is found only in metals 15. Define mean life time of a hole and electron. (*Remembering*) **CO1** The electron hole pair created due to thermal agitation will disappear as a result of recombination. Thus an average time for which a hole or an electron exists before recombination can be said as the mean life time of a hole or electron. 16. Define transition capacitance for diode. (*Remembering*) **CO1** When a PN junction is reverse biased, the depletion layer acts like a dielectric material while P and N-type regions on either side which has low resistance act as the plates. In this way a reverse biased PN junction may be regarded as parallel plate capacitor and thus the capacitance across this set up is called as the transition capacitance. CT =A / W Where CT - transition capacitance A - Cross section area of the junction W – Width of the depletion region. **17.** Summarize diffusion capacitance for diode. (*Understanding*) **CO1** The diffusion capacitance of a forward biased diode is defined as the rate of change of injected

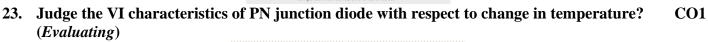
V_T – threshold voltage **18.** Compare storage capacitance and transition capacitance. (*Evaluating*)

S.No	Storage Capacitance	Transition Capacitance
1.	Reverse bias	Forward bias
2.	Majority carriers	Minority carriers
3.	Low capacitance	Large capacitance
4.	$V_T = kT/q = T/11600$	$Cd = I / V_T$

 $Cd = I / V_T$ Where, Cd - time constant I - current across the diode

19. What is depletion region in PN junction? (*Remembering*)

charge with voltage.


The region around the junction from which the mobile charge carriers (electrons and holes) are depleted is called as depletion region.since this region has immobile ions, which are electrically charged, the depletion region is also known as space charge region.

CO1

20. What is barrier potential? (*Remembering*)

Because of the oppositely charged ions present on both sides of PN junction an electric potential is established across the junction even without any external voltage source which is termed as barrier potential.

- **21.** What is Reverse saturation current? (*Remembering*) The current due to the minority carriers in reverse bias is said to be reverse saturation current. This current is independent of the value of the reverse bias voltage.
- 22. Demonstrate the VI characteristics of PN junction diode. (*Understanding*)

10 pA

 24. Give the diode current equation. (*Remembering*) The diode current equation relating the voltage V and current I is given by

$$I = I_0 \left(e^{\frac{qV}{\eta KT}} - 1 \right)$$

where

I – diode current

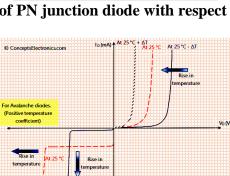
Io – diode reverse saturation current at room temperature

V – external voltage applied to the diode , a constant, 1 for Ge and 2 for Si

VT = kT/q = T/11600, thermal voltage

K – Boltzmann's constant (1.38066x10⁻²³ J/K)

q – charge of electron (1.6x10^-19 C)


T – temperature of the diode junction

25. Write the application of PN Junction diode. (Remembering)

- Can be used as rectifier in DC Power Supplies.
- In Demodulation or Detector Circuits.
- In clamping networks used as DC Restorers
- In clipping circuits used for waveform generation.
- As switches in digital logic circuits.
- In demodulation circuits.

PART-B

1. Depletion region decreases during Forward bias and increases during Reverse bias in the case of **CO1** a p-n junction diode.-justify (*Evaluating*)

CO1

CO1

CO1

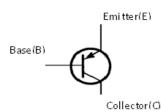
2. 3. 4.	Estimate drift and diffusion current for a semiconductor. (<i>Evaluating</i>) Explain Storage capacitance and transition capacitances in PN junction diode (<i>Analyzing</i>) Depletion region decreases during Forward bias and increases during Reverse bias in the case of a p-n junction diodejustify (<i>Evaluating</i>)				
5. 6. 7.	Describe the operation of the p-n junction diode with V-I characteristics. (<i>Understanding</i>) Explain the effect of temperature of a diode. (<i>Understanding</i>) Discuss drift current and diffusion current and derive equations for it.(<i>Analyzing</i>) UNIT II- TRANSISTORS				
1.	-		Transistor (BJT)?) (<i>Remen</i> evice whose output current,	<i>nbering)</i> , voltage and /or power is controlled by	CO2
2.	Comparative Transistor Co forms middle	nsists of Three part. It is very th	in and lightly doped becau	y) base and collector. Among them base se it allows most of the emitter current terface it doesn't need more area.	
3.	Collector reg	ion of transistor	is larger than emitter. W		CO2
4.	±				CO2
5.	Define currer	nt amplification	factor. (<i>Remembering</i>)	1	CO2
6.	i. The Q point must be taken at the Centre of the active region of the output characteristics. ii. Stabilize the collector current against the temperature variations. iii. Make the Q point independent of the transistor parameters. iv. When the transistor is replaced, it must be of same				
7.	In a common width at the ou is known as e	base configurat utput junction dic early effect. Due	ode. This action makes the e to this effect the recombin	2011) (<i>Remembering</i>) or voltage increases the space charge effective base width w to decrease. This nation rate reduces at base region and	
8.	Input characteristics: it is drawn between input voltage & input current while keeping output voltage as constant.Output characteristics: It is drawn between the output voltage &output current while keeping				
9.	 input current as constant Which device is called as bipolar device? Why? (<i>Remembering</i>) Bipolar Junction Transistor (BJT) is called bipolar devices because the current conduction is by both majority and minority carriers 				CO2
10.			ration and area of BJT.(A)	pplying)	CO2
	~ -		Doping concentration	Area	
		Emitter	Heavily doped	Moderate area	

11. Design the bias condition of the base emitter and base collector junction for a transistor to CO2 operate as amplifier? (*Applying*)

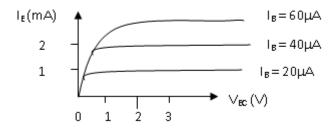
Thin

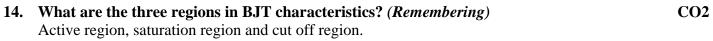
More area than emitter

Base Emitter junction should be forward biased Collector Base junction should reversed biased

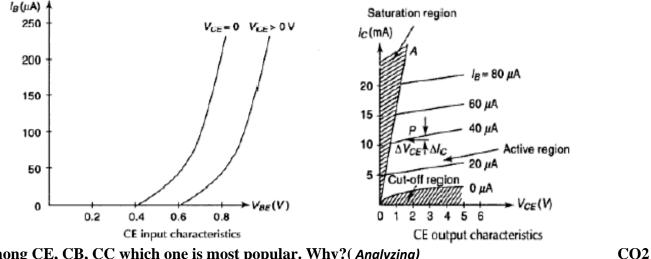

Lightly doped

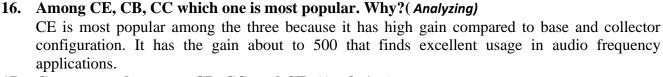
Moderately doped


Base


collector

12. Model symbol of PNP transistor and mark its terminals. (Nov/Dec 2010). (Applying) CO2

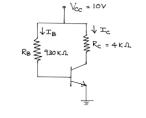



13. Label the output characteristics of a BJT in CC mode.(June/July 2010) (*Remembering*) CO2

15. Draw the characteristics of CE configuration. (*Remembering*)

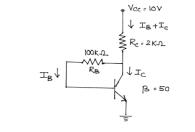
17. Compare and contrast CB, CC, and CE. (*Analyzing*)

mpare and contrast ob, co, and ol. (<i>Interfang</i>)				
	CB	CE	CC	
input impedance	very low $(100\Omega$	moderate(750 Ω)	very high(100Ω)	
output i pedance	very high(450Ω)	moderate(45KΩ)	very low (25 Ω)	
current gain	1	high	hig	
voltage gain	high(150)	high(150)	1	
application	For High Frequency	for udio Frequency	for Impedance matching	

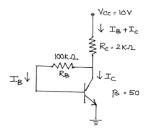

18. Justify why CE configuration input characteristics shifts downwards.(*Evaluating*) Input characteristics shift downdards because of base width modulation

CO2

CO2

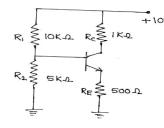

				uns	
19.		centration of transistor (Remember		CO2	
• •	• •	ed base is lightly doped collector is n	noderately doped		
20.	What is meant by Bia			CO2	
		•	to switch ON and to operate in linear		
	Collector Base junction	• •	Emitter junction forward bias and		
21.	5	ication ((<i>Remembering</i>)		CO2	
21.	-		the magnitude of the signal without	002	
	-	amplify the signal without change its			
22.					
			DC voltage of correct polarity and	001	
	-	junctions of the transistor			
23.	Summarize Q point?			CO2	
	Proper operation of tra	insistor whether the signal is presen	t or not fixed amount of current and		
	voltage are required th	ese value of current and voltages det	fines the point at which the transistor		
	operates this is called o	operating point or Q point or Quiesco	ent if the level of current and voltage		
	are fixed the operating	1			
24.		oint for an amplifier? (<i>Rememberin</i>		CO2	
			ensures that the amplified signal will		
	be an exact replica of the	1 0		~ ~ •	
25.		that affecting the Q point (Remen	0,	CO2	
	, e 1	ture, 2) Changes in the value of β ,	3) Change of parameters from one		
24	transistor to other		1 • \	000	
26.	Define Stability factor	\therefore What is its ideal value (<i>understan</i>	ding)	CO2	
	$S = \frac{1}{M_{CO}} / \text{ constant } V_{BE}$	& $\beta S' = \frac{\Delta I_c}{\Delta V_{BE}} / constant I_{co} \& \beta$	$S'' = \frac{1}{\Delta \beta} / constant Ico & V_{BE}$		
	Its ideal value =	=1			
27					
27.		is biasing methods? (Analyzing)		CO2	
21.	Biasing method	Advantages	Disadvantage	CO2	
27.		Advantages Good flexibility	Poor thermal stability	CO2	
27.	Biasing method Fixed Bias	Advantages ➤ Good flexibility ➤ Require less component	 Poor thermal stability Q point shift due to β 	CO2	
21.	Biasing method Fixed Bias Collector – Base	AdvantagesGood flexibilityRequire less componentProvidesbetter	 Poor thermal stability Q point shift due to β stability factor is high 	CO2	
21.	Biasing method Fixed Bias	Advantages > Good flexibility > Require less component > Provides better stability than fixed bias	 Poor thermal stability Q point shift due to β stability factor is high Reduce the gain of the 	CO2	
21.	Biasing method Fixed Bias Collector – Base Bias	Advantages > Good flexibility > Require less component > Provides better stability than fixed bias > Requires only one resistor	 Poor thermal stability Q point shift due to β stability factor is high Reduce the gain of the amplifier 	CO2	
21.	Biasing method Fixed Bias Collector – Base Bias Voltage divider	Advantages Good flexibility Require less component Provides better thermal stability than fixed bias Requires only one resistor Good stability	 Poor thermal stability Q point shift due to β stability factor is high Reduce the gain of the amplifier Require more components 	CO2	
21.	Biasing method Fixed Bias Collector – Base Bias	Advantages > Good flexibility > Require less component > Provides better stability than fixed bias > Requires only one resistor	 Poor thermal stability Q point shift due to β stability factor is high Reduce the gain of the amplifier Require more components stability factor depends on 	CO2	
	Biasing methodFixed BiasCollector - BaseBiasVoltage divideror Self Bias	Advantages Good flexibility Require less component Provides better thermal stability than fixed bias Requires only one resistor Good stability Possible to avoid signal lo s	 Poor thermal stability Q point shift due to β stability factor is high Reduce the gain of the amplifier Require more components 		
27.	Biasing methodFixed BiasCollector - BaseBiasVoltage divideror Self BiasWhat is Stabilization	Advantages> Good flexibility> Require less component> Provides better thermal stability than fixed bias> Requires only one resistor> Good stability> Possible to avoid signal losTechnique? (Remembering)	 Poor thermal stability Q point shift due to β stability factor is high Reduce the gain of the amplifier Require more components stability factor depends on RB & RE 	CO2 CO2	
28.	Biasing methodFixed BiasCollector - BaseBiasVoltage divideror Self BiasWhat is StabilizationIt refers to the use of reference	Advantages > Good flexibility > Require less component > Provides better thermal stability than fixed bias > Requires only one resistor > Good stability > Possible to avoid signal los Technique? (Remembering) sistive biasing circuits which permits	 Poor thermal stability Q point shift due to β stability factor is high Reduce the gain of the amplifier Require more components stability factor depends on RB & RE 	CO2	
	Biasing methodFixed BiasCollector - BaseBiasVoltage divideror Self BiasWhat is StabilizationIt refers to the use of reWhat is Bias Compendition	Advantages > Good flexibility > Require less component > Provides better thermal stability than fixed bias > Requires only one resistor > Good stability > Possible to avoid signal los Technique? (Remembering) sistive biasing circuits which permits sation? (Remembering)	 Poor thermal stability Q point shift due to β stability factor is high Reduce the gain of the amplifier Require more components stability factor depends on RB & RE I_B to vary so as to keep I_C constant. 		
28.	Biasing methodFixed BiasCollector - BaseBiasVoltage divideror Self BiasWhat is StabilizationIt refers to the use of reWhat is Bias CompenCompensation technique	Advantages > Good flexibility > Require less component > Provides better thermal stability than fixed bias > Requires only one resistor > Good stability > Possible to avoid signal los Technique? (Remembering) esistive biasing circuits which permits sation? (Remembering) ue is used to stabilize the Q point inst	 Poor thermal stability Q point shift due to β stability factor is high Reduce the gain of the amplifier Require more components stability factor depends on RB & RE I_B to vary so as to keep I_C constant. ead of DC biasing circuits where the 	CO2	
28.	Biasing methodFixed BiasCollector - BaseBiasVoltage divideror Self BiasWhat is StabilizationIt refers to the use of reWhat is Bias CompenCompensation techniquereduction of gain crossed	Advantages Good flexibility Require less component Provides better thermal stability than fixed bias Requires only one resistor Good stability Possible to avoid signal lo s Technique? (<i>Remembering</i>) esistive biasing circuits which permits sation? (<i>Remembering</i>) ne is used to stabilize the Q point inst es the tolerable limit. It uses the temp	 Poor thermal stability Q point shift due to β stability factor is high Reduce the gain of the amplifier Require more components stability factor depends on RB & RE I_B to vary so as to keep I_C constant. ead of DC biasing circuits where the perature sensitive devices such as 	CO2	
28. 29.	Biasing methodFixed BiasCollector - BaseBiasVoltage divideror Self BiasWhat is StabilizationIt refers to the use of reWhat is Bias CompenCompensation techniquereduction of gain crosseddiodes, transistor, therm	Advantages > Good flexibility > Require less component > Provides better thermal stability than fixed bias > Requires only one resistor > Good stability > Possible to avoid signal lo s Technique? (<i>Remembering</i>) sistive biasing circuits which permits sation? (<i>Remembering</i>) the is used to stabilize the Q point inst es the tolerable limit. It uses the temp nistors, sensistor to compensate for the	 Poor thermal stability Q point shift due to β stability factor is high Reduce the gain of the amplifier Require more components stability factor depends on RB & RE I_B to vary so as to keep I_C constant. ead of DC biasing circuits where the perature sensitive devices such as ne variation in currents. 	CO2 CO2	
28.	Biasing methodFixed BiasCollector - BaseBiasVoltage divideror Self BiasWhat is StabilizationIt refers to the use of reWhat is Bias CompenCompensation techniquereduction of gain crosseddiodes, transistor, thermIdentify how the comp	Advantages Good flexibility Require less component Provides better thermal stability than fixed bias Requires only one resistor Good stability Possible to avoid signal lo s Technique? (<i>Remembering</i>) esistive biasing circuits which permits sation? (<i>Remembering</i>) ne is used to stabilize the Q point inst es the tolerable limit. It uses the temp nistors, sensistor to compensate for the pensation achieved in Diode compensate	 Poor thermal stability Q point shift due to β stability factor is high Reduce the gain of the amplifier Require more components stability factor depends on RB & RE I_B to vary so as to keep I_C constant. ead of DC biasing circuits where the perature sensitive devices such as ne variation in currents. nsation for V_{BE}? (<i>Applying</i>) 	CO2	
28. 29. 30.	Biasing methodFixed BiasCollector - BaseBiasVoltage divideror Self BiasWhat is StabilizationIt refers to the use of reWhat is Bias CompenCompensation techniquereduction of gain crosseddiodes, transistor, therreIdentify how the compChange in V _{BE} is comp	Advantages > Good flexibility > Require less component > Provides better thermal stability than fixed bias > Requires only one resistor > Good stability > Possible to avoid signal los Technique? (Remembering) esistive biasing circuits which permits sation? (Remembering) te is used to stabilize the Q point inst es the tolerable limit. It uses the temp nistors, sensistor to compensate for the pensation achieved in Diode compensate	 Poor thermal stability Q point shift due to β stability factor is high Reduce the gain of the amplifier Require more components stability factor depends on RB & RE a I_B to vary so as to keep I_C constant. a of DC biasing circuits where the perature sensitive devices such as the variation in currents. nsation for V_{BE}? (Applying) diode. 	CO2 CO2 CO2	
28. 29.	Biasing methodFixed BiasCollector - BaseBiasVoltage divideror Self BiasWhat is StabilizationIt refers to the use of reWhat is Bias CompenCompensation techniquereduction of gain crosseddiodes, transistor, thermIdentify how the compChange in V _{BE} is compIdentify how the comp	Advantages Good flexibility Require less component Provides better thermal stability than fixed bias Requires only one resistor Good stability Possible to avoid signal lo s Technique? (<i>Remembering</i>) esistive biasing circuits which permits sation? (<i>Remembering</i>) ne is used to stabilize the Q point inst es the tolerable limit. It uses the temp mistors, sensistor to compensate for the pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensate across of pensation achieved in Diode compens	 Poor thermal stability Q point shift due to β stability factor is high Reduce the gain of the amplifier Require more components stability factor depends on RB & RE a I_B to vary so as to keep I_C constant. ead of DC biasing circuits where the perature sensitive devices such as the variation in currents. nsation for V_{BE}? (Applying) 	CO2 CO2	
28. 29. 30.	Biasing methodFixed BiasCollector - BaseBiasVoltage divideror Self BiasWhat is StabilizationIt refers to the use of reWhat is Bias CompenCompensation techniquereduction of gain crosseddiodes, transistor, thereIdentify how the compChange in VBE is compIdentify how the compIn order to compensation	Advantages Good flexibility Require less component Provides better thermal stability than fixed bias Requires only one resistor Good stability Possible to avoid signal lo s Technique? (<i>Remembering</i>) esistive biasing circuits which permits sation? (<i>Remembering</i>) ne is used to stabilize the Q point inst es the tolerable limit. It uses the temp mistors, sensistor to compensate for the pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensated by change in voltage across of pensation achieved in Diode compensate across of pensation achieved in Diode compens	 Poor thermal stability Q point shift due to β stability factor is high Reduce the gain of the amplifier Require more components stability factor depends on RB & RE a I_B to vary so as to keep I_C constant. a of DC biasing circuits where the perature sensitive devices such as the variation in currents. nsation for V_{BE}? (Applying) diode. 	CO2 CO2 CO2	
28. 29. 30.	Biasing method Fixed Bias Collector – Base Bias Voltage divider or Self Bias What is Stabilization It refers to the use of re What is Bias Compen Compensation technique reduction of gain crossed diodes, transistor, therm Identify how the comp Change in V _{BE} is comp Identify how the comp In order to compensation which gives I _C = β I _B	Advantages > Good flexibility > Require less component > Provides better thermal stability than fixed bias > Requires only one resistor > Good stability > Possible to avoid signal los Technique? (Remembering) sistive biasing circuits which permits sation? (Remembering) te is used to stabilize the Q point inst es the tolerable limit. It uses the temp nistors, sensistor to compensate for the pensation achieved in Diode compe ensated by change in voltage across of pensation achieved in Diode compe ensated by change in voltage across of pensation achieved in Diode compe ensated by change in voltage across of pensation achieved in Diode compe	 Poor thermal stability Q point shift due to β stability factor is high Reduce the gain of the amplifier Require more components stability factor depends on RB & RE IB to vary so as to keep I_C constant. and of DC biasing circuits where the everature sensitive devices such as the variation in currents. Insation for V_{BE}? (<i>Applying</i>) diode. Insation for I_{CO}? (<i>Applying</i>) s equal to transistor leakage current 	CO2 CO2 CO2	
28. 29. 30. 31.	Biasing methodFixed BiasCollector - BaseBiasVoltage divideror Self BiasWhat is StabilizationIt refers to the use of reWhat is Bias CompenCompensation techniquereduction of gain crosseddiodes, transistor, thermIdentify how the compChange in V_{BE} is compIdentify how the compIn order to compensationIn order to compensationwhich gives $I_C = \beta I_B$ Discover how the comp	Advantages > Good flexibility > Require less component > Provides better thermal stability than fixed bias > Requires only one resistor > Good stability > Possible to avoid signal los Technique? (Remembering) esistive biasing circuits which permits sation? (Remembering) te is used to stabilize the Q point inst es the tolerable limit. It uses the temp nistors, sensistor to compensate for the pensation achieved in Diode compe e for I _{CO} , diode saturation current i appensation achieved by using Therm	 Poor thermal stability Q point shift due to β stability factor is high Reduce the gain of the amplifier Require more components stability factor depends on RB & RE IB to vary so as to keep I_C constant. and of DC biasing circuits where the berature sensitive devices such as the variation in currents. Insation for V_{BE}? (<i>Applying</i>) diode. Insation for I_{CO}? (<i>Applying</i>) s equal to transistor leakage current 	CO2 CO2 CO2 CO2	
28. 29. 30. 31.	Biasing methodFixed BiasCollector - BaseBiasVoltage divideror Self BiasWhat is StabilizationIt refers to the use of reWhat is Bias CompenCompensation techniquereduction of gain crosseddiodes, transistor, thermIdentify how the compChange in V_{BE} is compenIn order to compensationIn order to compensationIn order to compensationIn order to compensationWhich gives $I_C = \beta I_B$ Discover how the compensation	Advantages > Good flexibility > Require less component > Provides better thermal stability than fixed bias > Requires only one resistor > Good stability > Possible to avoid signal los Technique? (Remembering) sistive biasing circuits which permits sation? (Remembering) esistive biasing circuits which permits sation? (Remembering) ne is used to stabilize the Q point inst es the tolerable limit. It uses the temp nistors, sensistor to compensate for the pensation achieved in Diode compe e for I _{CO} , diode saturation current i pensation achieved by using Therm decreases exponentially with increases	 Poor thermal stability Q point shift due to β stability factor is high Reduce the gain of the amplifier Require more components stability factor depends on RB & RE a I_B to vary so as to keep I_C constant. ead of DC biasing circuits where the perature sensitive devices such as the variation in currents. nsation for V_{BE}? (Applying) diode. nsation for I_{CO}? (Applying) s equal to transistor leakage current 	CO2 CO2 CO2 CO2	
28. 29. 30. 31.	Biasing methodFixed BiasCollector – BaseBiasVoltage divideror Self BiasWhat is StabilizationIt refers to the use of reWhat is Bias CompenCompensation techniquereduction of gain crosseddiodes, transistor, thermIdentify how the compChange in V_{BE} is compIdentify how the compIn order to compensationIn order to compensationIn order to compensationWhich gives $I_C = \beta I_B$ Discover how the compThermistor resistance	Advantages > Good flexibility > Require less component > Provides better thermal stability than fixed bias > Requires only one resistor > Good stability > Possible to avoid signal los Technique? (Remembering) sistive biasing circuits which permits sation? (Remembering) esistive biasing circuits which permits sation? (Remembering) ne is used to stabilize the Q point inst es the tolerable limit. It uses the temp nistors, sensistor to compensate for the pensation achieved in Diode compe e for I _{CO} , diode saturation current i pensation achieved by using Therm decreases exponentially with increases	 Poor thermal stability Q point shift due to β stability factor is high Reduce the gain of the amplifier Require more components stability factor depends on RB & RE a I_B to vary so as to keep I_C constant. ead of DC biasing circuits where the perature sensitive devices such as the variation in currents. nsation for V_{BE}? (Applying) diode. nsation for I_{CO}? (Applying) s equal to transistor leakage current 	CO2 CO2 CO2 CO2	
28. 29. 30. 31.	Biasing methodFixed BiasCollector – BaseBiasVoltage divideror Self BiasWhat is StabilizationIt refers to the use of reWhat is Bias CompenCompensation techniquereduction of gain crosseddiodes, transistor, thermIdentify how the compChange in V_{BE} is compIdentify how the compIn order to compensationIn order to compensationIn order to compensationWhich gives $I_C = \beta I_B$ Discover how the compThermistor resistance	Advantages > Good flexibility > Require less component > Provides better thermal stability than fixed bias > Requires only one resistor > Good stability > Possible to avoid signal los Technique? (Remembering) sistive biasing circuits which permits sation? (Remembering) esistive biasing circuits which permits sation? (Remembering) ne is used to stabilize the Q point inst es the tolerable limit. It uses the temp nistors, sensistor to compensate for the pensation achieved in Diode compe e for I _{CO} , diode saturation current i pensation achieved by using Therm decreases exponentially with increases	 Poor thermal stability Q point shift due to β stability factor is high Reduce the gain of the amplifier Require more components stability factor depends on RB & RE a I_B to vary so as to keep I_C constant. ead of DC biasing circuits where the perature sensitive devices such as the variation in currents. nsation for V_{BE}? (Applying) diode. nsation for I_{CO}? (Applying) s equal to transistor leakage current 	CO2 CO2 CO2 CO2	

- **33.** Criticize how the compensation achieved by using Sensistor? (*Evaluating*) Sensistor resistance increases with increase in temperature. As resistance increases, V_{R2} decreases so that forward emitter bias decreases. As a result I_C decreases.
- **34. Define Thermal Runaway.** (*Remembering*) The self-destruction of an unbiased transistor is known as thermal runaway. To avoid it; the operating point is to be stabilized.
- 35. Determine the operating point from the figure below shows a silicon transistor with β =100 CO2 and biased by base resistor method. (*Applying*)


$$V_{CC} - V_{BE} = I_B R_B \Rightarrow I_B = \frac{V_{CC} - V_{BE}}{R_B}$$
. Operating point is (6V, 1mA)

36. An N-P-N transistor with β=50 is used in a CE circuit with VCC=10V, RC=2KΩ. The bias CO2 is obtained by connecting a 100KΩ resistance from collector to base. Assume VBE=0.7V. Find i) the quiescent point and ii) Stability factor 'S' (*Applying*)

$$V_{CC} - V_{BE} = I_B R_B \Rightarrow I_B = \frac{V_{CC} - V_{BE}}{R_B}$$
, \therefore Operating point is (6V, 1mA)


37. An N-P-N transistor with β=50 is used in a CE circuit with VCC=10V, RC=2KΩ. The bias CO2 is obtained by connecting a 100KΩ resistance from collector to base. Assume VBE=0.7V. Find i) the quiescent point and ii) Stability factor 'S' (*Applying*)

$$\therefore I_C = \frac{\beta \left(V_{CC} - V_{BE} - I_C R_C \right)}{R_C + R_B}, \therefore \text{ The quiescent point is (5.308V, 2.3mA)}, S = \frac{51}{1 + 50 \left(\frac{20 \times 10^3}{102 \times 10^3} \right)} = 25.75$$

38. For the circuit shown in figure, determine the value of IC and VCE. Assume VBE=0.7V CO2 and β=100. (*Applying*)

CO2

$$V_B = \frac{R_1}{R_1 + R_2} V_{CC} = \frac{5 \times 10^3}{10 \times 10^3 + 5 \times 10^3} \times 10 = 3.33 V_{E} = V_B - V_{BE} = 3.33 - 0.7 = 2.63 V_{E} = \frac{V_E}{R_F} = \frac{2.63 V}{500} = 5.26 mA$$

$$I_{B} = \frac{I_{E}}{1+\beta} = \frac{2.63 \times 10^{-3}}{101} = 52.08 \mu A \qquad V_{CC} - I_{C}R_{C} - V_{CE} - I_{E}R_{E} = 0 \qquad V_{CE} = 2.162 V_{CE} = 1.162 V_{CE} = 1.162$$

39. Infer what are the effects of unbiased R_E? (Understanding)

- Increase in the Input Impedance
- Reduction in voltage amplification
- Improved stability of voltage gain.

40. Compare CB,CE,CC amplifiers (Analyzing)

)	
	CB	CE	CC
input impedance	very low (100 Ω)	moderate(750 Ω)	very high(100 Ω)
outpu	very high(450 Ω)	moderate(45KΩ)	very low (25Ω)
impedance			
cu rent gain	1	high	high
voltage gain	high(150)	high(150)	1
application	For High	For Audio	for Impedance
	Frequency	Frequency	matching
		1101 1 1/	

41. Explain the function of bypass capacitor in an amplifier circuits. (*Remembering*) It offers low reactance to AC signal which increases the voltage gain of amplifier

42. Why coupling capacitor is used to connect a signal source to an amplifier. (*Remembering*) CO2 It blocks DC voltage but passes AC signal, because of this biasing conditions are maintained constant

43.	Define the various h parameters. (<i>Remembering</i>) (May03)	CO2
	Input Impedance= $h_{11}=V_i/I_i$	
	Reverse voltage Gain= $h_{12} = V_i / V_o$	
	Forward Current Gain $=h_{21}=I_0/I_i$	
	Output Admittance = $h_{22}=I_0/V_0$	

44. Why h parameter model is important for BJT? (*Remembering*)It is important because:1. its values are used on specification sheets 2. it is one model that may be used to analyze circuit

behavior 3. it may be used to form the basis of a more accurate transistor model

45. Define Voltage Amplification factor (Av). (*Remembering*) The ratio of the output voltage V2 to the input voltage Vi gives the voltage gain of the transistor

$$A_V = \frac{A_I Z_L}{Z_i} \quad A_I = \frac{-h_f}{1 + h_O Z_L}$$

46. Define Miller theorem (*Remembering*) (May04), (Nov2010) CO2 It states that, if the gain ratio of two node is 1:K then an impedance of Z connecting the two

nodes can be replaced with Z/K impedance between the first node and ground and a KZ/(K-1) impedance between the second node and ground.

47. What does Bootstrapping Mean? (*Remembering*) (May03)

If the gain of the amplifier is 1, then if the voltage at one end of resistor changes, then there is same changes at the other end of resistor. It is as if resistor were pulling itself up by its bootstraps

CO2

CO2

CO2

CO2

CO2

48.	Justify Why the Darlington connection is not possible for more number of stages(<i>Evaluating</i>)	CO2
	When number of stages increases, the leakage current also increases and gets multiplied by the	
	current gain. Voltage gain will also reduce.	~ ~ ~
49.	List Importance of Darlington Emitter Follower? .(<i>Evaluating</i>)	CO2
-	High current gain, Low voltage gain, High input resistance, Low output resistance	GO
50.	List the advantages of h parameters. (<i>Remembering</i>) (Nov2010)	CO2
	Easy to measure	
	Real number up to RF	
	Easily correctable from one configuration to other.	
51.	Write the equation form which the small signal LF equivalent of JFET is formed (<i>Applying</i>) (May05)	CO2
	$I_d = g_m V_{gs} + V_{ds}/r_d$	
52.	What is the need for multistage amplifier? (<i>Remembering</i>) In single stage amplifier, the parameters input impedance, Voltage gain; Bandwidth and Output	CO2
	impedance are not fulfilled. So the multistage amplifier is needed for these requirements.	
53.	What is cascade amplifier? (<i>Remembering</i>)	CO2
	It consists of CE and CB configurations. CB provide a good High Frequency operation	
54.	List the features of Cascode Amplifier? (<i>Remembering</i>)	CO2
	• Input and current gain are equal to the corresponding value of single stage CE amplifier	
	 Output resistance is equal to that of CB amplifier 	
	 Bandwidth is very large 	
55.	What is the voltage gain of cascade amplifier? (<i>Remembering</i>)	CO2
55.	what is the voltage gain of cascade amplifier. (<i>Remembering</i>)	002
	It is the product of voltage gains of the various stages	
	$\mathbf{A}_{V} = \mathbf{A}_{V1} \cdot \mathbf{A}_{V2} \cdot \mathbf{A}_{V3} \cdot \dots \cdot \mathbf{A}_{VN}.$	
56.	Define CMRR.(<i>Remembering</i>)	CO2
	It is the ratio of differential gain to common mode gain [Ad/ Ac]	
57.	List the features of Differential Amplifier? (Remembering)	CO2
	High input impedance	
	Low output impedance	
	Large Bandwidth	
	High CMRR	
58.	Relate how does constant current can be improving CMRR? (Understanding) (Nov2010)	CO2
	In the circuit, RE will ideally be ∞ and Ac will be zero making CMRR ∞ . R _E replaced with constant current circuit will improve CMRR.	
59.	Justify how does input impedances increases due to Darlington pair? (<i>Evaluating</i>)	CO2
	In Darlington pair two transistors are cascaded in CC configuration as a result of this input	
	impedance is increased.	
60.	Define Bandwidth. (<i>Remembering</i>)	CO2
	It is defines as the difference between the half power frequency. $\mathbf{BW} = \mathbf{f}_2 - \mathbf{f}_1 \mathbf{Hz}$	
61.	Definition of Mid band gain(<i>Remembering</i>)	CO2
	The Mid band of an amplifier is the band of frequencies between 10 f_1 and 0.1 f_2 .	
62.	How coupling capacitor effect the bandwidth of an amplifier. (<i>Remembering</i>)	CO2
	It offers a large reactance at Low Frequency, due to this, voltage drop across them increases	
	which in turn reduce the gain of the amplifier.	
63.	Infer the effect of bypass capacitor?(<i>understanding</i>) (Nov 2010)	CO2
	At Low Frequency, reactance is not equal to zero, but it has finite value. The parallel	
	combination of R_E and C_E will offer a finite impedance. So R_E is not properly bypassed and the	
	voltage gain will reduced.	

64. Infer the effect of internal transistor capacitances? ?(*understanding*) (Nov 2010) **CO2** At high frequencies, the coupling and bypass capacitors act as short and do not affect the amplifier response. However, at high frequencies, the internal capacitances, commonly known as junction capacitances do come into play, reducing the current gain. 65. Illustrate why it is not possible to use the h parameters at High Frequency? (*Remembering*) **CO2** At High Frequency, h parameter become complex and its values are frequency dependent 66. Define alpha cutoff frequency. (*Remembering*) **CO2** It is the frequency at which the short circuit CB current gain of the transistor drops by 3db from $f_{a}=1+hfe/2\pi rb'e[ce+cc]$ its value at Low Frequency. 67. Define beta cutoff frequency. (*Remembering*) **CO2** It is the frequency at which the short circuit CE current gain of the transistor drops by 3db from $f_{B}=1/2\pi rb'e[ce+cc]$ its value at Low Frequency. 68. Define f_T. (*Remembering*) **CO2** It is the frequency at which the short circuit CE current gain becomes unity. $f_T = hfe f_{\beta}$. 69. Define rise time? (*Remembering*) **CO2** The time difference between the t_1 and t_2 which corresponds to 10% and 90% value of the final value is called rise time. $t_r=2.2 R_2 C_2$ 70. Relate the relation between bandwidth and rise time? (*Understanding*) **CO2** $BW=f_{H}=0.35 / tr$ 71. List the significance of two capacitors in hybrid Π model. (*Remembering*) **Diffusion capacitance** is offered by the forward biased BE junction and represents the excess minority carrier storage at the base emitter junction. Its value is 100Pf. Transition capacitance is offered by reverse biased CB junction. Its value is 3pF. 72. Recall the expression for lower cutoff frequency of multistage amplifier. (Understanding) **CO2** $f_L(n) = f_L / \sqrt{2^{1/n-1}}$ $f_L(n)$ – Lower 3dB frequency of identical cascaded stages, f_L - Lower 3dB frequency of single stage, n – Number of stages 73. Recall the expression for Higher cutoff frequency of multistage amplifier.(*Understanding*) **CO2** $f_{\rm H}(n) = f_{\rm H} \cdot \sqrt{2^{1/n-1}}$ $f_H(n)$ – Higher 3dB frequency of identical cascaded stages, f_H - Higher 3dB frequency of single stage, n - Number of stages. 74. Identify the role of coupling network in multistage amplifier (*Applying*) (Nov2010) **CO2** > To transfer AC output of one stage to next stage > To isolate the DC conditions of one stage to next stage 75. Justify why the drop in gain at the low frequency region & high frequency region CO2 (Evaluating) (Nov2010) Gain at Low Frequency is low due to Coupling & Bypass capacitors Gain at High Frequency is low due to Junction capacitance. 76. Define gain –bandwidth product?(*Remembering*) **CO2** It is the product of gain and bandwidth of an amplifier is always constant. It defines, if gain increases bandwidth decreases. 77. What are parameters that will influence the frequency response of FET Amplifier? CO2 (*Remembering*) External capacitance which decides the high frequency Internal capacitance which decides the low frequency. **PART-B** Explain the operation of NPN & PNP transistor with necessary diagrams.(Dec 2009) CO2 1. (Evaluating) Criticize the operation, Input and Output characteristics of a transistor under CE Configuration. CO2 2. (Evaluating) With neat diagram explain the operation, Input and Output characteristics of a transistor under CO2 3. CB Configuration.(Nov-Dec 2010).(Nov-Dec 2011)(*Understanding*)

18EC313-Electronic Devices and Circuits

4. With neat diagram explain the operation, Input and Output characteristics of a transistor under CO2

CC Configuration.(Nov-Dec 2010).(Nov-Dec 2011) Understanding)

- 5. Interpret various breakdowns in transistor. (*Evaluating*)
- 6. Construct D.C load line? How will you select the operating point? Explain it using common CO2 emitter amplifier characteristics as an example? (*Understanding*)
- 7. Demonstrate the circuit diagram of Fixed -bias circuit using CE configuration and Derive it CO2 stability factor.(*Understanding*)
- 8. Demonstrate the circuit diagram of Collector to Base bias circuit using CE configuration and CO2 explain how it stabilizes operating point. (*Understanding*)
- 9. Draw the circuit diagram of self-bias circuit using CE configuration and explain how it stabilizes CO2 operating point. (*Analyzing*) (Nov 2010)
- 10. Explain the bias compensation techniques by using i)Diode ii) Themistor iii)Sensistor CO2 (*Analyzing*)
- 11. Justify With the help of neat diagram the voltage divider biasing are stable than other biasing CO2 circuits method for FET.(*Evaluating*)
- 12. Draw the biasing circuit for self bias for FET using common source configuration CO2 (Understanding) (May04)
- **13.** Develop the expressions for current gain, voltage gain, input impedance and output impedance **CO2** for an emitter follower circuit. (*Applying*) (Nov/Dec13).
- 14. Explain with circuit diagram the bootstrapped Darlington emitter follower. (*Understanding*) CO2 (Dec12)
- **15.** Explain in detail with neat sketch, function of differential amplifier. Derive its Ad, Ac and CMRR (*Applying*) (Nov 2010) (Nov/Dec 2011)
- 16. Draw the high frequency hybrid π model for a transistor in the CE configuration and explain the significance of each component. (*Remembering*) (Nov/Dec14).
- 17. Explain the relation between h parameters hybrid π model. (*Understanding*)
- **18.** Derive an expression for voltage and current gain, cutoff frequencies including source resistance and gain bandwidth product. (*Understanding*)

UNIT-III-FET

1.	Why it is called field effect transistor?(Understanding)	CO3
	The drain current ID of the transistor is controlled by the electric field that extends into the	
	channel due to reverse biased voltage applied to the gate, hence this device has been given the	
	name Field Effect Transistor.	
2.	Identify Which device is called as Unipolar device and Why? (Applying)	CO3
	Since the operation of FET depends on the flow of majority carriers (either the electrons or holes)	
	only, the FET is said to be unipolar device.	
3.	Why FET is called voltage controlled device?(<i>Remembering</i>)	CO3
	The output characteristics of FET are controlled by its input voltage thus it is voltage controlled	
	device.	
4.	Classify FETs? Or What are the two main types of FET? (Analyzing)	CO3
	FET is abbreviated for Field Effect Transistor. It is a three terminal device with its output	
	characteristics controlled by input voltage. <u>Types:</u> 1. JFET 2. MOSFET	
5.	What are the two important characteristics of JFET? (<i>Remembering</i>)	CO3
	i.Drain characteristics ii. Transfer characteristics.	
6.	What is Transconductance in JFET? (<i>Remembering</i>)	CO3
	It is the ratio of small change in drain current to the corresponding change in drain to source	
	voltage.	
7.	Define Amplification Factor for JFET? (<i>Remembering</i>)	CO3
	It is the ratio of small change in drain to source voltage to the corresponding change in Gate to source voltage	

18EC313-Electronic	Devices	and Circuits	

COI

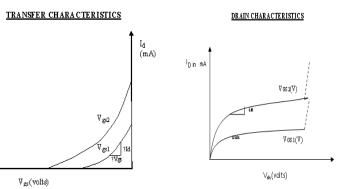
What are the importances of FET?(Evaluating)	CO3
The FET has the following advantages over BJT. i. The noise level very low in FET since there	
are no junctions. ii. FET has very high power gain. iii. Offers perfect isolation between input and	
output since it has very high input impedance. iv. FET is a negative temperature Co-efficient	
device hence avoids thermal runaway	
Define pinch off voltage in FET. (<i>Remembering</i>)	CO3
Pinch off voltage is the minimum drain to source voltage where the Drain current approach	
constant value (saturation value) beyond the pinch off voltage the channel width cannot be	
reduced	
Justify why the noise level in FET is very small. ?(<i>Evaluating</i>)	CO3
In FET, for current conduction no junction is involved. The conduction is either through an N-	
type or P-type semiconductor. Therefore, the noise level is very small.	
With $V_{GS} = 0$ the drain current in saturation region of JEFT is 8mA.If the pinch off voltage	CO3
is -4V, estimate the drain current at $V_{GS} = -2V$. (Applying)	
$I_D = I_{DSS} [1 - V_{GS}/V_P]^2 = 8 \times 10^{-3} [1 - (-2) / (-4)]^2 = 2 \text{ mA}.$	
List the applications of MOSFET. (<i>Remembering</i>)	CO3
1. It can be used as amplifiers in oscilloscope, electronic voltmeters.	
2. It is used in computer memories.	
	The FET has the following advantages over BJT. i. The noise level very low in FET since there are no junctions. ii. FET has very high power gain. iii. Offers perfect isolation between input and output since it has very high input impedance. iv. FET is a negative temperature Co-efficient device hence avoids thermal runaway Define pinch off voltage in FET. (<i>Remembering</i>) Pinch off voltage is the minimum drain to source voltage where the Drain current approach constant value (saturation value) beyond the pinch off voltage the channel width cannot be reduced Justify why the noise level in FET is very small. ?(<i>Evaluating</i>) In FET, for current conduction no junction is involved. The conduction is either through an N-type or P-type semiconductor. Therefore, the noise level is very small. With V _{GS} = 0 the drain current in saturation region of JEFT is 8mA.If the pinch off voltage is -4V, estimate the drain current at V _{GS} = -2V. (<i>Applying</i>) In = I _{DSS} [1 - V _{GS} /V _P] ² = 8 X 10 ⁻³ [1 - (-2) / (-4)] ² = 2 mA. List the applications of MOSFET. (<i>Remembering</i>) 1. It can be used as amplifiers in oscilloscope, electronic voltmeters.

- f EET9(E--- l-- - 4!--

.....

- 3. It is used in logic circuits.
- 4. It is used as Oscillators.

0


**71

5. It is used in communication

13. Justify your reason Why depletion region in a JFET is tapered? (Evaluating) CO3

A narrow channel exists between two p type semiconductors in n-channel type FET. When voltage is applied between the drain and source electrons flow from drain to source through the narrow channel between the depletion regions. This constitutes the drain current I_D. When gate to source voltage is also increased above zero voltage, the depletion regions are widened. This reduces the effective width of the channel which means the depletion regions are tapered.

14. Model the VI Characteristics of JFET. (Applying)

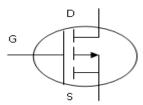
15. Compare BJT and MOSFET. (Understanding)

S.N	Parameter	BJT	FET
0			
	Control element	Current controlled device. Input	Voltage controlled device.
1.		current controls the output current	Input voltage controls the
			drain current
	Current	Both majority and minority	Only by majority carriers
	conduction	carriers	
2.	Input resistance	Less(Kilo ohms)	Very high(Mega ohms)
3.	Switching speed	Less speed	High switching speed

CO3

4.	Thermal	Exists	Does not exists
4.	runaway		
5.	Thermal noise	More	Less
	Relation	Linear	Nonlinear
6.	between Input		
	and Output		
7.	Handling	Very easy	Need much care in
7.			handling
8.	Gain bandwidth	High	Low
0.	product		

16 Differentiate JFET and MOSEFT. (Understanding)


CO3

CO3

FET	MOSFET		
1.Reverse bias for gate(operated	1.Positive or negative gate voltage(depletion MOSFET		
only in depletion mode)	can be operated in both depletion mode and		
2.Gate is formed as a diode	enhancement mode)		
3.Operated only in depletion mode	2.Gate is made as a capacitor		
4. High input impedance	3. Can be operated either in depletion or enhancement		
5. Gate current is high.	mode		
	4. Very high input impedance due to capacitive effect		
	5. Gate current is low.		
Nifferentiate Enhancement MOSEET and Doplation MOSEET (Understanding)			

17 Differentiate Enhancement MOSEFT and Depletion MOSEFT (. Understanding) Depletion MOSEFT Enhancement MOSEFT 1.Negative voltage at the gate 1.Positive voltage at the gate 2.Inversion layer is made 2.Depletion of majority carriers happens 3.Negative charges are formed 3. Positive charges are formed

18 Draw the model of an N-Channel Enhancement and P-Channel Depletion type MOSFET. **CO3** (Applying)

P-CHANNEL MOSFET

N-CHANNEL MOSFET

PART B

- 1. Formulate the working of JFET under different bias conditions.((Creating) **CO3**
- 2. Explain the construction and working principle of N-Channel JFET. (Understanding) **CO3**
- 3. Explain the construction and working principle of P-Channel JFET. (Understanding) **CO3**
- 4. Explain the construction and working principle of depletion type MOSFET. Also explain its drain **CO3** and transfer characteristics with neat sketch. (*Evaluating*)
- 5. Explain the construction and working principle of Enhancement type MOSFET. (*Evaluating*) **CO3**

UNIT IV RECTIFIERS AND POWER SUPPLIES

- 1. What are various stages in linear power supply? (*Remembering*) Rectifier, filter and regulator.
- **Define Rectifiers.** (*Remembering*) 2. **CO4** A rectifier is defined as electronic device used for convert A.C voltage into Pulsating DC voltage. A rectifier utilizes unidirectional conduction device like PN junction diode.

	18EC313-Electronic Devices and Circ	cuits
3.	Define voltage regulation. (Remembering)	CO4
	Voltage regulation = $(V_{NL} - V_{FL})/V_{FL}$.	
4.	Define ripple factor . (Nov 2010)	CO4
	Ripple factor =	
	RMS value of AC component of output	
	D.C. or average value of the component	
5.	Define-efficiency of a half-wave rectifier along with its maximum value. (<i>Remembering</i>)	CO4
	The efficiency of a half wave rectifier is defined as the ratio of D.C output power to A.C. input	
	power.	
	Efficiency = DC output power/ A.C input power.	
6.	Define Peak Inverse Voltage (PIV). (Remembering)	CO4
	Peak inverse voltage is defined as the maximum reverse voltage that a diode can withstand	
	without destroying the junction	
7.	Define Transformer utilization factor (TUF). (Remembering)	CO4
	Transformer utilization factor is defined as the ratio of DC power to that of AC rating of the	
	transformer secondary. TUF = Pdc / Pac (rated)	

- 8. List the expressions of form factor and peak factor for a half wave rectifier. (*Remembering*) CO4 Form factor = RMS value / average value Peak factor = peak value / RMS Value
- 9. Compare the different types of rectifier circuits. (Understanding)

Bridge rectifier Parameters HWR FWR Average value Im/π $2 \text{Im} / \pi$ $2 \text{Im} / \pi$ Rms value Im / 2 $\text{Im}/\sqrt{2}$ $\operatorname{Im}/\sqrt{2}$ Efficie c 40% 81.2% 81.2% TUF 28.7% 69.3% 8 .2% Ripple fact r 1.21 0.48 0.48 Ri ple frequency 50Hz 100Hz 100Hz PIV Vm 2Vm Vm not required Center tap not required required transformer

10. List the advantages and disadvantages of different types of rectifier circuits? CO4 (*Remembering*)

Types of rectifiers	Advantages	Disadvantages
HWR	Simple circuit	High ripple factor
		Low efficiency
		➢ Low TUF
FWR	Low ripple factor	Cost of center tap transformer high
	Better efficiency	Need large size of diodes
	► Better TUF	
Bridge rectifier	➤ Center tap transformer is	Four diodes are needed
-	not required	➢ As two diodes conduct
	Efficiency high	simultaneously, the voltage drop
	➤ TUF is high	increases, output decreases.

11. Compare the different types of filters. (Understanding)

Parameter	Capacitor filter	Inductor filter	L Section filter	π Section filter
S				
Ripple	1	R	R	1
factor	$4\sqrt{3}$ fCR	$3\sqrt{2}\omega L$	$6\sqrt{2} \omega^2 LC$	$4\sqrt{3}(\omega^2 L C_1 C_2 R_L)$

CO4

Useful in	reducin ripple in load voltage	reducing ripple in load current	reducing ripple in load current	reducing ripple in load voltage
Suitable for		Heavy load application	light & heavy load application	all loads
Surge current	very high	low	low	low

12. List the pros and cons of various filters? (Remembering)

Types of Advantages **Disadvantages** filters ▶ ripple factor is dependent on Capacitor \triangleright easy to design \succ reduction in the ripple content filter the load \triangleright increase in the average load \blacktriangleright regulation is poor \succ diodes have to handle large voltage peak currents \succ ripple factor is poor ▶ low ripple factor at heavy load **Inductor filter** \triangleright bulky and costly currents ➢ reduce ripple in output ➢ good load regulation L Section \triangleright power loss takes place in filter \succ low ripple factor inductor and not dependent on load \blacktriangleright bulky and costly π Section filter low ripple factor \triangleright power loss takes place in \blacktriangleright high DC voltage inductor \triangleright bulky and costly ➢ high peak diode current

13. What is the need of filter circuit? (*Remembering*) The output of rectifier circuit consists of **DC and Ripple components**. To remove the ripples, the filter circuits are used

14. Why a simple capacitor filter is not suitable for heavy loads. (*Remembering*)

As the load current increases, for the same d.c output voltage the load resistance decreases. This increases ripple content in the output for heavy loads. Practically for heavy loads, the d.c output voltage decreases and shows very poor regulation. Hence the simple capacitor is not suitable for heavy loads

15. Define Line & Load regulation. (*Remembering*) (Nov2010)

Line regulation is defined as the change in output voltage for a change in regulated load voltage due to change in line voltage, keeping the load current and temperature constant.

Line regulation = V_{LH} - V_{LL}

LH=load voltage with high line voltage,

LL= load voltage with low line voltage

Load regulation is defined change in the regulated output voltage when the load current changes from min to max .

Load regulation=V_{NL}-V_{FL}.

16. What are the factors affecting the output voltage of a regulated power supply? CO4 (*Remembering*)

Load current, Input voltage, Temperature.

17. List the factors that determine the stability of the voltage regulators. (*Remembering*)CO4The output d.c. voltage V0 depends upon the input unregulated dc voltage Vin, load current ILand temperature T.The three factors that determine the stability of voltage regulator are

- 1. Input regulation factor, $Sv = \Delta Vo/\Delta Vin$ when $\Delta IL=0$, $\Delta T = 0$.
- 2. Output resistance, Ro = $\Delta Vo/\Delta IL$ when $\Delta Vin = 0$, $\Delta T = 0$

CO4

CO4

CO4

Temperature coefficient ST= $\Delta Vo/\Delta T$ when $\Delta Vin=0$, $\Delta IL = 0$

18. List the disadvantages of the linear voltage regulators? (Understanding)

- Low efficiency
- Need large value of capacitors
- Input transformer is bulky and costly

19. What is the basic concept of SMPS? (*Remembering*)

SMPS, series pass transistor operates as a **switch**. Pulses from generator are applied to switch, when it is ON it connects the input as it is to the input of the filter. When it is OFF, filter input is disconnected and gives rectangular waveform. Then filter converts the rectangular into smooth dc voltage by removing the ripple contents.

20. What is a voltage multiplier? (*Remembering*) (May2008) It produces a DC output voltage in terms of multiplication of input voltage.

21. List pros and cons of SMPS? (Remembering) (Nov 2010)

Advantages	Disadvantages
➤ Efficiency is high due to less heat	
dissipation	No isolation between input and output
Protection against excessive output voltage	Radio frequency interference to the neighbouring circuits
Higher power handling capacity	Transient response is slow
Reduced harmonic feedback into the supply main	

22. Compare Rectifier and regulator. (Understanding)

Rectifier	Regulator	
Rectifier converts pure sinusoidal input	Regulator converts pulsating D.C. input	
into pulsating D.C. output.	into constant D.C. output.	
The output contains ripples.	The output is ripple free.	
Output voltage changes with respect to	Output voltage changes with respect to	
load current, input voltage and	load current, input voltage and	
temperature.	temperature	
Not provided with over load protection,	Provided with all sorts of protection	
short circuit protection, thermal shutdown	circuits.	
etc.		

23. What is Bleeder resistor? (*Remembering*)

This resistance is connected across the output of the filter, to place minimum load.

24. Compare shunt regulator and series regulator. (Understanding)

Shunt regulator	Series regulator	
The control element is in parallel with	The control element is in series with the	
the load.	load.	
Any change in output voltage is	Any change in output voltage is	
compensated by changing the current	compensated by adjusting the voltage	
Ish through the control element as per	across the control element as per the	
the control signal	control signal.	
Regulation is poor	Regulation is good	

PART-B

- 1. Explain with circuit diagram of Half wave & Full wave (*Understanding*) (Nov/Dec 2011) CO4
- 2. Explain with circuit diagram of bridge rectifiers derive the expression for ripple factor and CO4

CO4

CO4

CO4

CO4

CO4

Efficiency.((Understanding)

3. Explain the operation of C,L,PI Filters AND derive its ripple factor for the same(Nov 2010) CO4 (Nov/Dec2011(*Understanding*)

Explain with a neat diagram; the Series transistorized voltage regulators and Shunt transistorized voltage regulators. (*Understanding*)

Demonstrate the operation of SMPS. (Understanding) (Nov/Dec 2012)

Relate the various components of power supply and explain each block. (*Remembering*) (Nov/Dec 2011)

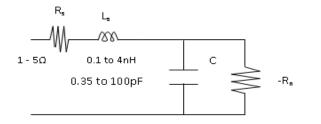
Explain the working of centre tapped full wave rectifier(with and without filter) with neat diagrams and derive the necessary equations.

UNIT V SPECIAL SEMICONDUCTOR DEVICES

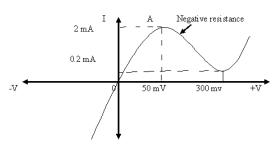
- 1. What are break down diodes? (*Remembering*) **CO5** Diodes which are designed with adequate power dissipation capabilities to operate in the break down region are called as break down or zener diodes. Classify break down based on its phenomenon.(Analyzing) **CO5** 2. When the reverse voltage across the pn junction is increased rapidly at a voltage the junction breaks down leading to a current flow across the device. This phenomenon is called as break down and the voltage is break down voltage. The types of break down are i) zener break down ii) Avalanche breakdown **Demonstrate zener breakdown?** (Understanding) 3. **CO5** Zener break down takes place when both sides of the junction are very heavily doped and consequently the depletion layer is thin and consequently the depletion layer is tin. When a small value of reverse bias voltage is applied, a very strong electric field is set up across the thin depletion layer. This electric field is enough to break the covalent bonds. Now extremely large number of free charge carriers are produced which constitute the zener current. This process is known as zener break down What is avalanche break down? (June 2009) Or what is meant by avalanche **CO5** 4. multiplication? (Apr-May 2011) (*Remembering*) When bias is applied, thermally generated carriers which are already present in the diode acquire sufficient energy from the applied potential to produce new carriers by removing valence electron from their bonds. These newly generated additional carriers acquire more energy from the potential and they strike the lattice and create more number of free electrons and holes. This process goes on as long as bias is increased and the number of free carriers gets multiplied. This process is termed as avalanche multiplication. Thus the break down which occurs in the junction resulting in heavy flow of current is termed as avalanche break down. Experiment with avalanche breakdown voltage varies with temperature?(*Applying*) **CO5** 5. In lightly doped diode an increase in temperature increases the probability of collision of electrons and thus increases the depletion width. Thus the electrons and holes need a high voltage to cross the junction. Thus the avalanche voltage is increased with increased temperature
- 6. Experiment with zener breakdown voltage varies with temperature? (*Applying*) CO5 In heavily doped diodes, an increase in temperature increases the energies of valence electrons, and hence makes it easier for these electrons to escape from covalent bonds. Thus less voltage is sufficient to knock or pull these electrons from their position in the crystal and convert them in to conduction electrons. Thus zener break down voltage decreases with temperature.
- 7. List the importance of zener diode?(*Evaluating*)
 i.Zener diode as a voltage regulator. ii.Zener diode as a constant voltage source.
- 8. List the importance of zener diode. (Nov/Dec 2010) (*Evaluating*)

CO5

keeps the voltage across the diode at that value. What is tunneling phenomenon? (*Remembering*) The phenomenon of penetration of the charge carriers directly though the potential barrier instead of climbing over it is called as tunneling.


10. What is a tunnel diode? (*Remembering*)

The tunnel diode is a pn junction diode in which the impurity concentration is greatly increased about 1000 times higher than a conventional PN junction diode thus yielding a very thin depletion layer. This diode utilizes a phenomenon called tunneling and hence the diode is referred as tunnel diode.


11. List the applications of tunnel diode. (*Remembering*)

- High speed switching devices
- High speed storage devices
- Used in relaxation oscillator

12. Draw the equivalent model for tunnel diode.(*Applying*)

13. Demonstrate V- I characteristics of tunnel diode. (*Understanding*)

14. What is a varactor diode?((*Remembering*)

A diode which is based on the voltage variable capacitance of the reverse biased P-N junction is said to be varactor diode. It has other names such as varicaps, voltacaps.

15. Demonstrate characteristics of varactor diode. (*Understanding*)

16. List the applications of varactor diode? (*Remembering*)

- The varactor diode is used in tuning circuits
- It finds use in parametric amplifiers
- It is used in automatic frequency control device.
- It finds its application in adjustable bandpass filters.

CO5

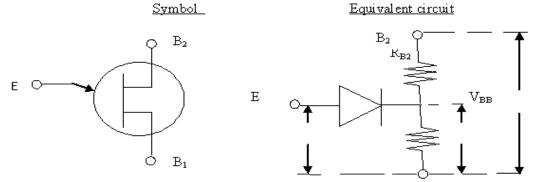
CO5

CO5

CO5

18EC313-Electronic Devices and Circuits

CO5


CO5

7.	Distinguish between abrupt and hyper abrupt doping. (Analyzing)		
	Abrupt Doping	Hyper Abrupt Doping	
	Uniform doping	Non Uniform doping	
	Capacitance variation is 4:1	Capacitance variation is 10:1	
	Capacitance value is 100pF to 25pF	Capacitance value is 100pF to 2pF	
8.	Examine how an LED works? (Analyzing)		CO5
	A PN junction diode which emits light when	forward biased is known as Light Emitting	
	Diode (LED).		
).	Why normal PN junction diode is no	t preferred for Light Emitting Diode	CO5
	(Remembering)		
•	Normal PN junction diode emits heat whereas		CO-
).	List the semiconductors which are used in l	LEDs to emit various lights.	CO5
	(Remembering)		
	Infra-Red – Gallium Arsenide		
	Red – Gallium Phosphide Blue – Gallium nitrite		
L.	List the importance of LED. (<i>Remembering</i>		CO5
•	Efficiency: LEDs emit more light per watt that		005
	not affected by shape and size, unlike fluoresc	•	
	Color: LEDs can emit light of an intended col	-	
	traditional lighting methods need. This is more		
	Size: LEDs can be very small (smaller than 2		
	circuit boards.		
	Lifetime: LEDs can have a relatively long use	eful life.	
	ON/OFF time: LEDs light up very quickly. A	typical red indicator LED will achieve full	
	brightness in under a microsecond. LEDs used	l in communications devices can have even	
	faster response times.		
•	Define PIN Diode (<i>Remembering</i>)		CO5
	PIN diode is made up of three semiconductor	material :2 heavily doped P& N Type	
	Material separated by intrinsic		005
•	Discuss the working of PIN Diode in variou		CO5
	During forward bias it acts as variable resistor		CO5
•	List the applications Of PIN Diode. (<i>Rembe</i>		CO5
	 Attenuator because of its resistance ca DC controlled microwave switch. 	n be controlled by current	
		hat should be the value (Demershowing)	CO5
	What is dark current in photo diode and when when no light incident light the reverse cur		05
	dark current the value is 25μ A at reverse volta	00	
	List the applications of Photo diode. (<i>Remet</i>	-	CO5
	 Demodulator 		005
	Logic circuits		
	Optical communication systems		
	 Encoders 		
	Photo detection both visible & invisible		
•	Identify Photo resistor materials? (Applying		CO5
,	Photo conductive cells are made of Cadmium		005
	whose resistance varies inversely with intensit	· · · · · · · · · · · · · · · · · · ·	
•	Identify various regions in the VI character		CO5
	1. Cut-off region		200
	2. Negative resistance region.		
	3. Saturation region		

29. Conclude why negative resistance region occurs in UJT? (*Evaluating*)

In a UJT when the emitter voltage reaches the peak point voltage, emitter current starts flowing. After the peak point any effort to increase in emitter voltage further leads to sudden increase in the emitter current with corresponding decrease in emitter voltage, exhibiting negative resistance. This takes place until the valley point is reached. This region between the peak point and valley point is called negative resistance region.

- **30.** What is the principle behind photovoltaic cell.(*Analyzing*) Conversion of light energy into electrical energy.
- 31. Demonstrate equivalent circuit of UJT.(*Understanding*)

32. List the applications of UJT. (*Remembering*)

- 1.It is used in timing circuits
- 2. It is used in switching circuits
- 3. It is used in phase control circuits
- 4. It can be used as trigger device for SCR and TRIAC.
- 5. It is used in saw tooth generator.
- 6. It is used for pulse generation.

33. Why phototransistor is preferred than photodiode for practical applications. CO5 (*Remembering*)

The gain for photo transistor is high than photo diode

Switching speed is high

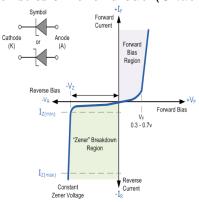
34. Differentiate between the doping concentration of PN Junction, Zener & tunnel CO5 diode. (Understanding)

s.no	PN junction diode	Zener Diode	Tunnel diode
1.	Moderately doped	Heavily doped	Very Heavily doped
2.	Depletion region in	Depletion region in terms of	Depletion region in terms
	terms of µm	nm	of pm
3.	Avalanche break	Zener break down	Tunneling takes place at
	down		Speed of light
4.	Reverse biased	Reverse biased current will be	
	current will be in	In terms of mA	
	terms of µA		

35. Distinguish between PN junction diode & zener diode (Analyzing)

S.NO **PN** junction diode Zener Diode Moderately doped Heavily doped 1. Depletion region in terms Depletion region in terms of nm 2. of µm Avalanche break down 3. Zener break down Reverse biased current will Reverse biased current will be 4. In terms of mA be In terms of µA

CO5


CO5

CO5

CO5

CO5

36. Demonstrate the VI characteristics of zener diode (Understanding)

PART-B

1.	Explain the operation of Zener diode, its principle and its VI characteristics with neat	
	diagram. (<i>Remembering</i>)	
2.	Explain the operation of Zener diode, its principle and its VI characteristics with neat	CO5
	diagram. (<i>Remembering</i>)	
3.	Elaborate (Understanding)	CO5
	LED, photodiode, photovoltaic cells	
4.	Experiment various diodes (Applying)	CO5
	PIN Diode, Varactor Diode, Tunnel diode	
5.	Develop the working, applications of Photo transistor, UJT, LCD and Photoconductive.	CO5
	(Understanding)	
6.	Explain the construction and working of Zener diode with a neat sketch. (<i>Understanding</i>)	CO5
7.	Explain the principle and operation of LASER diode with neat diagram. (<i>Understanding</i>)	CO5
8.	Explain the construction and working of LED with its characteristics. (Understanding)	CO5
9.	Explain the construction and characteristics of UJT with a neat sketch. (Understanding)	CO5
10.	With a neat sketch explain the construction and working characteristics of a SCR.	CO5
	(Understanding)	