

M.E. - POWER ELECTRONICS AND DRIVES Curriculum & Syllabus for Semester I and II

REGULATIONS 2024 (Academic Year 2024-25 Onwards)

K.S.R. COLLEGE OF ENGINEERING: TIRUCHENGODE - 637 215

(Autonomous)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

(REGULATIONS 2024)

Vision of the Institution

IV We envision to achieve status as an excellent Educational Institution in the global knowledge hub, making self-learners, experts, ethical and responsible engineers, technologists, scientists, managers, administrators and entrepreneurs who will significantly contribute to research and environment friendly sustainable growth of the nation and the world.

Mission of the Institution

- IM 1 To inculcate in the students self-learning abilities that enable them to become competitive and considerate engineers, technologists, scientists, managers, administrators and entrepreneurs by diligently imparting the best of education, nurturing environmental and social needs.
- **IM 2** To foster and maintain mutually beneficial partnership with global industries and Institutions through knowledge sharing, collaborative research and innovation.

Vision of the Department

DV We envision a department that leads in the field of Electrical and Electronics Engineering through education, training and research committed to influence the direction of the field and make a constructive contribution to society wherein the Department can thrive and grow.

Mission of the Department

- **DM 1** To create professionally competent and resourceful Electrical and Electronics Engineers.
- **DM 2** To promote excellence in teaching, pioneering research, and innovation for the sustainable growth of the nation and enrichment of humanity.

Programme Educational Objectives (PEOs): M.E. - Power Electronics and Drives

The graduates of the programme will be able to

- **PEO 1** Excel in professional career with technical knowledge, skills and ability to design, develop and test power electronic converters and drives using advanced tools.
- **PEO 2** Technically competent and Exhibit leadership qualities to pursue career in broad area of Power Electronics and Drives globally.
- **PEO 3** Engage in life-long learning through independent study, projects, and research.

Programme Outcomes (POs) of M.E. - Power Electronics and Drives

Progra	m Outcomes (POs)
PO1	An ability to independently carry out research/investigation and development work to solve practical problems
PO2	An ability to write and present a substantial technical report/document.
	Students should be able to demonstrate a degree of mastery over the area as per the
PO3	specialization of the program. The mastery should be at a level higher than the requirements
	in the appropriate bachelor program.

Programme Specific Outcomes (PSOs) of M.E. - Power Electronics and Drives

Progra	m Specific Outcomes (PSOs)
PSO1	Evaluate critically one's own work and make decisions by considering professional, social and ethical responsibilities.
PSO2	Recognize the need and engage in life-long learning through independent study, projects, research and to work in multidisciplinary teams.

11	KSR College of Engineering	K. S. R COLLEGE OF EN Approved by AICTE and Affili Accredited by N K.S.R. Kalvi Nagar,) Cheni	nai	CUI	RRICU PG R 202	LUM				
Depa	rtment	Department of Electrical and Elec	tronics Engi	neer	ing						
Progr	amme	M.E Power Electronics and Drive	es								
		SEME	STER – I								
SI.	Course	Course Nome	Catagory	H	ours	/ We	ek	Credit	Maxi	mum	Marks
No.	Code	Course Name	Category	L	Т	Ρ	Tot	С	CA	ES	Total
THEO	RY COURSES	5									
1.	MA24T17	Applied Mathematics (Common to PE, ET & CU)	FC	3	1	0	4	4	40	60	100
2.	RM24T19	Research Methodology and IPR	RMC	3	0	0	3	3	40	60	100
3.	PE24T11	Analysis of Power Converters	PCC	3	0	0	3	3	40	60	100
4.	PE24T12	Analysis of Inverters	PCC	3	0	0	3	3	40	60	100
5.	-	Professional Elective – I	PEC	3	0	0	3	3	40	60	100
6.	-	Professional Elective – II	PEC	3	0	0	3	3	40	60	100
LAB	ORATORY CO	DURSES									
7.	PE24P11	Power Electronics Simulation Laboratory – I	PCC	0	0	4	4	2	60	40	100
			Total	18	1	4	23	21		700	

		SEME	STER – II								
SI.	Course	Course Norse	Catagony	н	ours	5/ We	eek	Credit	Maximum Marks		
No.	Code	Course Name	Category	L	Т	Ρ	Tot	С	CA	ES	Total
THEO	RY COURS	ES									
1.	PE24T21	Soft Computing Techniques (Common to PE & CU)	PCC	3	0	0	3	3	40	60	100
2.	PE24T22	Solid State DC Drives	PCC	3	0	0	3	3	40	60	100
3.	PE24T23	Solid State AC Drives	PCC	3	0	0	3	3	40	60	100
4.	PE24T24	FACTS Controllers	PCC	3	0	0	3	3	40	60	100
5.	-	Professional Elective – III	PEC	3	0	0	3	3	40	60	100
6.	-	Professional Elective – IV	PEC	3	0	0	3	3	40	60	100
LAB	ORATORY	COURSES									
7.	PE24P21	Power Electronics Simulation Laboratory – II	PCC	0	0	4	4	2	60	40	100
8.	PE24P22	Solid State Drives Laboratory	PCC	0	0	4	4	2	60	40	100
EMPL	OYABILITY.	ENHANCEMENT COURSES									
9.	PE24P23	Technical Presentation	EEC	0	0	2	2	1	60	40	100
			Total	18	0	10	28	23		900	

		SEN	1ESTER – III								
SI.	Course	Course Name	Catagony	Hours/ Week				Credit	Max	Marks	
No.	Code	Course Name	Category	L	Т	Ρ	Tot.	С	CA	ES	Total
THEO		ES									
1.	PE24T31	Electrical Energy Conservation and Management	PCC	3	0	0	3	3	40	60	100
2.	-	Professional Elective – V	PEC	3	0	0	3	3	40	60	100
3.	-	Open Elective	OEC	3	0	0	3	3	40	60	100
EMPI	OYABILITY.	Y ENHANCEMENT COURSES									
4.	PE24P31	Project Work Phase – I	EEC	0	0	12	12	6	60	40	100
AUDI	T COURSE										
5.	-	Audit Course	AC	2	0	0	2	0	100	-	100
	Total 11 0 12 23 15 500										

		SEN	/IESTER – IV	,							
SI.	Course		Catagory	Hours/ Week			Credit	Max	Marks		
No.	Code	course Name	Category	L	Т	Ρ	Tot.	С	CA	ES	Total
EMPL	OYABILITY.	ENHANCEMENT COURSES									
1.	PE24P41	Project Work Phase – II	EEC	0	0	24	24	12	60	40	100
		Total		0	0	24	24	12		100	
		TOTAL NO	. OF CREDIT	'S = 71							
		TOTAL NUMBER OF O	CREDITS TO	BE EA EE = 71	RNE L	D FO	R				
Note: Electi	AWARD OF THE DEGREE = 71 Note: FC – Foundation Courses, AC – Audit Courses, PCC – Professional Core Courses, PEC – Professional Elective Courses, EEC – Employability Enhancement Courses.										

		FOUNDATION	COURSES (FC)								
SI.	Course		Cotocom	ŀ	lour	s/We	eek	Credit	Maxi	mum	ım Marks	
No.	Code	Course Name	Category	L	т	Ρ	Tot.	С	CA	ES	Total	
1.	MA24T17	Applied Mathematics (Common to PE, ET & CU)	FC	3	1	0	4	4	40	60	100	
			Total	3	1	0	4	4		-		
		PROFESSIONAL COF		ES (P	CC)							
SI. Course Hours/Week Cred								Credit	Maxi	mum	Marks	
No.	Code	Course Name	Category	L	т	Ρ	Tot.	С	СА	ES	Total	
1.	PE24T11	Analysis of Power Converters	PCC	3	0	0	3	3	40	60	100	
2.	PE24T12	Analysis of Inverters	PCC	3	0	0	3	3	40	60	100	
3.	PE24P11	Power Electronics Simulation Laboratory – I	PCC	0	0	4	4	2	60	40	100	
4.	PE24T21	Soft Computing Techniques (Common to PE & CU)	PCC	3	0	0	3	3	40	60	100	
5.	PE24T22	Solid State DC Drives	PCC	3	0	0	3	3	40	60	100	
6.	PE24T23	Solid State AC Drives	PCC	3	0	0	3	3	40	60	100	
7.	PE24T24	FACTS Controllers	PCC	3	0	0	3	3	40	60	100	
8.	PE24P21	Power Electronics Simulation Laboratory – II	PCC	0	0	4	4	2	60	40	100	
9.	PE24P22	Solid State Drives Laboratory	PCC	0	0	4	4	2	60	40	100	
10.	PE24T31	Electrical Energy Conservation and Management	PCC	3	0	0	3	3	40	60	100	
			TOTAL	21	0	12	33	27		-		

		RESEARCH METHODOLOGY	AND IPR O	COU	RSES	(RM	C)				
S.	Course	Course Title	Catagony	Periods / Week				Cradit	Ma	ax. Ma	arks
No.	Code	Course Inte	Category	L	Т	Ρ	Tot.	Credit	CA	ES	Total
1.	RM24T19	Research Methodology and IPR	RMC	3	0	0	3	3	40	60	100
		·	TOTAL	3	0	0	3	3		-	
		EMPLOYABILITY ENHAN		DUR	SES (EEC)					
	Course Hours/Week					t Maximum Marks					
SI.	Course	Course Name	Category	I	Hour	s/W	eek	Credit	N	laxim Mark	um s
SI. No.	Course Code	Course Name	Category	L	Hour T	s/Wo P	eek Tot.	Credit C	CA	laxim Mark ES	um s Total
SI. No. 1.	Course Code PE24P23	Course Name Technical Presentation	Category EEC	L 0	Hour T 0	s/W P 2	eek Tot. 2	Credit C 1	CA	laxim Mark ES 40	um s Total 100
SI. No. 1. 2.	Course Code PE24P23 PE24P31	Course Name Technical Presentation Project Work Phase – I	Category EEC EEC	L 0 0	Hour T 0	s/Wo P 2 12	eek Tot. 2 12	Credit C 1 6	CA 60 60	laxim Mark ES 40 40	um s Total 100 100
SI. No. 1. 2. 3.	Course Code PE24P23 PE24P31 PE24P41	Course Name Technical Presentation Project Work Phase – I Project Work Phase – II	Category EEC EEC EEC	L 0 0 0	Hour T 0 0	s/Wo P 2 12 24	Tot. 2 12 24	Credit C 1 6 12	CA 60 60	laxim Mark ES 40 40 40	um is Total 100 100 100

	PROFESSIONAL ELECTIVE – I & II (SEMESTER – I)													
SI.	Course		6	Hours/ Week				Credit	N	laxim Mark	um ːs			
No.	Code	Course Name	Category	L	т	Р	Tot	С	CA	ES	Tota I			
THEO	RY COUR	SES		•	•									
1.	PE24E01	Advanced Power Semiconductor Devices	PEC	3	0	0	3	3	40	60	100			
2.	PE24E02	Non-Conventional Energy Sources	PEC	3	0	0	3	3	40	60	100			
3.	PE24E03	High Voltage DC Transmission System	PEC	3	0	0	3	3	40	60	100			
4.	PE24E04	Protection for Electrical Drives	PEC	3	0	0	3	3	40	60	100			
5.	PE24E05	Embedded System Design	PEC	3	0	0	3	3	40	60	100			
6.	PE24E06	Energy Storage Technologies	PEC	3	0	0	3	3	40	60	100			
7.	PE24E07	Modeling of Electrical Machines	PEC	3	0	0	3	3	40	60	100			
8.	ET24E04	System Design using Microcontroller (Common to PE & ET)	PEC	3	0	0	3	3	40	60	100			
			Total	24	0	0	24	24		-				

	PROFESSIONAL ELECTIVE – III and IV (SEMESTER – II)											
SI.	Course	Courses Name	C -1	н	ours	/ We	ek	Credit	Maxir	num	Marks	
No.	Code	Course Name	Category	L	т	Ρ	Tot	С	CA	ES	Total	
THEC		ES										
1.	PE24E08	Special Machines	PEC	3	0	0	3	3	40	60	100	
2.	PE24E09	PWM Techniques for Power Converters	PEC	3	0	0	3	3	40	60	100	
3.	PE24E10	Power Quality Management	PEC	3	0	0	3	3	40	60	100	
4.	PE24E11	System Theory	PEC	3	0	0	3	3	40	60	100	
5.	PE24E12	Industrial Robotics	PEC	3	0	0	3	3	40	60	100	
6.	PE24E13	Advanced Digital Signal Processing	PEC	3	0	0	3	3	40	60	100	
7.	PE24E14	Power Electronics in Wind & Solar Power Conversion	PEC	3	0	0	3	3	40	60	100	
8.	PE24E15	Electric Vehicles	PEC	3	0	0	3	3	40	60	100	
			Total	24	0	0	24	24		-		

	PROFESSIONAL ELECTIVE – V (SEMESTER – III)												
SI.	Course	Course Name	Category	н	ours	/We	ek	Credit	Maximum Marks				
No.	Code			L	٦	ГР	Tot	С	CA	ES	Total		
THEC	DRY COUR	SES											
1.	PE24E16	Smart Grid (Common to PE & ET)	PEC	3	0	0	3	3	40	60	100		
2.	PE24E17	Machine Learning	PEC	3	0	0	3	3	40	60	100		
3.	PE24E18	Application of MEMS Technology	PEC	3	0	0	3	3	40	60	100		
4.	PE24E19	Digital Signal Processors and Applications	PEC	3	0	0	3	3	40	60	100		
5.	PE24E20	Industrial Drives and Applications	PEC	3	0	0	3	3	40	60	100		
6.	PE24E21	Distributed Generation and Micro Grid	PEC	3	0	0	3	3	40	60	100		
7.	PE24E22	Virtual Instrumentation System (Common to PE & ET)	PEC	3	0	0	3	3	40	60	100		
	Total 21 0 0 21 21 -												

		AUDIT COURSES (SEMESTER	- 111)						
SI.	Course	Course Name	Category	Hours/ Week				Credit	Ma	ım s	
No.	Code			L	т	Ρ	Tot	С	CA	ES	Total
THEC		SES									
1.	AX24A01	Disaster Management	AC	2	0	0	2	0	100		100
2.	AX24A02	Value Education	AC	2	0	0	2	0	100		100
3.	AX24A03	Constitution of India	AC	2	0	0	2	0	100		100
4.	AX24A04	Indian Knowledge System	AC	2	0	0	2	0	100		100
		·	TOTAL	8	0	0	8	0			

vii

	OPEN ELECTIVE COURSES OFFERED BY OTHER DEPARTMENTS										
SI.	Course	Course Name	Category	H	lours	/ We	ek	Credit	N	1axin Mar	num ˈks
NO.	Code			L	Т	Ρ	Tot.	С	CA	ES	Total
	THEORY COURSES										
1.	CS24001	Machine learning and Deep Learning	OEC	3	0	0	3	3	40	60	100
2.	CS24002	Blockchain and Crypto Currency	OEC	3	0	0	3	3	40	60	100
3.	CS24O03	Multimedia Technologies	OEC	3	0	0	3	3	40	60	100
4.	BD24001	Big Data Analytics	OEC	3	0	0	3	3	40	60	100
5.	BD24002	Internet of Things and Cloud	OEC	3	0	0	3	3	40	60	100
6.	BD24003	Big Data Visualization	OEC	3	0	0	3	3	40	60	100
7.	ET24001	Embedded Systems	OEC	3	0	0	3	3	40	60	100
8.	ET24002	Embedded Control	OEC	3	0	0	3	3	40	60	100
9.	ET24003	Embedded Automation	OEC	3	0	0	3	3	40	60	100
10.	IT24001	IoT for Smart System	OEC	3	0	0	3	3	40	60	100
11.	IT24002	Machine Learning for Intelligent Multimedia Analytics	OEC	3	0	0	3	3	40	60	100
12.	IT24003	DevOps and Microservices	OEC	3	0	0	3	3	40	60	100
13.	IT24004	Cyber security and Digital Awareness	OEC	3	0	0	3	3	40	60	100
14.	CN24001	Energy Efficient Building	OEC	3	0	0	3	3	40	60	100
15.	CN24O02	Economics and Finance Management in Construction	OEC	3	0	0	3	3	40	60	100
16.	CN24003	Stress management	OEC	3	0	0	3	3	40	60	100
17.	ST24001	Principles of Sustainable Development	OEC	3	0	0	3	3	40	60	100
18.	ST24002	Failure Analysis of Structures	OEC	3	0	0	3	3	40	60	100
19.	ST24O03	Smart materials and Smart Structures	OEC	3	0	0	3	3	40	60	100
20.	CU24O01	Principles of Multimedia	OEC	3	0	0	3	3	40	60	100
21.	CU24O02	Software Defined Radio	OEC	3	0	0	3	3	40	60	100
22.	CU24O03	MEMS & NEMS	OEC	3	0	0	3	3	40	60	100
23.	CU24O04	Introduction to cognitive Radio Network	OEC	3	0	0	3	3	40	60	100
24.	CC24001	Digital Manufacturing	OEC	3	0	0	3	3	40	60	100
25.	CC24O02	Design for Manufacturing and Assembly	OEC	3	0	0	3	3	40	60	100
26.	CC24O03	Smart Materials and Structures	OEC	3	0	0	3	3	40	60	100

SI. No.	Course	urse Course Name Category		Н	lours	/ We	ek	Credit	Maximum Marks		
NO.	Code			L	Т	Ρ	Tot.	С	CA	ES To 60 1 60 1 60 1 60 1 60 1	Total
27.	IS24001	Industrial Safety Engineering	OEC	3	0	0	3	3	40	60	100
28.	IS24002	2 Fire Engineering and Protection OEC 3 0		0	3	3	40	60	100		
29.	IS24003	Food and Bio-safety	OEC	3	0	0	3	3	40	60	100
	OPEN ELECTIVE COURSES OFFERED TO OTHER DEPARTMENTS										
1.	PE24O01	Switching Concepts and Power Semiconductor Devices	OEC	3	0	0	3	3	40	60	100
2.	PE24002	Smart Grid Technology	OEC	3	0	0	3	3	40	60	100
3.	PE24003	Renewable Energy Technology	OEC	3	0	0	3	3	40	60	100
4.	PE24004	Energy Management and Conservation	OEC	3	0	0	3	3	40	60	100

COURSE COMPONENT SUMMARY

S.	Category	Credits Per Semester				Credits	Percentage	
No.	Category	I	П	ш	IV	Total	Credits	
1.	FC	4	-	-	-	4	5.63	
2.	RMC	3	-	-	-	3	4.23	
3.	PCC	8	16	3	-	27	38.02	
4.	PEC	6	6	3	-	15	21.12	
5.	EEC	-	1	6	12	19	26.76	
6.	OEC	-	-	3	-	3	4.23	
7.	Audit Course	-	-	V	-	-	-	
TOTAL		21	23	15	12	71	100	

ix

		Category L T P C			С				
MA24117	APPLIED MATHEMATICS	FC	3	1	0	4			
	(Common to PE, ET & CU)								
PREREQUISITE:									
Students should have the strong foundation in mathematical concepts including Linear Algebra, Probability theory and Statistics, familiarity with Mathematical modeling and Numerical methods techniques.									
OBJECTIVES:									
• To equip students to apply matrix decomposition methods.									
• 10 enat	ent solutions effectively.	inear program	mmg	; proo	lems	anu			
• To prov	ide insights into methods to analyze discrete and conti	inuous randoi	n varia	ables.					
• To deve	lop the ability to analyze the basic components and be	haviour of qu	leuing	syster	ns.				
• To acqu differen	tire the skills to apply and formulate to solve bount tial equations.	ndary value	proble	ms in	ordi	nary			
UNIT - I	MATRIX THEORY			((9+3)				
Matrix factorizations – The Cholesky decomposition – QR factorization – Least squares method – Singular value decomposition – Toeplitzmatrices and some applications.									
UNIT - II	LINEAR PROGRAMMING PROBLEMS			(9+3)					
Formulation of LI – Dual Simplex m	PP – Graphical method – Simplex method – Big M method.	ethod – Two I	Phase S	Simple	es me	thod			
UNIT - III	ONE-DIMENSIONAL RANDOM VARIABLE			((9+3)				
One dimensional and probability d properties – Binor	random variable – Discrete and continuous random va ensity function – Expectations – Moments – Mome nial, Poisson, Uniform, Exponential and Normal distri	riables – Pro ent generatin ibutions.	babilit g func	y mass ctions	s fund	ction their			
UNIT - IV	QUEUING MODELS			(9+3)					
Characteristics of server with infin (N/FIFO) Single	queuing models – Kendall's notations – Little's formite capacity – (M/M/C): (∞ /FIFO) Multi-server v server with finite capacity – (M/M/C): (N/FIFO) Multi-	nula – (M/M vith infinite ti-server with	[/1): (a capaci finite	∞/FIF ity – capac	0) Si (M/N ity.	ingle //1):			
UNIT - V	COMPUTATIONAL METHODS IN ENGINEER	RING		((9+3)	1			
Boundary value p Liebmann's iterati and Crank Nicolso	roblems for ODE – Classification of PDE – Solution of on process – Solution of heat conduction equation by on implicit scheme – Solution of the wave equation.	of Laplace an y Bender Sch	d Pois midt e	son eq explici	uation t for	ons – mula			
	TO	ГАL (L:45, 1	[:15) =	= 60 P	ERI	ODS			

CO	COURSE OUTCOMES:								
At	the end o	of the course, the stud	lents will be able	to:					
(COs		Course Outc	ome		Cognitive Level			
(CO1	Apply and decompose	e matrices effective	ely.		Apply			
(CO2	Create models and for	mulate linear prog	gramming problem	s.	Analyze			
(CO3	Analyze and work wit	h a single random	variable.		Analyze			
CO4 Analyze and interpret the key features of various qu				f various queuing	systems.	Analyze			
(CO5	Set up and solve boun	dary value problem	ms for ODEs.		Apply			
TE	XT BOO)KS:							
1.	Johnso Educat	n R. A. and Gupta C. I	B., 'Miller & Freu 015	nd's Probability ar	nd Statistics for E	ngineers', Pearson			
2.	Grewa	l, B.S., 'Higher Engine	ering Mathematic	s', Khanna Publish	ners, Forty-Fourth	Edition, 2017.			
RE	FEREN	CES:							
1.	Bronso Edition	n, R., 'Schaum's Ou , 2011.	tline Series of M	latrix Operations'	, McGraw-Hill I	Education, Second			
2.	Hamdy	, A Taha., 'Operations	research. An intro	oduction', Pearson	Edition, Tenth E	dition, 2017.			
3.	Donald Edition	Gross and Carl M. H	arris, 'Fundamenta	als of Queuing The	eory', John Wiley	and Sons, Fourth			
4.	Kandas Third E	amy, P., Thilagavathy	and Gunavathy,	K., 'Numerical Me	ethods', S. Chand	l & Company Ltd,			
	TIIIGT	Antion, 2005.							
		I	Mapping of COs	with POs and PS(Ds				
(COs/ PO	s PO1	PO2	PO3	PSO1	PSO2			
-	CO1	3	-	-	3	-			
	CO2	3	-	-	3	-			
	CO3	3	-	-	3	-			
	CO4	3	-	-	3	-			
	CO5	3	-	-	3	-			
	Avg.	3	-	-	3	-			
1- I	Low, 2- N	Aedium, 3- High							

		Category L			Р	С		
RM24119	RESEARCH METHODOLOGY AND IPR	RMC	3	0	0	3		
	(Common to PED, EST, CSE, BDA, CAD CAM, I	(SE)						
PREREQUISITE: A basic understanding of academic writing and critical thinking skills to analyze research literature, familiarity with fundamental statistical concepts for data analysis, and a strong grasp of core subject knowledge relevant to the student's field. Additionally, a general awareness of legal principles related to intellectual property, ethical research practices, and innovation trends will enhance the student's ability to engage with both research methodologies and IPR concepts. OBJECTIVES:								
 To equip students with the ability to design and conduct rigorous research, employing appropriate methodologies, and critically analyzing results. To foster the ability to critically evaluate academic literature, identify research gaps, and formulate research questions. To enable students to effectively communicate research findings and legal arguments, both in written form and through presentations, to academic and professional audiences. To instill an understanding of ethical issues in research, including responsible conduct, data integrity, and the ethical use of intellectual property. To provide a comprehensive understanding of intellectual property rights, including patents, trademarks, copyrights, and their application in various industries. 								
UNIT - I	JNIT - I RESEARCH DESIGN				(9)			
Overview of r question, Qual	esearch process and design – Use of secondary and exploration itative research, Observation studies – Experiments and surve	ory data to an eys.	iswer	the	resea	arch		
UNIT - II	DATA COLLECTION AND SOURCES				(9)			
Measurements Preparing, Exp	: Measurement scales – Questionnaires and instruments – Soloring, Examining and Displaying.	Sampling and	Met	hods	. Dat	ta –		
UNIT - III	DATA ANALYSIS AND REPORTING				(9)			
Overview of r and findings u	nultivariate analysis – Hypotheses testing and measures of as sing written reports and oral presentation.	ssociation – P	resei	nting	insig	ghts		
UNIT - IV	INTELLECTUAL PROPERTY RIGHTS				(9)			
Intellectual Pr development p establishments Trademark, Fu	operty – The concept of IPR, Evolution and development process, Trade secrets, Utility models, IPR & Biodiversity, R s, Right of property, Common rules of IPR practices, Types anctions of UNESCO in IPR maintenance.	t of the con- cole of WIPO and features of	cept and of IP	of II WT(R ag	PR, 1 D in 1 reem	IPR IPR ent,		
UNIT - V	PATENTS				(9)			
Patents – objectives and benefits of patent – Concept, features of patent, Inventive step, Specification – Types of patent application, process E-filling – Examination of patent – Grant of patent, Revocation, Equitable Assignments. Licenses – Licensing of related patents – patent agents, – Registration of patent agents.								
TOTAL: 45 PERIODS								

At the end of the course, the students will be able to:

	· · ·	
COs	Course Outcome	Cognitive Level
CO1	Develop a suitable research process to solve real-time problems.	Apply
CO2	Apply appropriate methods to collect qualitative and quantitative data for analysis.	Apply
CO3	Apply appropriate statistical tools to analyze data and solve research problems.	Apply
CO4	Describe the types and features of intellectual property and its role in IPR establishment.	Apply
CO5	Illustrate the patent procedures, E-filling, register of patents, and licensing of patents.	Apply

TEXT BOOKS:

1	Cooper Donald, R., Schindler Pamela, S., and Sharma, J.K., "Business Research Methods", Tata McGraw Hill Education, Eleventh Edition, 2012.
	Catherine I Holland Intellectual property: Patents, Trademarks, Convrights, Trade Secrets

2 Catherine J. Holland, Intellectual property: Patents, Trademarks, Copyrights, Trade Secrets, Entrepreneur Press, 2007.

REFERENCES:

1	David Hunt, 2007.	Long Nguyen,	Matthew	Rodgers,	Patent	Searching:	Tools &	ż Techniques,	Wiley,

2 The Institute of Company Secretaries of India, Statutory body under an Act of Parliament, Professional Programme Intellectual Property Rights, Law and Practice, September 2013.

	Mapping of COs with POs and PSOs									
COs/ POs	PO1	PO2	PO3	PSO1	PSO2					
CO1	3	3	-	1	1					
CO2	3	3	-	1	1					
CO3	3	3	-	1	1					
CO4	3	3	-	1	1					
CO5	3	3	-	1	1					
Avg.	3	3	-	1	1					
1 - Low	, 2 - Medium, 3 - Hi	gh								

(9)

(9)

(9)

(9)

DE94T11	ANALVER OF DOWED CONVEDTEDS	CategoryLTPPCC300	Р	C
FE24111	ANAL ISIS OF FOWER CONVERTERS		0	3

PREREQUISITE:

Fundamental electronics concepts, including semiconductor devices (e.g., diodes, transistors, MOSFETs), passive components (resistors, capacitors, inductors), and basic circuit theory. Knowledge of basic converter types (e.g., rectifiers, inverters, DC-DC converters) and their operational principles. Proficiency in analyzing electrical circuits, including the ability to apply Kirchhoff's laws, perform nodal and mesh analysis, and solve circuit parameters.

OBJECTIVES:

- To enable students to utilize the fundamental principles of single-phase controlled rectifiers in calculating and analyzing key performance parameters.
- To calculate and derive key performance parameters such as output voltage, current, power factor, and total harmonic distortion for different firing angles.
- To identify and explain the key differences and similarities between various resonant converter topologies.
- To enable students to grasp and articulate the basic principles underlying the operation of switch-mode converters.
- To identify and describe each step in the design process of switch-mode converters, including requirements analysis, component selection, and design validation.

UNIT - I

- I SINGLE-PHASE CONTROLLED RECTIFIERS

Static V-I characteristics of Silicon Controlled Rectifier (SCR) – Single-phase half-controlled and fullycontrolled converters with R, RL, RLE loads and freewheeling diodes – Continuous and discontinuous modes of operation – Inverter operation – Performance parameters: harmonics, ripple, distortion, power factor – Effect of source impedance – Single-phase dual converter with R load.

UNIT - II THREE-PHASE CONTROLLED RECTIFIERS

Need and advantages of three-phase controlled rectifiers – Semi and fully controlled converter with R, RL, RLE loads and freewheeling diodes – Inverter operation and its limit – Performance parameters: harmonics, ripple, distortion, power factor – Effect of source impedance – Three-phase dual converter with R load.

UNIT - III	RESONANT CONVERTERS	(9)
T (1 (1 4

Introduction – Classification of resonant converters – Basic resonant circuit concepts – Load resonant converters – Resonant switch converters – Zero voltage switching topology – Zero current switching topology – Application of resonant converters.

UNIT - IV SWITCH MODE CONVERTERS

Introduction to switching power supplies – Non-isolated switch mode DC-DC converters: Buck converter, Boost converter, Buck-Boost converter, Cuk converter, SEPIC and Zeta converters – Comparison of non-isolated switch mode DC-DC converters – Isolated switch mode DC-DC converters: Single switch isolated DC-DC converters, Multiple switch isolated DC-DC converters – Comparison of isolated switch mode DC-DC converters.

UNIT - V DESIGN OF SWITCHED-MODE CONVERTERS

Design of magnetic materials and cores – Copper windings – Thermal considerations – Design of inductor, Design of capacitor, Design of transformer and transformer leakage inductance – Design of feedback compensators – Unity power factor rectifiers, Resistor emulation principle and applications to rectifiers.

TOTAL: 45 PERIODS

COURS	SE OUTCOMES:						
At the e	end of the course, the	e students will be al	ole to:				
COs		Course O	utcome		Cognitive Level		
CO1	Apply the fundam derive performance	ental principles of parameters under di	single-phase contro fferent firing angles.	lled rectifiers to	Apply		
CO2	Determine key per under different firir	ntrolled rectifiers	Apply				
CO3	Expound the fund different resonant c	lamental principles onverters.	and operational c	haracteristics of	Apply		
CO4	Interpret the fundar mode converters.	nental principles and	operational characte	eristics of switch-	Apply		
CO5	Exemplify the desig	gn process of switch-	mode converters.		Apply		
TEXT I	BOOKS:						
1.	Rashid, M.H., Power Electronics Circuits, Devices and Applications, Fourth Edition, Prentice Hall India, New Delhi, 2023.						
2.	Ned Mohan, Undel Edition, John Wiley	and and Robbin, Pov and Sons. Inc, New	wer Electronics: Con york, 2009.	overters, Application	n and Design, Third		
REFER	ENCES:						
1.	Bimbra, P.S., Powe	r Electronics, Seven	th Edition, Khanna	Publishers, 2022.			
2.	Andrzej M.Trzynac Sons, 2015.	llowski, Introduction	to Modern Power E	lectronics, Third Ed	lition, John Wiley &		
3.	Issa Batarseh, Pow	er Electronic Circui	ts, Second Edition,	John Wiley, 2004.			
4.	Singh, M.D., Khano	chandani, K.B., Powe	er Electronics, Secon	d Edition, McGraw	^y Hill, 2017.		
		Mapping of C	COs with POs and P	SOs			
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	3	-	3	2	2		
CO2	3	-	3	2	2		
CO3	3	-	3	2	2		
CO4	3	-	3	2	2		
CO5	3	-	3	2	2		
Avg.	3	-	3	2	2		
1- Low,	2- Medium, 3- High						

PE24T12	ANALVSIS OF INVEDTEDS	Category	L	Т	Р	С		
F E 24 I 12	ANAL 1515 OF INVERTERS	РСС	3	0	0	3		
PREREQUISITE:								
Students should have a concept of basic electrical engineering principles, including the understanding of voltage, current, resistance and ohm's law. Additionally, with semiconductor devices, such as diodes, transistors and MOSFETs, are required as these components are fundamental to inverter technology.								
OBJECTIVES:								
• To provide the electrical circuit concepts behind the different working modes of inverters so as to enable deep understanding of their operation.								
• To unde	rstand and comprehend the various operating modes of diff	erent configura	ations	s of I	nvert	ers.		
• To impa	rt knowledge on multilevel inverters.							
• To adva	nce concept series and parallel resonant inverters.							
• To unde	rstand the various types of inverter control strategies.							
UNIT - I	SINGLE PHASE INVERTERS				(9)			
Static characteri Performance par vector modulatio	Static characteristics of MOSFET and IGBT – Principle of single-phase half and full bridge inverters – Performance parameters – Voltage control of single-phase inverters: Single, Multi-pulse, Sinusoidal, Space vector modulation techniques – Single phase current source inverters – Application to drive system.							
UNIT - II THREE PHASE INVERTERS				(9)				
Three-phase invo of three-phase in	erter: 180 degree and 120 degree conduction mode – Perform verters – Inverter operation modes – Load commutated inv	nance paramete erter –Applicat	ers – ` tion t	Volta o dri ^s	ige co ve sy	ontrol stem.		
UNIT - III	MULTILEVEL INVERTERS			(9)				
Multilevel conce Diode clamped, – Application of	ept – Advantages of multilevel inverters – Single-phase as Flying capacitor and Cascaded type multilevel inverters – e multilevel.	nd three-phase Comparison of	mult mult	ileve ileve	el inv l inv	erter: erters		
UNIT - IV	RESONANT INVERTERS				(9)			
Series and paral Resonant DC-lir	lel resonant inverters – Voltage control of resonant inver k inverters.	ters – Class E	reso	nant	inve	rter –		
UNIT - V	CONTROL STRATEGIES OF INVERTER				(9)			
Inverter Switchi modulation, Tra harmonic modul	ng: Unipolar, Bipolar, Inverter, Dead time – Analysis of pezoidal modulation and Third harmonic modulation – Co ation – Output filter requirement for different PWM Techn	Inverter modul mparison of sin iques.	lation ne tri	n: Sir angle	ne tri e and	angle third		
		Total (L:	45) =	45 I	PERI	ODS		

CO	URSI	E OUTCOMES:						
At t	he ei	nd of the course, th	e students will b	be able to:				
C	Os		Course O	outcome		Cognitive Level		
C	D1	Elucidate the ope inverters.	rating principle	of various types	of single-phase	Understand		
CO	02	Design and analy various conduction	yze the operation modes.	n of three-phase	inverters with	Understand		
CO	03	Describe the desig	n of multilevel in	verters for industr	ial applications.	Understand		
C	04	Develop an effic inverters.	eient system usi	ng resonant and	soft-switching	Apply		
C	05	Summarize the va	rious types of inv	verter control strate	egies.	Understand		
TEX	KT BO	OOKS:						
1	Ras Fou	hid, M.H., Power Ele rth Edition, 2023.	ectronics Circuits,	Devices, and Appli	cations, Prentice I	Hall India, New Delhi,		
2	Nec Son	l Mohan, Undeland R s. Inc, Newyork, Thi	obbin, Power Elect d Edition, 2023.	tronics: Converters,	Application and I	Design, John Wiley and		
REF	FERF	NCES:						
1	Phi	lip T. Krein, Element	s of Power Electron	nics, Scand Publish	ing, New Delhi, Se	econd Edition, 2017.		
2	Jai	P.Agrawal, Power Ele	ectronics System T	heory and Design, I	Pearson Education,	Second Edition, 2015.		
3	Kris and	shna Kumar Gupta, Pa Their Control, Elsev	allavee Bhatnagar, ier Science, 2017.	Multilevel Inverter	s Conventional and	l Emerging Topologies		
4	Bin	ıbra, P.S., Power Elec	ctronics, Khanna P	ublishers, Seventh I	Edition, 2022.			
			Mapping of C	COs with POs and	PSOs			
CC PC)s/)s	PO1	PO2	PO3	PO4	PO5		
CC)1	3	2	3	-	3		
CC	02	3	2	3	-	3		
CC)3	3	2	3	-	3		
CC	04	3	2	3	-	3		
CO)5	3	2	3	-	3		
Av	′ g.	3	2	3	-	3		
1- L	ow, 2	- Medium, 3- High						

PE24P11		POWER ELECTRONICS SIMULATION	Category	L	Т	Р	С
I L.	241 11	LABORATORY – I	PCC	0	0	4	2
PRE Basic Opera contro MAT	REQUIS knowled ation of s ol theory LAB/Sim	TTE: ge of electrical concepts such as voltage, current, resistance emiconductor devices like diodes, transistors (BJT, MOSFE ⁷), including feedback control and stability analysis. Ex- pulink, PSpice, or similar tools used for circuit simulation.	e, inductance, Γ, IGBT), thy xperience wi	, and ristor th s	capa rs, et oftwa	icitar c. Ba are 1	ice. isic like
 OBJECTIVES: To effectively simulate the electrical characteristics and behaviors of power diodes and SCR. To analyze the performance of single-phase and three-phase converters. To evaluate the performance of a single-phase dual converter using simulation software. To observe the performance of single-phase and three-phase inverters equipped with a PWM controller To evaluate the performance of single-phase multilevel inverters using MATLAB. 							
	OF EAF	EXIMENTS:					
1.	Modelin	g of power diodes using MATLAB Simulink.					
2.	Modelin	g of SCR using MATLAB Simulink.					
3.	Simulation of a single-phase semi-controlled converter.						
4.	Simulati	on of a single-phase fully-controlled converter.					
5.	Simulation of a three-phase semi-controlled converter.						
6.	Simulati	on of a three-phase fully-controlled converter.					
7.	Simulati	on of a single-phase dual converter.					
8.	Simulati	on of a single-phase full bridge Inverter.					
9.	Simulati	on of a three-phase full bridge inverter.					
10.	Simulati	on of a single-phase multilevel inverter.					
			TOTA	L: 6	60 PE	RIO	DS

COURSE OUTCOMES:								
At th	e end	d of the course, th	e students will be al	ole to:				
CC)s		Course (Outcome		Cognitive Level		
CO	01	Simulate the mod	lel of the power diode	e and SCR.		Apply		
CO	02	Simulate the sing	le-phase and three-pl	hase converters.		Apply		
CO	3	Evaluate the perfe	ormance of a single-p	phase dual converter	using simulation.	Apply		
CO	CO4 Observe the performance of single and three-phase inverters with a PWM controller.					Apply		
CO	CO5 Assess the performance of a single-phase multilevel inverter.					Apply		
REF	ERE	NCES:						
1.	Am	os Gilat, "MATLA	B: An Introduction v	with Applications", F	ourth Edition, Wile	y, 2012.		
2.	Farz	zin Asadi, "Simula Brototom - Borrow J	tion of Power Electro	onics Circuits with M	ATLAB®/Simulink	®, Design, Analyze,		
	and	Prototype Power I	Liectronics, First Ed	luon, Apress Berkei	ey, CA, 2022.			
	,		Mapping of C	COs with POs and P	SOs			
COs POs	/	PO1	PO2	PO3	PO4	PO5		
COI	L	3	2	3	1	3		
CO2	2	3	2	3	1	3		
CO3	3	3	2	3	1	3		
CO4	•	3	2	3	1	3		
COS	5	3	2	3	1	3		
Avg	•	3	2	3	1	3		
1- Lo	w, 2-	Medium, 3- High						

PE24T21	SOFT COMPLITING TECHNIOLIES	Category	L	Т	Р	С			
⊥⊥∠∠₽⊥∠⊥		РСС	3	0	0	3			
	(Common to PE & CU)								
PREREQUISIT Familiarity with regression, cluste foundation in ba algorithms like g	PREREQUISITE: Familiarity with basic machine learning concepts (such as supervised and unsupervised learning, classification, regression, clustering) is helpful as soft computing techniques often deal with these areas and it creates a strong foundation in basic algorithms (sorting, searching, optimization) and) will help in grasping more complex algorithms like genetic algorithms and neural networks.								
OBJECTIVES:									
• To under techniqu	erstand the basic concepts of soft computing and its differnes.	ence from trad	ition	al co	mput	ing			
• To gain learning	knowledge about the fundamentals of artificial neural netwo mechanisms, and applications.	orks, including t	heir	archi	tectu	res,			
• To acqu uncertai	ire the skills to learn the concepts of fuzzy logic, fuzzy senty and imprecision in real-world problems.	ets, and their us	se in	deal	ing v	vith			
• To deve dealing	lop the ability to analyze and learn the concepts of fuzzy l with uncertainty and imprecision in real-world problems.	ogic, fuzzy set	s, and	d the	ir use	e in			
• To enable application	the students to understand evolutionary algorithms, particulars in solving optimization and search problems.	larly genetic alg	goritł	nms,	and t	heir			
UNIT - I	ARTIFICIAL NEURAL NETWORK				(9)				
Biological neura neuron – Hebb N	ıl networks – Artificial neural networks – Common activat Net – Perceptron – Linear separability – Perceptron learning	tion functions - rule – Delta rul	- Mc e.	Cullo	och-p	itts			
UNIT-II	NEURAL NETWORK ARCHITECTURE AND ALG	ORITHMS			(9)				
Backpropagation Continuous – As Stability assessn	n Neural Net: Standard and counter back propagation – H ssociative memory neural networks – Boltzman machine – C nent through an artificial neural network.	opfield neural Case study: Pow	net: ver sy	Disc: stem	rete a volta	and age			
UNIT-III	COMPETITIVE NEURAL NETWORKS				(9)				
Fixed-weight co Resonance Theo	mpetitive nets – Maxnet – Mexican Hat Net – Kohonen s ry – Neuro controllers – Functional diagram – Inverse dyna	elf-organizing mics.	Map	s – A	Adapt	ive			
UNIT-IV	FUZZY LOGIC SYSTEM				(9)				
Fuzzy sets – Prov variables – Ling functions – Defu	operties of classical and fuzzy sets – Operations on fuzzy set guistic hedges – Fuzzy rule base – Fuzzy logic controller uzzification – Case study: Control of electrical drives based of	ets – Fuzzy rela r – Fuzzificatio on fuzzy logic.	tions on –	– Li Men	ngui	stic hip			
UNIT-V	EVOLUTIONARY PROGRAMMING				(9)				
Optimization m optimization.	ethods – Genetic algorithm – Real coded GA – Partic	ele swarm opti	imiza	tion	– L	ion			
		TOTA	L = 4	5 PE	CRIO	DS			

COURSE OUTCOMES:							
At t	he er	nd of the course,	the students will l	be able to:			
CC)s	Course Outcom	ie			Cognitive Level	
CC)1	Infer the concept	ts of artificial neura	al networks.		Understand	
CC)2	Explicate the architecture and algorithms of BPN, Hopfield and apply the knowledge to voltage stability problems.				Apply	
CO3		Understand the oken was the second se	concept of competivelop neuro contro	tive neural networl ollers.	cs and apply the	Apply	
CC)4	Discuss the con- apply the know applications.	cepts of fuzzy log wledge of fuzzy	ic systems with cl logic controller	assical systems; s for classical	Apply	
CC)5	Illustrate the fu	indamentals of good optimization and	enetic algorithm, d its various function	Particle swarm onalities.	Understand	
ТЕХ	T BO	OOKS:					
1	Siva Thir	nandam, S.N and E d Edition, 2018.	Deepa S.N, Principles	s of Soft Computing,	John Wiley and Sor	as Ltd, United States,	
2	Jace	k.M.Zurada, Introd	uction to Artificial N	Neural Systems, Jaico	Publishing House,	Third Edition, 2006.	
REF	ERE	INCES:					
1	Law	vrence Faussett, Fur	ndamental of neural	networks, Prentice H	all, First Edition, 20	004.	
2	J. R	oss, Fuzzy Logic w	ith Engineering App	lications, John Wile	y and Sons, Third E	dition, 2011.	
3	S, R Synt	ajasekaran, G.A. V	ijayalakshmi Pai, No ions PHI Publicatio	eural Networks, Fuzz	zy systems and evol	utionary algorithms:	
4	Dav	id E. Goldberg, (Genetic Algorithm	in Search Optimiza	ation and Machine	Learning, Pearson	
	Edu	cation, New Delhi,	Thirteenth Edition, 2	2013.			
			Mapping of (COs with POs and I	PSOs		
CO	s/	PO1	PO2	PO3	PO4	PO5	
CO	1	-	-	-	_	_	
CO	2	-	-	-	-	-	
CO	3	3	1	-	1	1	
CO	4	3	1	-	1	1	
CO	5	3	1	-	1	1	
Avg	g.	3	1	-	1	1	
1- Lo	ow, 2	- Medium, 3- High					

PE24T22	SOLID STATE DC DRIVES	L	Т	Р	С			
		3	0	0	3			
PREREQUISITE: A foundational knowledge in Ohm's Law, Kirchhoff's Laws, basic circuit components and the operation of semiconductor devices, inverters and rectifiers, DC motor and its characteristics, speed and torque control DC Motor. Differential Equations skills is useful for understanding the dynamic systems and control theory. Knowledge of braking systems and safety standards used to protect the DC drive.								
OBJECTIVES:								
• To gain knowledge about analyzing the multi-quadrant operation and characteristics of DC motor and mechanical system								
To devel	• To develop the ability to analyze the operation of the converter-fed DC drive							
To provi	de adequate skill to analyze the operation of the chopper-fed DC dri	ve						
• To infer DC moto	the knowledge about the design of current and speed controllers for or drive.	a clos	ed loop	p solid-	-state			
To understand the concept of different braking systems applied to phase and chopper-controlled DC drive								
UNIT - I	DC MOTORS FUNDAMENTALS AND MECHANICAL SYS	ГЕМ		(9)				
Ward Leonard control – Constant torque and constant horse power operation – Introduction to high speed drives and modern drives. Characteristics of mechanical system – dynamic equations, components of torque, types of load – Requirements of drives characteristics – multi-quadrant operation, drive elements, types of motor duty and selection of motor rating.								
UNIT - II CONVERTER CONTROL DC DRIVES				(9)				
Principle of phas single-phase and Continuous and Operation with f	e control – Fundamental relations – Analysis of series and separatel three-phase converters – waveforms, performance parameters, perfor discontinuous armature current operation – Current ripple and its reewheeling diode – Dual converter fed DC drives.	y excit ormand effect	ted DC ce char on per	motor acterist	with tics – nce –			
UNIT - III	CHOPPER CONTROL DC DRIVES			(9)				
Introduction abo Performance ana phase chopper; F	out chopper, control strategy – Class A, B, C, D and E chopper lysis – Multi quadrant control – Chopper-based implementation of Related problems	-contro brakin	olled I ng meth	DC mo nods, N	tor – Iulti-			
UNIT - IV	CLOSED-LOOP CONTROL			(9)				
Modeling of driv power converters and microcompu	ve elements – Equivalent circuit, transfer function of separately exciss – Sensing and feedback elements – Closed loop control of armature ter control of dc drives.	ted DC e and f	2 motor field co	rs, moc ntrol –	lel of PLL			
UNIT - V	BRAKING OF DC DRIVES			(9)				
Different braking controlled DC se	g methods – Dynamic and Regenerative braking Methods of phase parately excited and series motors – DC drives in transit systems	-contro	olled a	nd choj	pper-			
TOTAL = 45 PERIODS								

COURSE OUTCOMES:						
At	the e	nd of the course, the	students will be ab	le to:		
CO	s	Course Outcome				Cognitive Level
со	91	Summarize the basic dynamics of a motor	concept of steady-s load system	state operation and t	ransient	Apply
со	2	Determine the perfor	mance and paramet	ers of converter-cor	ntrolled DC drives	Apply
со	3	Determine the perfor	mance and paramet	ers of chopper-cont	rolled DC drives	Apply
со	4	Apply the closed-loc	op control of DC driv	ves.		Apply
СО	5	Infer the various braid DC drives	king schemes of pha	se-controlled and c	hopper-controlled	Apply
	5 //D D					
TE.	XI B Ved	am Subramanyam Fl	ectric Drives - Conc	ents and Applicatio	ns McGraw Hill I	ndia Second Edition
1	201	l.	cettle Dirves - Cone	epts and Applicatio	nis, weolaw min, i	ndia, Second Lanton,
2	Gob 2020	al K.Dubey, Fundame).	entals of Electrical D	rives, Narosa Publis	shing House, New I	Delhi, Second Edition,
RE	FER	ENCE BOOKS:				
1	Kris New	hnan.R, Electric Moto Delhi, 2010.	or Drives – Modelin	g, Analysis and Co	ntrol, Prentice-Hall	of India Pvt. Ltd.,
2	Gop 1993	al K Dubey, Power So 3.	emiconductor Contr	olled Drives, Prenti	ce Hall Inc., New Y	ork, Second Edition,
3	RRa Indi	mapraba, R., and Sey a, First Edition, 2020.	ezhai, R., Solid state	e drives DC and AC	C, Scitech Publication	ons Private Limited,
4	Bim Edit	al K Bose, Modern P ion, 2015.	ower Electronics an	d AC Drives, Pears	son Education India	, Uttar Pradesh, First
			Mapping of C	Os with POs and I	PSOs	
C P	Os/ Os	PO1	PO2	PO3	PO4	PO5
C	01	3	2	2	2	2
C	02	3	2	2	2	2
С	03	3	2	2	2	2
C	04	3	2	2	2	2
C	05	3	2	2	2	2
A	vg.	3	2	2	2	2
1- L	.ow, 2	2- Medium, 3- High				

DE24T22	SOLID STATE AC DRIVES	Category	L	Т	Р	С				
PE24125	SOLID STATE AC DRIVES	РСС	3	0	0	3				
PREREQUISIT A solid basis in t in electrical eng drives and simu equations and c	PREREQUISITE: A solid basis in the fundamental concepts of AC circuit analysis, and electrical machines, and control systems in electrical engineering. Strong mathematical abilities are essential for evaluating power electronics in ac drives and simulation tools. These include proficiency in linear algebra, matrix operations, differential equations, and complex numbers									
 OBJECTIVES: To gain knowledge about the steady state operation and transient dynamics of a motor load system. To gain proficiency in the concept of CSI and VSI-fed induction motor control. To acquire the skills to analyze the operation for field-oriented fed induction motor control. To develop the operation of direct torque control of the induction motor. To enable the synchronous motor drives and their performance. 										
UNIT - I	PERFORMANCE OF AC MOTORS				(9)					
Steady-state performance equations – Rotating magnetic field – torque production, Equivalent circuit – Variable voltage, constant frequency operation – Variable frequency operation, constant Volt/Hz operation, Slip power recovery – Static Kramer Drive – Synchronous Drives.										
UNIT - II VSI AND CSI-FED INDUCTION MOTOR CONTROL				(9)						
AC voltage con inverter with dyn	troller circuit – Six-step inverter voltage controls – closed namic braking – CSI fed IM variable frequency drives – con	d loop variable parison.	e freq	uenc	y PV	VM				
UNIT - III	FIELD ORIENTED CONTROL			(9)						
Field-oriented co Indirect or feed-	ontrol of induction machines – Theory – DC drive analogy – forward vector control – Flux vector estimation – Space vec	Direct or feedbattor modulation	ack v contr	ector ol.	cont	rol,				
UNIT - IV	DIRECT TORQUE CONTROL			(9)						
Direct torque co strategy – Optim	ntrol of induction machines – Torque expression with stat num switching vector selection – reduction or torque ripple n	or and rotor flunethods.	ixes,	DTC	con	trol				
UNIT - V	SYNCHRONOUS MOTOR DRIVES				(9)					
Wound field cyl source – Power Synchronous mo	indrical rotor motor – Equivalent circuits – performance equations factor control and V curves – starting and braking, solutor drives – Brush and Brushless excitation.	ations of operat elf-control – 1	ion fi Load	com a	ı volt muta	age ited				
		Tota	al = 4	5 PE	RIO	DS				

COURSE OUTCOMES:								
At the	At the end of the course, the students will be able to:							
COs		Course (Dutcome		Cognitive Level			
CO1	Discover the stead system.	ly-state operation an	d transient dynami	cs of a motor load	Understand			
CO2	Elucidate the conc	ept of CSI and VSI-f	ed induction motor	control.	Understand			
CO3	Describe the opera	tion for field-oriente	d fed induction mot	or control.	Understand			
CO4	CO4 Interpret the operation of direct torque control of the induction motor.				Understand			
CO5	Develop the synch	ronous motor drives	and their performa	nce.	Understand			
TEX	Г BOOKS:							
1	Bimal K. Bose, Mod Edition 2015	ern Power Electroni	cs and AC Drives,	Pearson Education	, Asia, Reprint, First			
2	Gopal K. Dubey, Pow 1999.	er Semiconductor Co	ontrolled Drives, Pro	entice Hall Inc., New	Jersey, First Edition,			
REFI	ERENCES:							
1	Vedam Subramanyam 2017	, Electric Drives–Co	ncepts and Applica	tions, Tata McGraw	Hill, Second Edition,			
2	Krishnan, R., Electric New Delhi, First Editi	Motor Drives–Mode on, 2010.	eling, Analysis and	Control, Prentice-H	all of India Pvt. Ltd.,			
3	Leonhard, W., Contro	l of Electrical Drives	, Narosa Publishing	g House, Second Edit	tion, 1992.			
4	P.Vas, 'Sensorless Vo Edition, 1998.	ector and Direct Tor	rque Control', Oxfo	ord University Press	, New York, Second			
		Mapping of	COs with POs and	PSOs				
COs/ POs	PO1	PO2	PO3	PO4	PO5			
CO1	2	2	1	-	3			
CO2	3	2	1	-	3			
CO3	3	2	2	-	1			
CO4	2	2	2	-	1			
CO5	3	2	2	-	3			
Avg.	2.6	2	1.6	-	2.2			
1- Lo	w, 2- Medium, 3- High	h						

PE24T24 FACTS CONTROLLERS		Category	L	Т	Р	С		
1 1/27 1 27	TACIS CONTROLLERS	PCC	3	0	0	3		
PREREQUISITE: Basic knowledge of power electronics and power systems, including power system dynamics and control. FACTS controllers are a group of resources that help overcome limitations in the dynamic and static transmission capacity of electrical networks. They can provide series compensation to the reactance of lines, or shunt compensation to transmission lines. FACTS controllers can also act as actuators in control schemes to dampen interarea oscillations.								
OBJECTIVES	:							
• To under and stab	erstand the fundamental principles of FACTS technologies, ility of AC transmission systems.	which enhance	the c	ontro	ollabi	lity		
• To gain compon	a comprehensive grasp of the Static VAR Compensator ents and basic operation.	(SVC) technol	ogy,	inclu	ıding	; its		
To Lear	n the fundamental principles of TCSC & GCSC including th	eir structure an	d ope	eratio	n.			
To Stuc tradition	ly the innovations and advancements in FACTS technological FACTS devices.	ogies and how	they	dif	fer fi	rom		
To Stud	y how different FACTS devices interact with each other and	with the overal	ll con	trol	syste	m.		
UNIT - I	INTRODUCTION				(9)			
The concept of Uncompensated Compensator (S – Integrated Pov	flexible AC transmission - Reactive power control in elec transmission line – Series and shunt compensation. Overvie VC) – Thyristor Switched Series Capacitor (TCSC) – Unifie wer Flow Controller (IPFC).	trical power tra w of FACTS de d Power Flow (insmi vices Contr	ssion S: Sta coller	n line tic V (UP	S – AR FC)		
UNIT - II	STATIC VAR COMPENSATOR (SVC) AND APPLIC	ATIONS			(9)			
Methods of cor principle and co regulator – Mod stability – Stead	ntrollable VAR generation – Switching converter type VA ntrol approaches – Voltage control by SVC – Dynamic char lelling of SVC for power flow and transient stability Applic y state power transfer – Prevention of voltage instability.	AR generators acteristics – Sig ations: Enhanc	– Ba gn of emer	sic of	opera Volt trans	ting age ient		
UNIT - III	THYRISTOR AND GTO CONTROLLED SERIE (TCSC AND GCSC)	S CAPACIT	OR		(9)			
Concepts of con Modelling of To Applications of	ntrolled series compensation – Operation of TCSC and GCS CSC and GCSC for load flow studies – Modeling TCSC a TCSC and GCSC.	SC – Analysis on GCSC for	of TC stabil	CSC- lity s	GCS tudie	C – 2d –		
UNIT - IV	EMERGING FACTS CONTROLLERS				(9)			
Principle of ope Enhancement of of power flow – UPFC and IPFC	Principle of operation Static Synchronous Compensator (STATCOM) – V-I Characteristics. Applications: Enhancement of transient stability – Prevention of voltage instability. SSSC operation of SSSC and the control of power flow – Modeling of SSSC in load flow and transient stability studies. Applications: SSR mitigation – UPFC and IPFC – comparison of different FACTS controllers.							
UNIT - V	CO-ORDINATION OF FACTS CONTROLLERS				(9)			
Controller interactions – Control coordination using genetic algorithms – SVC-SVC interaction – Co- ordination of multiple controllers using linear control techniques – Advancements in FACTS controllers and their co-ordination.								
Total = 45 PERIODS								

COURSE OUTCOMES: At the end of the course, the students will be able to: COs **Course Outcome Cognitive Level** Explain the various FACTS controllers operation on FACTS Understand **CO1** systems. **CO2** Categorize the different VAR compensation techniques. Understand Illustrate the concepts of TCSC & GCSC and its applications. **CO3** Understand Apply the concept of voltage source converter-based FACTS Apply **CO4** controller. Explain the coordination of FACTS controllers in different Understand **CO5** controllers. **TEXT BOOKS:** Mohan Mathur, R., Rajiv K. Varma, Thyristor – Based Facts Controllers for Electrical Transmission 1 Systems, IEEE press and John Wiley and Sons, Student Edition, 2011. Narain, G. Hingorani, Understanding FACTS - Concepts and Technology of Flexible AC Transmission 2 Systems, Standard Publishers Distributors, Delhi - 110006, First Edition, 2000. **REFERENCES:** Padiyar, K.R., FACTS Controllers in Power Transmission and Distribution, New Age International Pvt. 1 Limited, Publishers, New Delhi, Second Edition, 2016. 2 John, A.T., Flexible A.C. Transmission Systems, Institution of Electrical and Electronic Engineers, 1999. Vijay K. Sood, HVDC and FACTS controllers – Applications of Static Converters in Power Systems, 3 Kluwer Academic Publishers, First Edition, 2012. Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Pérez, "FACTS: Modelling and Simulation in 4 Power Networks", John Wiley, 2011. Mapping of COs with POs and PSOs COs/ **PO2 PO1 PO3 PO4 PO5** POs **CO1** 3 3 2 2 _ 3 2 3 2 **CO2** _ 3 2 3 2 **CO3** _ 3 2 3 2 **CO4 CO5** 3 2 3 2 3 2 3 2 Avg. -1- Low, 2- Medium, 3- High

PF	74D71	POWER ELECTRONICS SIMULATION	Category	L	Т	Р	С	
ΓĿ	24621	LABORATORY – II	РСС	0	0	4	2	
PRE comp electr electr appli	PREREQUISITE: Completion of an introductory course in power electronics covering basic concepts, components (e.g., diodes, transistors, MOSFETs, IGBTs), and circuit configurations. Basic understanding of electrical machines and their operation, as well as knowledge of drive systems and their integration with power electronics. Knowledge of basic control systems principles, such as feedback loops, controllers, and their application in power electronics systems.							
OBJ	ECTIVE	5:						
•	To gras their ve	sp the fundamental operation and principles of buck, boost, and boltage conversion ratios and operational modes.	ouck-boost co	ivert	ers, iı	ıclud	ing	
•	To per parame	form the detailed analysis of series resonant converter circ eters such as resonant frequency, voltage and current waveforms	uits, includin s, and impedar	g cal ice ch	culat narac	ing l terist	key ics.	
•	To ana torque	lyze the key performance metrics of closed-loop DC drives s response, system stability, efficiency, and transient behavior.	such as speed	cont	rol a	ccura	ıcy,	
•	To reco analyzi	ognize the operation of the chopper circuit in regulating the DC in how different chopper configurations affect drive performance.	motor's voltag nce.	ge and	1 curi	ent, a	and	
•	To cor includi	nprehend the fundamental components and operational princing solar panels, charge controllers, batteries, and inverters.	ples of standa	lone	PV :	syste	ms,	
LIST	C OF EXP	PERIMENTS:						
1.	Simulati	on of MOSFET / IGBT-based step-down chopper with R load.						
2.	Simulati	on of MOSFET / IGBT-based step-up chopper with R load.						
3.	Simulati	on of DC-DC buck-boost converter with R load.						
4.	Simulati	on of series resonant converter with R load.						
5.	Closed 1	oop control of buck converter fed DC motor drive using simula	tion.					
6.	Closed 1	oop control of boost converter fed DC motor drive using simula	ation.					
7.	Closed 1	oop control of buck-boost Converter fed DC motor drive using	simulation.					
8.	Simulati	on of closed-loop control of BLDC motor drive.						
9.	Simulati	on of four quadrant chopper fed DC motor drive.						
10.	Simulati	on of stand-alone PV systems.						
			ТОТА	L: 6	0 PE	RIO	DS	

COURSE OUTCOMES:									
At th	e end o	of the course, th	e students will be a	able to:					
CO	Os		Cognitive Level						
CO	01	Simulate the bu	ck, boost, and buck	-boost converter with	R load.	Apply			
CO	02	Evaluate the pe	rformance of a serie	es resonant converter.		Apply			
CO)3	Evaluate the pe	rformance of closed	l-loop controller-base	d DC drive.	Apply			
CO)4	Observe the pedrive.	erformance of the	four-quadrant chopp	er-fed DC motor	Apply			
CO	CO5 Discriminate the performance of standalone PV systems.					Apply			
REFI	EREN	CES:							
1.	Amos	Gilat, "MATLA	B: An Introduction	with Applications",	Fourth Edition, Wild	ey, 2012.			
2.	Farzir Analy	n Asadi, "Simula zze, and Prototyp	tion of Power Elect	ronics Circuits with N s", First Edition, Apro	MATLAB®/Simulir ess Berkeley, CA, 20	nk®, Design, 022.			
	-				•••••				
			Mapping of	COs with POs and I	PSOs				
COs POs		PO1	PO2	PO3	PO4	PO5			
CO1	-	3	2	3	1	3			
CO2	2	3	2	3	1	3			
CO3	;	3	2	3	1	3			
CO4		3	2	3	1	3			
CO5	;	3	2	3	1	3			
Avg		3	2	3	1	3			
1 - Lo	ow, 2 -	Medium, 3 - Hig	gh						

DE	24022	ςοι ης στα τε ορινές ι αροράτορν	Category	L	Т	Р	С		
PL.	24F22	SOLID STATE DRIVES LABORATORY	PCC	0	0	4	2		
PRE A fou grasp	PREREQUISITE: A foundational understanding of electrical circuits, magnetic principles, and motor operation is necessary to grasp the concepts of electric drives and knowledge of power semiconductor devices and conversion techniques is important for monoping the power supply and efficiency of electric drive systems.								
ORI	OBJECTIVES.								
•	 To analyze the performance of AC and DC motor drives using simulation tools in the MATLAB environment. To examine the performance of AC and DC motor drives by implementing speed control and 								
	perform	nance analysis using a microcontroller-based system.	1 0	1					
٠	To obs using a	serve and analyze the performance of Switched Reluctance M DSP-based controller for speed control.	lotors and Br	ushle	ess D	C mo	otors		
•	To eva inverte	aluate the performance of a three-phase Space Vector Puls or using IGBT switch.	e Width Moc	lulati	on (S	SVPV	VM)		
•	To ana control	lyze the performance of an induction motor by implementing c ller.	ontrol algorith	nms u	ising	an Fl	PGA		
LIST	C OF EXI	PERIMENTS:							
1.	Simulati	on of four quadrant operation of three-phase induction moto	or.						
2.	Simulati	on of Automatic Voltage Regulation of three-phase synchro	nous generato	or.					
3.	Microco	ontroller based speed control of converter fed DC motor.							
4.	Microco	ntroller based speed control of chopper fed DC motor.							
5.	Microco	ntroller based speed control of VSI fed three-phase induction	on motor.						
6.	Microco	ntroller based speed control of Stepper motor.							
7.	DSP bas	sed speed control of BLDC motor.							
8.	DSP bas	sed speed control of SRM motor.							
9.	IGBT ba	ased three-phase SVPWM Inverter.							
10.	FPGA b	ased speed control of VSI fed Induction Motor.							
			ТОТ	AL:	60P	ERIC	ODS		

At the end of the course, the students will be able to:

CO	Os		Course	Outcome		Cognitive Level				
CO	D1	Determine the MATLAB envi	drive performance ronment.	of AC motor and	DC motor using	Apply				
CO	02	Investigate the a Microcontroll	drive performance er.	of AC motor and	DC motor using	Apply				
CO	03	Observe the percontroller.	rformance of SRM	Motors and BLDC	motor using DSP	Apply				
CO	04	Evaluate the per	rformance of a three	-phase SVPWM Inv	verter using IGBT.	Apply				
CO	05	Determine the p	performance of the in	nduction motor using	FPGA controller.	Apply				
REF	EREN	CES:								
1.	Farzi Proto	n Asadi, 'Simulat type Power Elect	Asadi, 'Simulation of Power Electronics Circuits with MATLAB/Simulink, Design, Analyze, and ype Power Electronics', First Edition, Apress Berkeley, CA, 2022.							
2.	N. M John	Iohan, T. M. Undeland, and W. P. Robbins, 'Power electronics, converters, applications and design,' Wiley & Sons, Inc, 2016.								
			Mapping of	COs with POs and D	PSOs					
COs POs	/	PO1	PO2	PO3	PO4	PO5				
COI	L	3	2	2	2	2				
CO2	2	3	2	2	2	2				
CO3	3	3	2	2	2	2				
CO4	1	3	2	2	2	2				
COS	;	3	2	2	2	2				
Avg	•	3	2	2	2	2				
1- Lo	w, 2- 1	Medium, 3- High								

DE74D72	TECHNICAL DESENTATION	Category	L	Т	Р	С
f E/24f 23	IECHNICAL PRESENTATION	EEC	0	0	2	1

PREREQUISITE:

Students should have a core grasp of the subject matter connected to their area of study to efficiently prepare and deliver technical presentations. This understanding should include a fundamental comprehension of research methodologies, the ability to write reports, and familiarity with key technical ideas.

OBJECTIVES:

- To enable students to critically review and recognize key challenges in their field of interest, enabling distinct study and the development of new solutions.
- To facilitate students to explore particular topics or areas of interest via complete literature evaluation, including journals, conference proceedings, and other academic sources.
- To bridge the gap between theoretical knowledge and practical application by enhancing students' ability to apply learned concepts to solve real-time problems effectively and collaboratively.
- To enhance their understanding of a topic by having them present and receive feedback on their findings.
- To equip students with the skills needed to effectively communicate their research and ideas through structured report writing and professional presentations related to their area of study.

The students should adhere to the following Guidelines:

- The students have to refer to the journals and conference proceedings and collect the published literature.
- By mutual discussions with the faculty in-charge the student can decide on a topic related to the area/topic.
- The student is expected to collect at least 20 such research papers published in the last 5 years.
- Using OHP / PowerPoint, the student has to make a presentation for 20 minutes followed by 10 minute discussion.
- The student has to make five presentations in the semester.
- The student has to write a technical report for about 30 50 pages (Title page, One-page Abstract, Review of Research paper under various sub-headings, concluding remarks, and list of references). The technical report has to be submitted to the course coordinator one week before the final presentation, after the approval of the faculty in-charge.

TOTAL: 30 PERIODS

COURSE OUTCOMES:									
At the end	l of the course, the s	tudents will be ab	le to:						
COs		Course Ou	itcome		Cognitive Level				
CO1	Familiarize the prol	olems in general ar	eas of interest to th	e student.	Understand				
CO2	CO2 Identify the area/problem by referring to journals, conference proceedings, etc.								
CO3	Enhance the collec time problems.	tive skills betweer	theoretical knowl	edge and real-	Create				
CO4	Gain knowledge on	the problem by pr	esentation and revi	ew.	Understand				
CO5	Acquire ideas on re	Understand							
		Mapping of CC	s with POs and P	SOs					
COs/ PC	Os PO1	PO2	PO3	PSO1	PSO2				
CO1	2	3	3	3	2				
CO2	2	3	3	3	2				
CO3	2	3	3	3	2				
CO4	2	3	3	3	2				
CO5	2	3	3	3	2				
Avg.	2	3	3	3	2				
1 - Low, 2	1 - Low, 2 - Medium, 3 - High								

DE24E01	ADVANCED POWER SEMICONDUCTOR	Category	L	Т	Р	С	
FE24EVI	DEVICES	РСС	3	0	0	3	
 The fundamentals of semiconductor materials, such as the concepts of doping, p-n junctions, and carrier dynamics, is crucial. Along with knowledge of basic low power electronic components and circuits, including diodes, transistors (BJTs, MOSFETs, IGBTs), thyristors, and their operation principles are required. Familiarity with the principles of power conversion and control, including rectifiers, inverters, and converters. This includes understanding how power devices are used in practical circuits. Proficiency in mathematics and physics are needed, as these are often required for understanding device modelling and simulation. OBJECTIVES: To explore criteria for selecting appropriate power devices for various applications, and gain insight into recent advancements and emerging technologies in power devices, such as wide-band gap materials (SiC, GaN). To learn about different types of current-controlled devices, their fundamental operating principles and characteristics of these devices. To acquire knowledge on types of voltage-controlled devices, their fundamental operating principles, characteristics and applications of these devices. To study about various protection mechanisms to safeguard power devices from overvoltage, overcurrent, and thermal stress. To gain awareness about the concept of thermal considerations and thermal management techniques specific to power devices. 							
UNIT - I	OVERVIEW OF POWER DEVICES				(9)		
Power switching Power handling switching chara demonstration of	g devices overview – Attributes of an ideal switch, application capability – Safe Operating Area – Power diodes: Types, for cteristics, rating – Features and brief history of Silicon f SiC power devices – Physical properties of SiC devices – U	on requirement rward and reven Carbide (SiC nipolar and Bip	s, cire rse ch) – olar p	cuit s narac Pron	symb terist nise r dioo	ols, ics, and des.	
UNIT - II	CURRENT CONTROLLED DEVICES				(9)		
BJT's: Construct breakdown – T operation – com based bipolar de transistor electric	ction, static and switching characteristics, negative temp hyristors :Construction, working, static and transient ch parison of BJT and Thyristor – steady state models of BJT & evices(BJTs and Thyristors) – GaN technology overview – cal characteristics.	perature coeffi aracteristics, se Thyristor – Ba Building a Gal	cient eries sics c N trai	and and of GT nsiste	seco para CO – J or – C	ond Illel SiC JaN	
UNIT - III	VOLTAGE CONTROLLED DEVICES				(9)		
Principle of voltage controlled devices – Construction, static and switching characteristics: Power MOSFETs, IGBTs and IGCTs – Steady state models of MOSFETs, IGBTs and IGCTs – Intelligent power modules –Study of modules like APTGT100TL170G, MSCSM70TAM05TPAG – SiC based unipolar devices (MOSFETs and JFETs).							
UNIT - IV	DEVICE SELECTION, DRIVING AND PROTECTIN	G CIRCUITS			(9)		
Device selection pulse transforme Over voltage, ov	Device selection strategy – On-state and switching losses – EMI due to switching – Necessity of isolation – pulse transformer, opto-coupler – Gate drive circuit: SCR, MOSFET, IGBTs –Base driving for power BJT – Over voltage, over current and gate protections – Design of snubbers.						

UNIT - V		THERMAL P	ROTECTION				(9)		
Heat for he sink	transfer: (eat sink se types and	Conduction, conve election – Thermal design – Mounting	ction and radiatio resistance and im g types – switching	n – Cooling: liquid, pedance – Electrica g loss calculation fo	, vapour and phas al analogy of therr r power devices.	e cooling mal com	g – Guidance ponents, heat		
					ſ	Total = 4	5 PERIODS		
COU	RSE OU	TCOMES:							
At th	e end of	the course, the stu	idents will be able	e to:					
CO	s		Course Out	tcome		Cogr	Cognitive Level		
CO	1 Ident	ify the suitable p	ower devices for	various application	ons.	Un	Understand		
CO2 Interpret the characteristics of current controlled devices.					Un	derstand			
CO	3 Infer	the characteristic	es of voltage-con	trolled Silicon dev	vices.	Un	derstand		
CO	4 Disco	over proper drivin	ng circuits and pr	rotection circuits.			Apply		
CO5 Construct a proper thermal protective device for power semiconductor devices.					Apply				
TEX	T BOOK	S:							
1.	Rashid N Edition.	A.H., "Power Ele Fenth Impression.	ctronics Circuits, 2021.	Devices and App	lications", Pearso	on Educ	ation, fourth		
2.	Mohan,	Undeland and Ro	obins, "Power Ele	ectronics: Converte	ers Applications	and Des	sign", Media		
DFF	Enhanced	l, Third Edition, W	/iley, 2007.						
1.	B.W Wil	iams, "Power Ele	ctronics Circuit D	evices and Applicat	ions". McGraw H	[ill High	er Education.		
	Second e	dition, 1992.		11	,	0	,		
2.	Tsunenol Character	ou Kimoto and Ja rization Devices a	mes A. Cooper, and Applications"	"Fundamentals of John Wiley & Sons	Silicon Carbide Singapore Pyt Lt	Fechnolo d First F	ogy: Growth, Edition 2014		
3	Alex Lid	ow, Johan Strydon	n, Michael de Roo	ij and David Reuse	h, "GaN Transisto	ors for ef	ficient power		
J. 4	conversio	on", Second Editio	n, Wiley, 2015.	dition Universities	Draga 2010				
+.	Diswalia	n raui, rowei El	contracts, new et	antion, Oniversities	11000, 2017.				
			Mapping of CO	Os with POs and P	SOs				
CO	s/ POs	PO1	PO2	PO3	PSO1]	PSO2		
	C O1	3	2	-	-		-		
	CO2	3	2	-	-		-		
	C O 3	3	2	-	-		-		
	C O 4	3	2	-	-		-		
(C O 5	3	2	-	-		-		
	Avg.	3	2	-	-		-		
1 - L	ow, 2 - N	Aedium, 3 - High							

PE24E02 NON-CONVENTIONAL ENERGY SOURCES	Category	L	Т	Р	С		
rez4euz	NON-CONVENTIONAL ENERGY SOURCES	PEC	3	0	0	3	
PREREQUISI	ГЕ:						
A strong foundation in fundamentals of energy, basic chemistry, power systems, fluid mechanics, thermodynamics and material science. Mathematical skills in calculus, statistics, algebra and Probability for modeling and analyzing energy production and consumption. Knowledge in Electrical Systems is used for understanding electrical circuits, power electronics, and integration of energy systems with the grid.							
OBJECTIVES:							
• To develop the ability to analyze and design a PV system							
• To acquire knowledge about the utilization of wind energy system							
• To enab given ap	ble students to select and apply appropriate fuel cell technoplication	nology & hydro	ogen	ener	gy fo	or a	
• To prov	ide adequate knowledge about ocean thermal electric conv	ersion and tida	l ene	rgy			
• To infer	the concept of Geothermal and Biomass energy conversion	on resources and	d app	licat	ions.		
UNIT - I	SOLAR ENERGY				(9)		
Solar energy: solar radiation, availability, measurement and estimation – Solar thermal conversion devices and storage – solar cells and photo voltaic conversion – PV systems – MPPT – Applications of PV Systems – Solar energy collectors and storage.							
UNIT - II	WIND ENERGY				(9)		
 basic compon generations – Interconnected s 	ents of wind energy conversion system – Types of wind Generator control, load control, energy storage – A systems.	turbines – Sch pplications of	neme win	s for d er	elec nergy	tric	
UNIT - III	CHEMICAL ENERGY SOURCES				(9)		
Design and prin Types of electro Introduction – sulphur cycle –	ciples of operation of a fuel cell –Types of fuel cells – con odes, work output and EMF of fuel cell – Applications Hydrogen production: Electrolysis, Thermochemical, E Hydrogen storage – Utilization of hydrogen gas.	version efficient of fuel cells. I Electrochemical	ncy c Hydro , Wo	f fue ogen esting	l cell ener g ho	ls – gy: use	
UNIT - IV	ENERGY FROM OCEANS				(9)		
Ocean Thermal tides: Basic prir of tidal energy - waves, energy a	Electric Conversion (OTEC): open cycle OTEC system, cl aciples of tidal power - component of tidal power plants - site requirements – storage – advantages and limitations on nd power from the waves, wave energy conversion devices	osed OTEC cyc operation meth of tidal power § s.	cle – lods gener	Ener of ut ation	gy fr ilizat . Oc	om ion ean	
UNIT - V	ENERGY FROM GEO THERMAL AND BIOMAS	S			(9)		
Estimation of geothermal power – nature of geothermal fields – geothermal sources – inter connection of geothermal fossil systems – prime movers for geothermal energy conversion – Application of geothermal energy – Energy from biomass: Introduction, Biomass conversion technologies, photosynthesis – classification of biogas plants – Biomass Energy conversion – Energy from waste (Municipal solid waste) TOTAL = 45 PERIODS							

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Develop PV systems and implement MPPT in PV systems.	Apply
CO2	Confer the various configurations of wind energy conversion systems	Apply
CO3	Familiarize with the concept of energy from Fuel cells and Hydrogen	Understand
CO4	Deliberate the energy tapping methods from ocean sources and tidal energy.	Understand
CO5	Summarize the concept of geo-thermal and biomass energy.	Apply

ТЕУ	TEXT BOOKS:								
1	Rai, G.D.	, Non-Conventional Energy Sources, Khanna Publishers, New Delhi, Third Edition, 2022.							
2	John Twidell and Tony Weir, Renewable Energy Resources, Taylor & Francis, London, Third Edition, 2015.								
REI	FERENCE	ES:							
1	Sukhatme 2017.	e, S.P and Nayak	J.K., Solar Energ	gy, Tata McGraw	Hill Education, 1	India, Fourth Edition,			
2	<u>Tiwari</u> , G.N., and <u>Ghosal</u> , M.K., Renewable Energy Resources: Basic Principles and Applications, Narosa Publishing House, New Delhi, Second Edition, 2005.								
3	Shobh Na 2015.	hobh Nath Singh, Non-conventional Energy resources, Pearson Education, India, First Edition, 015.							
4	Yogi Gos Third Edi	wami, D., Princi ition, 2000.	ples of Solar Engi	ineering, CRC Pres	s, Taylor and Fr	ancis Group, London,			
			Mapping of CO)s with POs and P	SOs				
CO	Os/ POs	PO1	PO2	PO3	PSO1	PSO2			
	CO1	3	2	1	1	2			
	CO2	3	2	1	1	2			
	CO3	3	2	1	1	2			
	CO4	3	2	1	1	2			
	CO5	3	2	1	1	2			
	Avg.	3	2	1	1	2			
1 - I	1 - Low, 2 - Medium, 3 - High								

DE34E02	HICH VOLTACE DO TRACMISSION SYSTEM	Category	L	Т	Р	С		
PE24E03	HIGH VOLTAGE DU TRASIMISSION SYSTEM	PEC	3	0	0	3		
PREREQUISITE: High-voltage direct current (HVDC) transmission systems use DC to transmit electrical power over long distances, unlike more common AC systems. The main components of an HVDC system are converter stations, transmission media and electrodes.								
OBJECTIVES:								
 To acquire knowledge of both AC and DC transmission, highlighting the advantages, challenges and applications of HVDC systems. 								
• To understand the design, operational principles, performance parameters and impact on the overall HVDC transmission system.								
• To stud mechan	ly the different types of MTDC systems, their control isms necessary to ensure reliable and efficient operation.	l strategies ar	nd th	e pr	otect	ion		
• To learn power f	n the principles of power conversion, ensuring efficient an low between the AC and DC sides of the system.	d stable operati	ion a	nd m	anag	ing		
• To identify, evaluate and select appropriate simulation techniques that are best suited for analyzing various aspects of HVDC system design, performance and operation.								
UNIT - I DC POWER TRANSMISSION TECHNOLOGY					(9)			
Introduction – Comparison of AC and DC transmission – Application of DC transmission – Description of DC transmission system – Planning for HVDC transmission – Modern trends in DC transmission – DC breakers – Cables, VSC-based HVDC.								
UNIT - II	ANALYSIS OF HVDC CONVERTERS				(9)			
Analysis of HV Output voltage link.	DC Converters, Rectifier and Inverter operation of Graetz waveforms and DC voltage in rectifier and inverter operat	circuit without ion, Equivalent	and v	with uit of	overl HV	lap. DC		
UNIT - III	MULTI-TERMINAL DC SYSTEMS			(9)				
Introduction – P of MTDC system	Potential applications of MTDC systems – Types of MTDC ms – Study of MTDC systems.	systems – Cont	rol a	nd pr	otect	ion		
UNIT - IV	POWER FLOW ANALYSIS IN AC/DC SYSTEMS				(9)			
Per unit system DC power flow	for DC Quantities – Modelling of DC links – Solution of – Case studies.	DC load flow -	– Sol	ution	of A	4C-		
UNIT - V	SIMULATION OF HVDC SYSTEMS				(9)			
Introduction – S systems for digi	System simulation: Philosophy and tools – HVDC system s tal dynamic simulation – Dynamic interaction between DC	simulation – Me C and AC system	odeli ms.	ng of	HV	DC		
TOTAL = 45 PERIODS								

CO	COURSE OUTCOMES:							
At t	he eno	d of the course, the s	tudents will be al	ole to:				
C	Os	Course Outcome				Cognitive Level		
CO	D1	Explain the concep performance of HV	t of electrical po DC systems.	wer transmission	systems and the	Understand		
C	02	Determine the conf	Understand					
C	03	Apply the concept protection.	Apply					
C	D4	Implement the pow	ver flow in the AC	C to DC system.		Understand		
C	05	Discriminate the m	ethod of simulati	on in the HVDC	system.	Understand		
TEX	KT BC	OOKS:						
K.R. Padiyar, HVDC Power Transmission Systems, New Age International Pvt. Ltd., New Delhi, Reprint 2005.								
2	2 Jos.Arrillaga, High Voltage Direct Current Transmission, Peter Pregrinus, London, Second Edition, 1998.							
REI	FERE	NCES:						
1	P. K	undur, Power System	Stability and Con	trol, McGraw-Hill	, Second Edition, 20)22.		
2	Ericl	n Uhlmann, Power Tr	ansmission by Dir	ect Current, BS Pu	blications, Reprint	2015.		
3	Vija Kluv	y K. Sood, HVDC and ver Academic Publish	d FACTS controlle ners, First Edition,	ers – Applications 2012.	of Static Converters	in Power Systems,		
4	Kam First	akshaiah, S and Kam Edition, 2011.	araju, V, 'HVDC '	Transmission', Ta	ta McGraw Hill Edu	ucation, New delhi,		
			Mapping of CO)s with POs and l	PSOs			
CO	Os/ PC	Ds PO1	PO2	PO3	PSO1	PSO2		
	CO1	2	3	-	3	-		
	CO2	2	3	-	3	-		
	CO3	2	3	-	3	-		
	CO4	2	3	-	3	-		
	CO5	2	3	-	3	-		
	Avg.	2	3	-	3	-		
1 - I	Low, 2	- Medium, 3 - High						

PE24E04	PROTECTION FOR FLECTRICAL DRIVES	Category	L	Т	Р	С	
1 1241204	TROTECTION FOR ELECTRICAL DRIVES	PEC	3	0	0	3	
PREREQUIST Students should circuits, power s drives and their functioning of s the application of	TE: have a concept in electrical engineering fundamentals, systems, and protection schemes. Proficiency in the operation control systems is essential. A good understanding of emiconductor devices used in drives, is required. Addition of protection methods and evaluate protection systems for y	including know on and charact power electro nally, students a arious types of	vledg eristionics, shoul	ge of cs of incl d be rical	elec elec uding skill	trical trical g the ed in	
		unous types of	0100	incur	anv		
 To unde To deve To analy To unde To adva 	rstand the concept of programmable logic controllers. lop the modeling of the electrical drive system. vze and work with the concepts of digital and numerical rela rstand the DC drive protection scheme. nce the concept of an AC drive protection scheme.	ying of various	pow	er ap	parat	uses.	
UNIT - I	PROGRAMMABLE LOGIC CONTROLLERS (PLC)			(9)		
Evolution of modern PLC – Relay-based PLC – Microprocessor-based PLC – Input and output modules – Other functional elements – Personal computer as PLC – Programming the PLC – Communication in PLC – Typical applications of PLC – PID control capability in programmable controllers.							
UNIT - II	MODELLING OF DRIVE SYSTEM				(9)		
Mathematical m system – Stabili algorithm using	odeling of a drive system – First order, second order proces ty analysis – Controllability and observability of time inva Z transform – PID algorithms – Design for load changes.	s – Analysis of ariant systems	clos – De	ed-lo sign	op co of co	ontrol ontrol	
UNIT - III DIGITAL PROTECTION					(9)		
Numerical relay Relays algorithn	 Sampling frequency – Digital signal processing – Dig Over current relays, Directional relay, Impedance relay 	ital filtering in v, MHO relay, I	prot Diffe	ectiv renti	e rela al rel	ays – ay.	
UNIT - IV	DC DRIVE PROTECTION				(9)		
Overvoltage pro voltage transient in AC-DC conve protection – Pr Development of	tection of power controllers feeding DC drives: Origin of vest – Delayed commutation – Commutation overlap – Protecter and DC-DC chopper feeding a DC drive – Protection agotection against over speed – Protection against flucture schemes for above types of drive protection.	voltage transier tion against fail gainst failure of ating loads –	nts – lure o fielo Driv	Supp of cor l – Sh e ins	oressi nmut lort c stabil	on of ation ircuit ity –	
UNIT - V	AC DRIVE PROTECTION				(9)		
Protection again acceleration and voltage controlle	ast over-voltage and under-frequency in AC drives – Prot deceleration – Protection against failure of commutation in er feeding AC drives – Protection against over speed.	ection against inverters, cycl	over ocon	curre verte	ent d rs an	ue to d AC	
		То	tal =	45 P	PERI	ODS	

COL	COURSE OUTCOMES:								
At t	At the end of the course, the students will be able to:								
CO	s			Course Or	utcome		Cognitive Level		
СО		Describe the lectrical di	ne progran rives.	nmable logic cor	ntrollers used for	the protection of	Understand		
CO	2 S	ummarize	the mode	ling of the electri	ical drive system		Apply		
CO	3 D	biscuss dif	ferent digi	tal protection rel	ays.		Understand		
CO	4 II	lustrate th	e DC driv	e protection sche	me.		Understand		
CO	5 D	escribe th	e AC driv	e protection sche	eme.		Understand		
	1								
ТЕХ	KT BO	OKS:							
1	Y.G. Seco	Paithanka nd Edition,	r and S.R , 2022.	Bhide, Fundamen	tals of Power Sys	tem Protection, PHI	Learning Pvt. Ltd,		
2	2 Michal P Lucas, Distributed Control Systems, Van Noster and Reinhold Co, New Delhi, Second Edition, 2016.								
REF	FERE	NCES:							
1	Ravi 2022	ndra P. Sir	ngh, Digital	Power System P	rotection, Prentice	-Hall of India Pvt. L	td, Second Edition,		
2	Veda Editi	am Subram on, 2017.	aniam, Elec	ctrical Drive and C	Control, New Age I	nternational (P) Ltd.,	New Delhi, Second		
3	S. C Editi	Chakraborth on,2017.	ny, Gupta	and Bhatnagar,	Power System	Engineering, D.Rai	Publishing, Third		
4	S.B. York	Dewan, G. , Second E	R. Slemon	, and A. Straugher 7.	n, Power semicond	uctor drives, John W	iley and Sons, New		
				Mapping of CO	Os with POs and 1	PSOs			
CO	Os/ PC	Ds	PO1	PO2	PO3	PSO1	PSO2		
	CO1		3	1	-	3	3		
	CO2		3	1	-	3	3		
	CO3		3	1	-	3	3		
	CO4		3	1	-	3	3		
	CO5		3	1	-	3	3		
	Avg.		3	1	-	3	3		
1 - L	low, 2	- Medium,	3 - High						

PF24F05	EMBEDDED SVSTEM DESIGN	Category	L	Т	Р	С			
1 E24E03	E24E05 EMBEDDED SYSTEM DESIGN PEC 3	0	0	3					
PREREQUISIT	TE:								
A strong foundation in electronics is necessary for designing and implementing the hardware components of embedded systems. To build efficient and reliable systems, it's crucial to understand the principles of embedded systems design, including hardware-software co-design and system architecture. Proficiency in languages like C, C++, and assembly is vital for writing efficient code and optimizing system performance.									
OBJECTIVES:									
• To explore the fundamental requirements of embedded systems and the interaction between hardware and software.									
 To illustrate the architecture of a PIC microcontroller and various interfacing circuits. To introduce the architecture of A PM processors and instruction sets. 									
 To muo To acqui 	 To introduce the architecture of ARM processors and instruction sets. To acquire knowledge of the basics of real-time operating systems 								
To provi and case	 To acquire knowledge of the basics of real-time operating systems. To provide an overview of design verification methods that are adopted for embedded system design and case study. 								
UNIT - I	OVERVIEW OF EMBEDDED SYSTEM				(9)				
Embedded systems description, definition, design considerations & requirements – Overview of Embedded system Architecture – Classification of embedded systems – Purpose of the embedded system – Embedded system Design Life Cycle – Major application of the embedded system.									
UNIT - II	PIC MICROCONTROLLER 16F87X				(9)				
Architecture – Features – Resets – Memory Organizations: Program Memory, Data Memory – Instruction Set – Interrupts – I/O Ports – Timers – CCP Modules – Master Synchronous Serial Port (MSSP) – USART – ADC – I ² C.									
UNIT - III	ARM PROCESSORS				(9)				
ARM processor – ARM Archite programming – .	– Processor and memory organization – Data operations – C cture – ARM Programmers model – ARM Development ARM Instruction Set – Thumb instruction set – Embedded	PU Bus config tools – ARM ARM Applicat	urations.	on – . nbly	ARM lang	l Bus juage			
UNIT - IV	REAL-TIME OPERATING SYSTEMS				(9)				
Operating system services – I/O subsystems – Network operating systems – Interrupt Routines in RTOS Environment – RTOS task scheduling models – Interrupt – Performance Metric in scheduling models – IEEE standard POSIX functions for standardization of RTOS – Inter task communication functions – List of Basic functions in a preemptive scheduler – Fifteen-point strategy for synchronization between processors – OS Functions and Tasks – OS security issues – Mobile OS									
UNIT - V	SYSTEM DESIGN TECHNIQUES				(9)				
Design Methodo – Quality Assura In-vehicle comm	logies – Requirement Analysis and Specification – System ance – Case Study: Adaptive cruise control – Emission cont nunication system.	Analysis and A rol system – Na	Archi aviga	tectu tion	re De syste	esign ms –			
		TOTA	L =	45 P	ERI	ODS			

COL	JRSE	OUTCOMES:							
At t	he end	of the course, the s	tudents will be abl	e to:					
CO	Ds		Course O	utcome		Cognitive Level			
CO)1	Illustrate the basic	concepts of embed	dded systems.		Understand			
CO)2	Familiarize the cor	cepts of PIC micr	ocontrollers.		Understand			
CO)3	Elucidate the ARM	processor with v	arious configuration	ons.	Understand			
CO)4	Apply operation of	Apply						
CO)5	Gain knowledge al	out various design	n examples in syst	em design.	Apply			
TEX	T BO	OKS:							
1	Shib	u, S.K.V., Introductio	on to Embedded sys	stem, Tata McGraw	Hill, Second Edition	n, 2018.			
2	2 Arnold S. Berger, Embedded System Design, CMP books, USA, First Edition, 2005.								
REF	REFERENCES:								
1	1 John B Peatman Design with PIC Microcontrollers Prentice Hall of India First Edition 2009								
2	Way	ne Wolf, Computers	as Components: Pr	inciples of Embedd	ed Computing Syste	em Design, Morgan			
	Kauf	man Publishers, Firs	t Edition, 2012.						
3	Steve	e Furber, ARM Syste	m-on-Chip Archite	cture, Addison-Wes	ley Professional, Se	cond Edition, 2010.			
4	Raj H	Kamal, Embedded Sy	stems Architecture,	Programming and I	Design, Tata McGra	w-Hill, New Delhi,			
	Third	1 Edition, 2023.							
			Mapping of CO	Os with POs and P	SOs				
CO)s/ PC	os PO1	PO2	PO3	PSO1	PSO2			
	CO1	3	1	-	1	3			
	CO2	3	1	-	1	3			
	CO3	3	1	-	1	3			
	CO4	3	1	-	1	3			
	CO5	3	1	-	1	3			
	Avg.	3	1	-	1	3			
1 - I	Low, 2	2 - Medium, 3 - Hig	ŗh						

PE24E06 ENERGY STORAGE TECHNOLOGIES Category L PREREQUISITE: PCC 3	Т	Р	С								
	3	0	0	3							
PREREQUISIT A strong founda Familiarity with electrical compo- problems associ	PREREQUISITE: A strong foundation in renewable energy sources such as solar, wind, and hydroelectric power is crucial. Familiarity with Electrical Engineering Principles such as understanding power systems, circuit design, and electrical components that are integral to energy storage systems. strong analytical skills to tackle complex problems associated with energy storage technologies.										
OBJECTIVES: • To unde • To know • To unde • To know • To study	 OBJECTIVES: To understand the fundamentals of energy storage systems. To know about the types and features of thermal storage systems. To understand about various electrical energy storage benefits. To know about various types of fuel cells and analysis. To study alternate energy storage technologies. 										
UNIT - I	INTRODUCTION TO ENERGY STORAGE				(9)						
Emerging needs in energy storage – Characteristics of ESS – Electricity and roles of ESSs – High generation cost during peak-demand periods – Need for continuous and flexible supply – Classification of ESSs – Roles of Electrical storage technologies – Applications.											
UNIT - II	THERMAL STORAGE SYSTEM			(9)							
Thermal storage Pressurized wate storage units – M	Thermal storage – Types – Modeling of thermal storage units – Simple water and rock bed storage system – Pressurized water storage system – Modelling of phase change storage system – Simple units, Packed bed storage units – Modelling using porous medium approach.										
UNIT - III ELECTRICAL ENERGY STORAGE					(9)						
Fundamental constorage density, Manganese diox	ncept of batteries – Measuring of battery performance, char energy density, and safety issues – Types of batteries: – Le ide – Mathematical Modeling for Lead Acid Batteries – Flo	ging and discha ad Acid, Nicke w Batteries.	rging 1-Cao	g of a dmiu	ı batt m, Z	ery, inc-					
UNIT - IV	FUEL CELL				(9)						
Fuel Cell – His Hydrogen air cel – Fuel Cell Ther	tory of Fuel Cell, Principles of Electrochemical Storage - ll, Hydrocarbon air cell, Alkaline fuel cell – Detailed analysi modynamics.	- Types: Hydro s – Advantages	gen and c	oxyg lisad	en co vanta	ells, iges					
UNIT – V	ALTERNATE ENERGY STORAGE TECHNOLOGIE	ES			(9)						
Flywheel, Super Hybrid Storage -	capacitors, Principles & Methods – Applications, Compress – Applications, Pumped Hydro Storage – Applications.	ed air Energy s	torag	e, Co	oncep	ot of					
	TOTAL: 45 PERIODS										

CO	COURSE OUTCOMES:									
At t	he end	l of the course, the st	udents will be abl	le to:						
C	Os		Course O	utcome		Cognitive Level				
CO	01	Describe the key cha systems.	aracteristics that o	define the effective	e energy storage	Understand				
CO	02	Model the different	energy technolog	gies.		Understand				
CO	03	Recognize the appli		Understand						
CO	04	Design and analyze	the energy storag	ge technologies.		Understand				
CO	05	Identify a wide vari practical application	ety of applications.	ons of energy stor	age systems for	Understand				
ТЕУ	KT BO	OKS:								
1	1 James Larminie and Andrew Dicks, 'Fuel cell systems Explained', Wiley publications, 2003.									
2	2 Lunardini. V.J, "Heat Transfer in Cold Climates", John Wiley and Sons 1981.									
REI	FERE	NCES:								
1	Jiuju stora	n Zhang, Lei Zhang, H ge and conversion", T	Iansan Liu, Andy wo Volume Set, V	Sun, Ru-Shi Liu, "I Viley publications, 2	Electrochemical tech 2012.	hnologies for energy				
2	Schn Corp	nidt. F.W. and Willn oration, 1981.	nott. A.J., "Ther	mal Storage and H	Regeneration", Her	nisphere Publishing				
3	Luisa Publi	a F. Cabeza, "Advance shers, 2020.	s in Thermal Energ	gy Storage Systems:	Methods and Appli	cations", Woodhead				
4	Ibrah Publi	im Dinçer and Marc shers, 2021.	A. Rosen, "The	ermal Energy Stora	ge Systems and A	pplications", Wiley				
			Mapping of C	Os with POs and P	SOs					
C	Os/ PC	Os PO1	PO2	PO3	PSO1	PSO2				
	CO1	3	-	1	1	1				
	CO2	3	-	1	3	3				
	CO3	3	-	1	2	2				
	CO4	3	-	1	3	3				
	CO5	3	-	1	3	3				
	Avg.	3	-	1	2	2				
1 - I	Low, 2	- Medium, 3 - High								

DE24E07	MODELING OF ELECTRICAL MACHINES	Category	L	Т	Р	С				
1 E24E07	MODELING OF ELECTRICAL MACHINES	РСС	3	0	0	3				
PREREQUISI	FE:	uita alastroma	anoti	0.00	d oon	trol				
A solid basis in systems in electr software tools, a equations, and c	systems in electrical engineering. Strong mathematical abilities are essential for evaluating power electronics, software tools, and specialized machine knowledge. These include proficiency in algebra, calculus, differential equations, and complex numbers.									
OBJECTIVES										
• To acqu	ire the knowledge of generalized theory of electrical machin	es.								
• To invest	stigate the concepts of reference frame theory.									
• To mode	el the electrical DC machines with voltage. Current and torq	ue equations.		_	_					
• To gain knowledge of the induction machine model in the form of a machine variable and reference variable										
• To deve	lop the synchronous machine model in the form of a machin	e variable and	refere	ence	varia	ble				
UNIT - I	PRINCIPLES OF ELECTRO-MAGNETIC ENERGY	CONVERSIO	N		(9)					
General expression of stored magnetic energy, co-energy and force/torque – Example using single and doubly excited system – Calculation of air gap MMF and per phase machine inductance using physical machine data.										
UNIT - II	REFERENCE FRAME THEORY				(9)					
Static and rotating reference frames – Transformation of variables – Stationary circuit variables transformed to the arbitrary reference frame – Transformation between reference frames – transformation of a balanced set – Balanced steady-state phasor and voltage equations – variables observed from several frames of reference. UNIT - III MODELLING OF DC MACHINES (9)										
Voltage and toq motors – Time o Transformation.	ue equations of DC machines – Dynamic characteristics of domain block diagrams and State equations – Solution of d	permanent maş ynamic characı	gnet a teristi	ind s c by	hunt Lapl	DC lace				
UNIT - IV	MODELLING OF INDUCTION MACHINES				(9)					
Voltage and Tor and toque equa acceleration cha during a three-pl	que Equation in machine variables – Equations of transform tions in arbitrary reference frame variables – Analysis of racteristics – Dynamic performance for load and torque var hase fault – Computer simulation in the arbitrary reference fr	ation for rotor of steady-state of iations – Dyna rame.	circui opera mic p	ts – v tion erfoi	voltag – Fre mane	se se ge				
UNIT - V	SYNCHRONOUS MACHINES				(9)					
Voltage and To frame variables – Dynamic perf stability limit – 0	rque Equation in machine variables – Voltage and Torque (Park equations) – Rotor angle and angle between rotors – A ormance for torque variations- Dynamic performance durin Critical clearing time – computer simulation.	Equations in Analysis of stea ng a three-phas	arbitr ady-st se fau	ary r ate c lt –	efere perat	nce tion ient				
		ΤΟΤΑ	$\mathbf{L} = 4$	5 PE	CRIO	DS				

CO	COURSE OUTCOMES:									
At t	he en	d of th	e course, the st	udents will be abl	e to:					
CO)s			Course Out	come		Cognitive Level			
CO) 1 (Unders	tand the princip	les of electromecha	anical energy conv	ersion.	Understand			
CO) 2 I	Interpro	et the concepts of	of reference frame t	heory.		Evaluate			
CO	3 ^I	Develop the mathematical model of various DC machines using equations and find the dynamic characteristics of transformation in DC machines.					Apply			
со	4	Apply the procedures to develop an Induction machine model in the form of a machine variable and reference variable.					Apply			
со		Apply the procedures to develop a Synchronous machine model in the form of a machine variable and reference variable.					Apply			
ТЕУ	KT BO	OOKS	:							
1	Paul C. Krause, Oleg Wasynczuk and Scott D. Sudhoff, 'Analysis of Electric Machinery and Drive Systems', IEEE Press, Third Edition, 2013.									
2	2 Stephen D Umans, 'Fitzgerald & Kingsley's Electric Machinery', Seventh Edition, 2020.									
REI	FERE	INCES	:							
1	Kris Edit	shnan, ion, In	R., Electric Mo print, 2015.	otor Drives, Mode	ling, Analysis and	l Control, Prentic	e Hall of India, First			
2	Sam Edit	uel Se ion, 20	ely, Electromec)18.	hanical Energy Con	nversion, Tata Mc	Graw Hill Publish	ing Company, Second			
3	Fitz Sixt	gerald, h Editi	A.E., Jr. Charle on, 2002.	es Kingsley, and U	manx D. Stephan,	Electric Machine	ry, Tata McGraw Hill,			
4	IJN	Vagrath	and P Kothari,	Electrical Machine	es, Tata McGraw C	Gill, Fifth Edition,	2017.			
				Mapping of CO)s with POs and l	PSOs				
C	Os/ PO	Os	PO1	PO2	PO3	PSO1	PSO2			
	CO1		2	2	1	-	2			
	CO2		3	2	1	-	2			
	CO3		3	2	2	-	2			
	CO4		3	2	2	-	2			
	CO5		3	2	2	-	2			
	Avg.		2.8	2	1.6	-	2			
1 - I	Low, 2	2 - Mee	lium, 3 - High							

ET24E04 SYSTEM DESIGN USING MICROCONTROLLER	Category	L	Т	Р	С						
E124E04	SISTEM DESIGN USING MICKOCONTROLLER	PCC	3	0	0	3					
	(Common to EST & PED)										
PREREQUIS Students shou exposure to printerfacing, su and communic control technic implementatio	PREREQUISITE: Students should be familiar with memory structures, addressing modes, and instruction sets, with prior exposure to programming in Assembly and C for microcontrollers. A basic understanding of peripheral interfacing, such as ADC/DAC, Flash and EEPROM, along with experience in handling I/O ports, timers, and communication protocols like UART, is essential. Additionally, a grasp of signal generation, motor control techniques, and real-time data acquisition systems is necessary to facilitate the practical design and implementation of control systems using both PIC and ARM microcontrollers.										
 OBJECTIVE To u micros To ga variou To exp PIC m To ma micros 	 To understand the architecture, memory organization, and addressing modes of PIC microcontrollers. To gain proficiency in programming PIC microcontrollers using Assembly and C languages for various embedded applications. To explore the utilization of I/O ports, data conversion techniques, and RAM & ROM allocation in PIC microcontroller-based systems. To master the implementation of timer programming for time-sensitive applications using PIC microcontrollers. 										
• To de MP-L	To develop practical experience in embedded system design through hands-on practice using the MP-LAB development environment for PIC microcontrollers.										
UNIT - I	PIC MICROCONTROLLER				(9)						
Architecture – & C –I/O port	Memory organization – Addressing modes – Instruction set – Data Conversion, RAM & ROM Allocation, Timer programm	PIC programm ming, practice	ning in M	in As 1P-L	ssem AB.	bly					
UNIT - II	ARM ARCHITECTURE			(9)							
Architecture – Pipeline – Inte	Memory organization – Addressing modes – The ARM Prog rrupts– Coprocessors – Interrupt Structure.	grammer's mo	odel -	– Re	giste	rs–					
UNIT - III	PERIPHERALS OF PIC AND ARM MICROCON	FROLLER			(9)						
PIC: ADC, DA – I/O Ports – S	AC and Sensor Interfacing –Flash and EEPROM memories. A SRAM –Timer –UART – Serial Communication with PC – AI	RM: I/O Mer	nory rfacir	– EF ng.	EPRO	DM					
UNIT – IV	ARM MICROCONTROLLER PROGRAMMING				(9)						
ARM General example of Fil	Instruction set – Thumb instruction set –Introduction to DS ters.	SP on ARM -	- Imp	olem	entat	ion					
UNIT - V	DESIGN WITH PIC AND ARM MICROCONTR	OLLERS			(9)						
PIC implementation – Generation of Gate signals for converters and Inverters – Motor Control – Controlling DC/AC appliances – Measurement of frequency – Standalone Data Acquisition System – ARM Implementation – Simple ASM/C programs – Loops – Look up table – Block copy – subroutines – Hamming Code.											

COUR	COURSE OUTCOMES:										
At the	At the end of the course, the students will be able to:										
COs		Course O	outcome		Cognitive Level						
CO1	Describe the basics	s and requirements o	f processor function	al blocks.	Understand						
CO2	Observe the specia	lty of RISC processo	or Architecture.		Apply						
CO3	Incorporate I/O h consumer application	nardware interface	of processor-based	automation for	Apply						
CO4	Incorporate the I/C	software interface of	of a processor with p	eripherals.	Apply						
CO5	Elaborate the recen	nt trends in commerc	cial embedded proces	ssors	Apply						
TEXT	TEXT BOOKS:										
1.	1. Steve Furber, 'ARM system on chip architecture', Addison Wesley, 2010.										
2.	2. Andrew N. Sloss, Dominic Symes, Chris Wright, John Rayfield 'ARM System Developer's Guide Designing and Optimizing System Software', Elsevier, 2007.										
REFE	REFERENCES:										
1.	Muhammad Ali Ma Systems using Asse	zidi, Rolin D. Mcki mbly and C for PIC1	nlay, Danny Causey 8', Pearson Educati	⁷ 'PIC Microcontro on, 2008.	ller and Embedded						
2.	John Iovine, 'PIC M	licrocontroller Proje	ct Book', McGraw H	Hill, 2000.							
3.	ARM Architecture I	Reference Manual, L	PC213x User Manu	al.							
		Mapping of C	COs with POs and F	PSOs							
COs/ POs	PO1	PO2	PO3	PSO1	PSO2						
CO1	-	-	2	-	2						
CO2	1	-	3	-	2						
CO3	-	-	1		2						
CO4	1	-	-	-	2						
CO5	-	-	2	-	2						
Avg.	1	-	2	-	2						

1- Low, 2- Medium, 3- High

(9)

(9)

(9)

(9)

DE24E09	SDECIAL MACHINES	Category	L	Т	Р	С				
PE24E08	SPECIAL MACHINES	INES Category L T P C PCC 3 0 0 3								
PREREQUISIT	PREREQUISITE:									

Students should acquaint themselves with the essential principles of circuits, voltage, current, power, and energy. Understanding magnetic fields, flux, inductance, and electromagnetic induction is crucial. Previous studies have focused on electric machines, including the investigation of DC machines, transformers, induction motors, and synchronous machines. Fundamental understanding of control theory and systems, as it is often applicable to the operation and control of special machines. Familiarity with power electronics is helpful, especially for understanding the drives and control techniques associated with special electrical machines.

OBJECTIVES:

- To explore the operation and types of synchronous reluctance motors.
- To explain the performance and control of stepper motors and their characteristics.
- To provide insights into the theory of operation, power converter and control of switched reluctance motor.
- To disseminate the classification, control and characteristics of permanent magnet synchronous motors.
- To describe the operation and characteristics of permanent magnet brushless DC motors.

UNIT - I	SYNCHRONOUS RELUCTANCE MOTORS	
UNIT - I	SYNCHRONOUS RELUCTANCE MOTORS	

Axial flux permanent magnet machines – Comparison with radial flux machines – Principle of operation – Torque production – Axial flux switched reluctance machine – Topologies and structures – Operating principles – Output equation – Applications.

Constructional features – Principle of operation – Variable reluctance motor – Hybrid motor – Single and multi-stack configurations – Torque equations – Modes of excitation – Characteristics – Drive circuits – Microprocessor control of stepper motors – Closed-loop Control – Applications.

UNIT - III	SWITCHED RELUCTANCE MOTORS (SRM)

Constructional features – Rotary and Linear SRM – Principle of operation – Torque equation – Power Converters and their controllers – Methods of Rotor position sensing – Sensor less operation – Characteristics and Closed loop control – Applications.

UNIT - IV	PERMANENT MAGNET SYNCHRONOUS MOTORS	(9)

Principle of operation – EMF and Torque equations – Armature MMF – Synchronous Reactance – Sine wave motor with practical windings – Phasor diagram – Torque/speed Characteristics – Power controllers – Converter Volt-ampere requirements – Applications.

UNIT - V PERMANENT MAGNET BRUSHLESS DC MOTORS

Commutation in DC motors – Difference between mechanical and electronic commutators – Hall sensors, Optical sensors – Multiphase Brushless motor – Square wave permanent magnet brushless motor drives – Torque and EMF equation – Power Converter Circuits and their controllers – Motor characteristics and control – Applications.

TOTAL = 45 PERIODS

COURSE OUTCOMES: At the end of the course, the students will be able to: COs **Cognitive Level Course Outcome** Understand the features of axial flux machines in comparison with radial **CO1** Understand flux machines and know the principles of synchronous reluctance motors. **CO2** Explain the construction and operating principles of various stepper motors. Understand Understand the working and various characteristics of switched reluctance **CO3** Understand machines. Describe the construction, working principles and characteristics of **CO4** Understand permanent magnet synchronous motor and synchronous reluctance motor. Explain the operation and performance characteristics of permanent magnet **CO5** Understand brushless DC motors. **TEXT BOOKS:** Miller, T.J.E., Brushless permanent magnet and reluctance motor drives, Clarendon Press, Oxford, 1 First Edition, 1993. Kenjo, T., Stepping motors and their microprocessor control, Clarendon Press, Oxford, Second 2 Edition, 1995. **REFERENCE BOOKS:** 1 Berker Bilgin, James Weisheng Jiang, Ali Emadi, Switched reluctance motor drives: fundamentals to applications, CRC Press, First Edition, 2018. 2 Krishnan, R., Electric Motor Drives - Modeling, Analysis and Control, Prentice-Hall of India Pvt. Ltd., New Delhi, First Edition, 2003. 3 Venkatrathnam, K., Special Electrical Machines, CRC Press; First Edition, 2009. Bose, B.K., Modern Power Electronics and AC drives, Prentice-hall of India Pvt. Ltd, First Edition, 4 2008. Mapping of COs with POs and PSOs COs/POs PSO1 **PO1 PO2 PO3** PSO₂ 3 2 3 **CO1** 2 2 3 2 3 2 2 **CO2** 3 2 3 2 2 **CO3** 3 2 3 2 2 **CO4** 3 2 2 2 **CO5** 3 2 3 2 3 2 Avg. 1- Low, 2- Medium, 3- High

PF24F00	PWM TECHNIQUES FOR POWER	Category	L	Т	Р	С	
1 E24E09	CONVERTERS	РСС	3	0	0	3	
PREREQUISITI	E:						
A basic knowled semiconductor de feedback mechan and DC circuits is	ge in power electronics, particularly the principles of vices like MOSFETs and IGBTs is needed. A backgr isms and control loops, is essential for grasping mod required, along with familiarity with Pulse-Width Me	power conversion ound in basic con lulation technique odulation (PWM)	n and trol s. K met	l the theo now hods	opera ry, inc ledge	tion of cluding of AC	
OBJECTIVES:							
• To unders sine trian requireme	stand the operating principles of inverters and analyze agle and third harmonic modulation, for optimizients.	various modulatic ng performance	on teo and	chni out	ques, s put fi	such as iltering	
• To learn focusing or reduction.	the concept and application of Space Vector Mode on the dq0 transformation and the comparison with tra	ulation (SVM) in ditional PWM tec	two hniq	o-lev ues	vel inv for ha	verters, rmonic	
• To explor harmonic	e space vector modulation for three-level inverters, stu optimization, and advanced discontinuous modulation	idying sinusoidal 1 n methods.	refer	ence	modu	ilation,	
• To exami vector app	ne over-modulation techniques and their impact on proaches and harmonic elimination for optimizing inv	inverter performa erter efficiency.	ince,	inc	luding	space	
• To develor and softw	op the ability to implement and optimize modulation are elements of PWM systems for real-world inverter	controllers, focusi applications.	ing c	on bo	oth ha	rdware	
UNIT - I	INVERTER CONTROL STRATEGIES				(9)		
Review of Inverter Inverter Modulat Trapezoidal mod Comparison of S PWM Technique	er Operating Principle – Inverter Switching – Unipo- tion – Different Types – Sine Triangle – Analy- lulation – Third harmonic modulation – Analys- sine Triangle and Third harmonic modulation – O s.	blar – Bipolar – In It is of Sine Tria is of Third harn utput filter requi	nver angle noni rem	ter I e M c m ent	Dead T Todula Todula Tor di	Γime – tion – tion – fferent	
UNIT - II	SPACE VECTOR MODULATION (TWO LEV)	EL INVERTER)			(9)		
Concept of a Space voltage source In vector Modulatio PWM – phase L placement of the Harmonic losses	ce vector – dq0 components of Three-phase sine way verter operated in square wave Mode – Synchronou on (SVM) – Principle of Space Vector Modulation Leg Reference – Naturally Sampled SVM – Anal Zero space vector – Discontinuous PWM – Phase – Single edge SVM – Switched pulse sequence – C	ve source/level – sly Rotating Refe – SVM Compare ytical solution – leg Reference – A omparison of Har	dq0 erenc d to Ha Anal rmor	con ce fra regu rmo ytica nic p	npone ame – ilar sa nic lo al solu erforr	ents for Space ampled osses – ation – nance.	
UNIT - III	SPACE VECTOR MODULATION (THREE-LE INVERTER)	CVEL			(9)		
Topology of a Three Phase Inverter – Three Phase Modulation with Sinusoidal reference – Third harmonic Reference injection – Analytic calculation of Harmonic Losses – Discontinuous Modulation – Triple carrier Ratio and Subharmonic Space Vector PWM – Multilevel Converter – Optimized Space Vector Sequence – Modulation for selecting switch closing state – Decomposition Methods – Hexagonal Co-ordinary System – Optimal Space Vector position within a switching period – Discontinuous Modulation in Multilevel Inverter.							

UNIT - I	V	OVER MODUL OF INVERTER	ATION AND PR	OGRAMMED M	ODULATION	(9)		
The over modulation Region – Naturally Sampled over modulation of one phase leg of an Inverter – Regular Sampled over modulation of one phase leg of an Inverter – Naturally Sampled over modulation of single and three phase Inverter – PWM controller gain during over modulation – Space Vector approach to over modulation – Optimized space vector Modulation – Harmonic elimination PWM – Performance index for optimality – optimum PWM – Minimum loss PWM.								
UNIT - V	V	IMPLEMENTA	TION OF MODU	LATION CONT	ROLLER	(9)		
Elements Power su process Impleme	Elements of a PWM converter system – VSI Power Conversion stage – Gate Drive Interface – Controller Power supply – I/O conditioning circuitry – PWM controller. Hardware Implementation of the PWM process – Analog versus digital Implementation – Digital Timer Logic Structure. PWM software Implementation – Background software – Calculation of the PWM Timing Intervals.							
COUDS		MES.			ТОТА	L = 45 PERIODS		
COURS		UNIES:						
At the er	nd of the	course, the stude	nts will be able to:			Comitivo Loval		
	Decorri	be the control stret	acias of inventors			Lindomstond		
	Implan	pert the space yest	or modulation in t	vo loval invertors		Apply		
	Analyz	ze the space vector	modulation in three	e level inverters		Apply		
CO3	Enligh	ten the programme	d modulation of th	e inverter		Understand		
C04	Impler	ment the modulation	n controllers	e mverter.		Understand		
TEVT D		nent the modulatio	in controllers.			Understand		
IEAI D	obome I	Holmes D and	Thomas A Lino	Pulse Width M	adulation for P	ower Converters		
1 Pri	inciples a	and Practice, IEEE	Press, 2003.			ower converters-		
2 Bla Dr	aabjerg. ive, IEE	F., Pedersen, J.K E Trans. on Indust	., Thoegersen, P. rial Electronics, ve	, Improved Modu ol.44, no.1, pp.87-	lation Technique 95, Feb.1997.	es for PWM-VSI		
REFERI	ENCE B	OOKS:						
1 No Tra	onert, R. ans. on I	and Wu, R.S., Imp ndustry Applicatio	proved three-phase ons. Vol.1A, 20, no	e pulse width mod 0.5. pp.1224-1228.	ulation for over : Sep./Oct. 1985.	modulation, IEEE		
2 Bo	ys, J.T.,	Handley, P.G., H	armonic analysis	of space vector m	odulated PWM	waveforms, IEEE		
3 Ce	lanovic,	N., Boroyevich, I	D., Comprehensive	e study of neutral-	point voltage bala	ancing problem in		
	ee-pilase	N	Tapping of COs w	ith POs and PSOs	s	-041, 2001.		
COs/	POs	PO1	PO2	PO3	PSO1	PSO2		
CO)1	3	2	2	2	2		
CO	02	3	2	2	2	2		
CO	03	3	2	2	2	2		
CO)4	3	2	2	2	2		
CO)5	3	2	2	2	2		
Av	g.	3	2	2	2	2		
1- Low, 2- Medium, 3- High								

PE24E10	DE24E10 DOWED OUAL ITY MANACEMENT Category L					С			
1 E24E10	TOWER QUALITT MANAGEMENT	PCC	3	0	0	3			
PREREQUISIT	PREREQUISITE:								
Students should voltage fluctuation power analyzers techniques, inclu	Students should be familiar with a basic understanding of electrical systems and common power issues like voltage fluctuations and harmonics. Familiarity with fundamental measurement tools such as multimeters and power analyzers is important for identifying problems. Knowledge of basic power quality improvement techniques, including proper grounding and filtering, is essential.								
OBJECTIVES:									
• To impairs issues ar	art comprehensive knowledge of fundamental concepts und their implications in electrical systems	underlying dive	erse	pow	er qu	ality			
• To under	rstand and mitigate the impacts of various Non-Linear load	ds and issues.							
• To equip quantify	p students with the fundamentals in analyzing electrica , and address power quality issues	l system para	mete	rs to	ideı	ntify,			
• To evalut system p	nate power quality disturbances and implement traditional performance and reliability.	solutions for in	npro	ving	elect	trical			
• To enhance consister	nce the stability and efficiency of electrical systems by mit nt power quality.	tigating disturb	ance	s and	lens	uring			
UNIT - I	INTRODUCTION				(9)				
Characterization of Electric Power Quality: Transients, short duration and long duration voltage variations, Voltage imbalance, waveform distortion, Voltage fluctuations, Power frequency variation, Power acceptability curves – power quality problems: poor load power factor, Non-linear and unbalanced loads, DC offset in loads, Notching in load voltage, Disturbance in supply voltage – Power quality standards									
UNIT - II	NON- LINEAR LOADS				(9)				
Single phase an SMPS devices,	d Three phase AC-DC converters, Battery chargers, Ar Adjustable speed drives.	rc furnaces, Fl	uore	scen	t ligh	iting,			
UNIT - III	POWER QUALITY MONITORING				(9)				
Monitoring and (harmonics and – quality measur Applications of	diagnostic techniques for various power quality proble voltage sag) problems by mathematical simulation tools - rement equipment – harmonic/spectrum analyzer – flick expert systems for power quality monitoring.	ms – modelin - power line di er meters – dis	g of sturt sturb	pow bance ance	er qu e ana anal	iality lyzer yzer.			
UNIT - IV	ANALYSIS AND CONVENTIONAL MITIGATIO	N METHODS	5		(9)				
Analysis of po Instantaneous sy On–line extracti Analysis of volt problem: Open sag reduction.	Analysis of power outages, Analysis of unbalance: Symmetrical components of phasor quantities, Instantaneous symmetrical components, Instantaneous real and reactive powers, Analysis of distortion: On–line extraction of fundamental sequence components from measured samples – Harmonic indices – Analysis of voltage flicker, Reduced duration and customer impact of outages, Classical load balancing problem: Open loop balancing, Closed loop balancing, current balancing, Harmonic reduction, Voltage sag reduction.								
UNIT - V	POWER QUALITY IMPROVEMENT				(9)				
Utility-Customer interface – Harmonic filters: passive, Active and hybrid filters – Custom power devices: Network reconfiguring Devices, Load compensation using DSTATCOM, Voltage regulation using DSTATCOM, protecting sensitive loads using DVR, UPQC – control strategies: P-Q theory, Synchronous detection method – Custom power park – Status of application of custom power devices.									
		ΤΟΤΑ	L =	45 P	ERI	ODS			

COURSE OUTCOMES:								
At the end of the course, the students will be able to:								
COs Course Outcome Cognitive Level								
CO	D1 Su	mmarize the various	Power quality issue	es.		Remember		
CO	D2 Id	entify the various No	n-Linear loads and	issues.		Apply		
CO	D3 E	plain the monitoring	and diagnostic tech	nniques for power of	uality issues.	Remember		
CO	D4 A	nalyze the Mitigation	methods for power	quality issues.		Understand		
CO)5 D	escribe the various po	ower quality improv	ement methods.		Remember		
	·				I.			
TEX	T BOO	KS:						
1	Roger. System	C. Dugan, Mark. F. s Ouality'. McGraw	McGranagham, S Hill, Second Editi	urya Santosoamd	H.Wayne Beaty,	Electrical Power		
2	Arinda Publisl	m Ghosh, 'Power Q ers, First Edition, 20	uality Enhancemer 011.	nt Using Custom F	ower Devices', K	Lluwer Academic		
REF	TERENC	ES:						
1	Heydt,	G.T., 'Electric Powe	er Quality', Stars in	n Circle Publicatio	ns, Second Editio	n, 1994.		
2	Dugga	n, R.C., 'Power Qua	lity', IEEE Press S	eries on Power, Th	nird Edition, 2010			
3	Arrilla	ga, J., Watson, N.R.,	'Power system ha	rmonics', Wiley P	ublication, Secon	d Edition, 2012.		
4	Derek	A. Paice, 'Power ele	ctronic converter h	armonics', IEEE I	Press, Second Edi	tion, 2012.		
			Mapping of COs v	with POs and PSO	S			
C	Os/ POs	PO1	PO2	PO3	PSO1	PSO2		
	CO1	3	2	-	3	2		
	CO2	3	2	-	3	2		
	CO3	3	2	1	3	2		
	CO4	3	2	1	3	2		
CO5 3 2 1 3 2								

1- Low, 2- Medium, 3- High

3

Avg.

2

1

3

2

DE94611	CVCTEM THEODV	Category	L	Т	Р	С		
Г Е24Е11	SI SI ENI I HEUKY	PCC	3	0	0	3		
PE24E11 SYSTEM THEORY PCC 3 PREREQUISITE: Sound skill in basic mathematics like Algebra, Calculus, Linear Algebra. Basic statistical important for analyzing data and understanding system performance. Probability theory helps and predicting system behaviors under uncertainty. Engineering fundamentals like Control Signal Processing are crucial for signal processing and analysis in the system. Basic logic a provide a foundation for understanding formal systems and their properties. OBJECTIVES: • To educate on modeling and representing systems in state variable form • To gain knowledge about time variant and invariant case controllability and observability. • To classify non–linearities and examine stability analysis of systems in the sense of theory. • To develop ability on modal concepts, design of state, output feedback controllers and UNIT - I						3 are ing and ory w's rs.		
Limitations of c linear time-inva Transfer functio and MIMO syst	Limitations of classical control theory – Concepts of state, state variables and state model – State model for linear time-invariant systems: State-space representation using physical, phase and canonical variables - Transfer function from state model – State variable formulation of SISO systems: Buck and boost converter and MIMO systems – Non-uniqueness of state model.							
UNIT - II	SOLUTION OF STATE EQUATION				(9)			
Existence and u Linear time-var values and Eige	iniqueness of solutions to Continuous-time state equation ying state equations – Evaluation of matrix exponential – n vectors.	s – Solution o System modes	f No s – R	n-Lir tole c	near of Ei	and gen		
UNIT - III	CONTROLLABILITY AND OBSERVABILITY				(9)			
Definitions - Ka pole-zero cance and Invariant ca	alman's and Gilbert's tests - Controllable and observable plation on controllability and observability – Test for contin se – Output controllability.	phase variable uous-time syste	form ems:	ıs - E Time	Effec e vari	t of iant		
UNIT - IV	STABILTY ANALYSIS				(9)			
Introduction – Stability in the sense of Lyapunov – BIBO Stability – Stability of LTI Systems – Equilibrium Stability of Nonlinear Continuous Time Autonomous Systems – The Direct Method of Lyapunov and the Linear Continuous Time Autonomous Systems – Finding Lyapunov Functions for Nonlinear Continuous Time Autonomous Systems – Krasovskii and Variable-Gradient Method.								
UNIT - V	MODAL ANALYSIS				(9)			
Introduction – C State Feedback SISO and MIM	Controllable and Observable Companion Forms– SISO and on Controllability and Observability – Pole Placement de O Systems – Design of Full Order and Reduced Order Obs	MIMO Systen sign by State F ervers for SISC	ns – ' Feedt) Sys	The H back	Effec for b	t of oth		
TOTAL = 45 PERIODS								

COURSE OUTCOMES:										
At the end of the course, the students will be able to:										
CO	s		Course Ou	ıtcome		Cognitive Level				
CO	Model the physical systems in terms of mathematical models for easier analysis.					Apply				
CO	2	Provide solutions to s	state equations using	different techniqu	es.	Apply				
CO	3	Analyze the system's	controllability and c	bservability.		Analyze				
CO	4	Analyze the stability	of the system using	the Lyapunov theo	ry.	Analyze				
CO	5	Perform Modal analy	sis of controller and	observer in a state	space form.	Analyze				
TEX	XT B	OOKS:								
1	Goj	pal, M., 'Modern Cor	ntrol System Theory'	, New Age Interna	tional, Fourth Editio	n, 2005.				
2	Kat	suhiko Ogata, Moder	n Control Engineeri	ng, Pearson, New I	Delhi, Fifth Edition,	2009.				
REI	FERI	ENCES:								
1	Goj Nev	oal M, 'Digital Contr w Delhi, India, Fourth	ol and State Variable DEdition, 2017.	e Methods', McGra	w-Hill Publishing C	ompany Limited,				
2	Ber	ijamin C Kuo, 'Autor	natic Control System	ns', John Wiley & S	Sons, Inc., Delhi, Nii	nth Edition, 2014.				
3	Buł	onicki, Z., 'Modern C	Control Theory', Spri	nger, First Edition,	2005.					
4	Noi 201	rman S Nise, 'Nise's 8.	Control Systems Eng	gineering', John W	iley & Sons, Inc, De	elhi, First Edition,				
			Mapping of CO	s with POs and P	SOs					
C P	Os/ 'Os	PO1	PO2	PO3	PSO1	PSO2				
С	201	3	2	2	3	2				
C	202	3	2	2	3	2				
C	203	3	2	2	3	2				
C	04	3	2	2	3	2				
C	205	3	2	2	3	2				
A	vg.	3	2	2	3	2				
1- L	1- Low, 2- Medium, 3- High									

		Category	L	Т	Р	С			
PE24E12	INDUSTRIAL ROBOTICS	PCC	3	0	0	3			
PREREQUISITE	PREREQUISITE:								
Students should have a basic knowledge of mechanics, kinematics, dynamics, and materials science, which are essential for understanding the physical structure and movement of robots. Knowledge of control theory, including feedback systems, PID controllers, and stability analysis, is crucial for understanding how robots are controlled. Familiarity with electrical circuits, sensors, actuators, and signal processing, as these components are integral to robot operation									
OBJECTIVES:									
• To unders underlying	stand and articulate the fundamental principles of g physical laws, mechanical structures, and various rob	robot technolo ot configuration	gy, s.	inclu	uding	the			
• To equip systems, p	students with the knowledge and skills to study and ower sources, and sensor technologies.	l illustrate diffe	erent	rob	otic d	rive			
• To dissem effector m	inate the design concepts and configurations of robot echanisms and their functions in robotic systems.	ic manipulators,	grip	opers	s, and	end			
To provid programm	le a foundational understanding of robot kinematics ing languages, and introduce key concepts of path plan	s, familiarize th ning and robotic	nem e mot	with ion	n relev strateg	vant gies.			
• To expose industries	e students to several robotics applications in manu and investigate AI technology that might improve robo	facturing and notic capabilities.	10n-1	nanı	ufactu	ring			
UNIT - I	INTRODUCTION TO ROBOTICS				(9)				
Robotics and Aut Development – A Robot Technolog Dynamic Stabiliza	tomation – Introduction to Robotics, Definition and simov's Laws of Robotics – Complete Classification y – Degrees of Freedom – Configurations and their tion of Robotics – Industrial applications of robot.	Origin of Rob of Robots – Fi Relative Merit	ootics unda ts an	s – men d D	Histor tals al emeri	rical pout ts –			
UNIT - II	POWER SOURCES AND SENSORS				(9)				
Types of Drive Determination of I Micro Machines in and Intelligent Ser	Systems – Hydraulic, Pneumatic and Electric Driv HP of Motor and Gearing Ratio – Variable Speed Arra n Robotics – Machine Vision – Ranging, Laser, Acous nsors Definition and Use.	ves Block Diag angements – Par tic, Magnetic, F	gram th De Tiber	Ap etern Opt	proac ninatio ic, Tao	h – on – ctile			
UNIT - III	MANIPULATORS AND GRIPPERS			(9)					
General Descripti Manipulator Dyna Effectors – Mecha	on of Robot Manipulator – Construction of Manipumics and Force Control – Electronics and Pneumatic Manism of Gripping – U Various Types of Grippers – December 2015	ulators – Manij Ianipulator Con sign Considerat	pulat trol (ions.	or N Circ	Aotior uits –	ıs – End			
UNIT - IV	KINEMATICS AND PATH PLANNING				(9)				
Robot kinematics - Problem – Multip Languages.	Robot kinematics – Kinematic Equations, Forward and Inverse Kinematics – Solution of Inverse Kinematics Problem – Multiple Solution Jacobian Work Envelope – Hill Climbing Techniques – Robot Programming Languages.								
UNIT - V	APPLICATIONS				(9)				
Selection of Robot – Robot Applications in Industry – Design a Modern Robot for Manufacturing and Non- Manufacturing Industry – Robot Cell Design – Introduction to Artificial Intelligence (AI) – AI techniques, Need and application of AI – New trends and recent updates in robotics.									
		ТОТА	L =	45 P	PERIC	DS			

COURSE OUTCOMES:								
At th	e end of	the cou	rse, the stude	nts will be able to	:			
CO	COs Course Outcome Cognitive Level							itive Level
СО	1 Ex rot	plain the	robot techno gurations.	logy as their funda	amental principles	, laws and	U	Inderstand
CO	2 Illu ser	strate th sors to c	e various driv ontrol the rob	e systems, power ots.	sources and the c	oncepts of	τ	Inderstand
со	3 Ou eff	tline the ector me	e design conf chanisms in ro	igurations of man bots.	ipulators, gripper	s and end	τ	Inderstand
СО	•4 Ou pat	tline the h plannin	robot kinemating for robotics	ics, programming	language and the c	concepts of	U	Inderstand
СО	5 De ma	scribe the	e wide range o ing sectors and	f robotic applicatio 1 AI technology in	ns of manufacturir robotics.	ng and non-	τ	Inderstand
	ł							
TEX	T BOO	KS:						
1	Mikell Singap	P. Groo ore, First	over, Weiss C t Edition, 1996	G.M., Nagel R.N., 5.	Odraj N.G., 'In	dustrial Rol	potics',	McGraw Hill
2	Saha, S	S.K., Intr	oduction to Re	botics, TATA Mc	Graw Hills Educat	tion, Second	Editio	n, 2014.
REF	ERENC	E BOOI	KS:					
1	Asitava Edition	a Ghosh 1, 2006.	al, Robotics:	Fundamental conc	cepts and analysis	s, Oxford U	Iniversi	ty Press, First
2	Deb S.	R., Robo	tics Technolog	gy and Flexible Au	tomation, John W	iley, USA, S	Second	Edition, 2010.
3	Klafter Hall of	R.D., Cl India, N	himielewski T lew Delhi, Firs	.A., Negin M., Rob st Edition, 1994.	otic Engineering -	An Integrat	ed App	roach, Prentice
4	Niku, S Editior	S.B., Intro 1, 2019.	oduction to Ro	botics: Analysis, C	Control, Applicatio	ns, John Wil	ley & S	ons Ltd., Third
			Μ	apping of COs wit	th POs and PSOs			
C	Os/ POs		PO1	PO2	PO3	PSO1	l	PSO2
	CO1		3	2	3	2		2
	CO2		3	2	3	2		2
	CO3		3	2	3	2		2
	CO4		3	2	3	2		2
	CO5		3	2	3	2		2
	Avg.		3	2	3	2		2
1- Lo	1- Low, 2- Medium, 3- High							

(9)

(9)

(9)

(9)

PF74F13	ADVANCED DIGITAL SIGNAL PROCESSING	Category	L	Т	Р	С
1 124113		PCC	3	0	0	3

PREREQUISITE:

To effectively grasp the topics covered in this syllabus, students should have a foundational understanding of key concepts in probability, random processes, and digital signal processing (DSP). A background in basic probability and statistics is essential for understanding discrete random processes, ensemble averages, and correlation functions. Familiarity with signals and systems, including the analysis of both continuous and discrete-time signals, Fourier transforms, and filter design, is crucial for understanding spectral estimation and filtering techniques. Additionally, knowledge of linear algebra, particularly in solving linear equations and working with matrices, is necessary for topics such as linear prediction and adaptive filtering.

OBJECTIVES:

- To provide with a solid foundation in the theory and application of discrete random processes, including stationary processes, correlation, and ergodic properties, enabling them to interpret random signals in various contexts.
- To introduce the various spectrum estimation methods, including traditional techniques and advanced models such as AR, MA, and ARMA, equipping them with the tools needed to accurately estimate the power spectrum of discrete signals.
- To impart the principles and applications of linear prediction, including forward and backward prediction methods and the implementation of Wiener filters for signal prediction and filtering.
- To familiarize with the concepts and applications of adaptive filtering, focusing on algorithms such as the LMS and RLS, and their use in real-world applications like noise cancellation, echo cancellation, and channel equalization.
- To understand the mathematical and practical aspects of multirate digital signal processing, including sampling rate conversion, interpolation, decimation, and the design of efficient filter structures for various digital signal processing applications.

UNIT - I DISCRETE RANDOM SIGNAL PROCESSING

Discrete random process – stationary process – ensemble averages – auto correlation – auto covariance matrices – mean ergodic process and correlation – ergodic process – Parseval's theorem – Wiener Khin chine relation – power density spectrum – low pass and high pass filters.

UNIT - II SPECTRUM ESTIMATION AND ANALYSIS

Principles – Traditional methods: pitfalls, windowing, periodogram, modified periodogram, Blackman – Tukey method – fast correlation method – AR model – Yule-Walker method – Burg method – MA model – ARMA model.

UNIT - III LINEAR PREDICTION

Forward and backward predictions – Solution of the normal equations – Levinson – Durbin Algorithms – Least mean squared error criterion – FIR Wiener filter and Wiener IIR filters – Wiener filter for filtering and prediction.

UNIT - IV ADAPTIVE FILTER

Concepts of adaptive filter – FIR adaptive filters – Newton's steepest descent method – Adaptive filter based on steepest descent method – Widrow Hoff LMS adaptive algorithm – Adaptive channel equalization – Adaptive echo chancellor – Adaptive noise cancellation – RLS Adaptive filters – Exponentially weighted RLS – Sliding window RLS – Simplified HR LMS adaptive filter.

UNIT - V MULTIRA

MULTIRATE DIGITAL SIGNAL PROCESSING

(9)

Mathematical description of sampling rate – Interpolation and Decimation by integer factor – Sampling rate conversion by rational factor – Filter design for sampling rate conversion: direct form FIR structures, Polyphase structures, time-variant structures – Multistage implementation of multirate system – Applications – High-quality analog to digital conversion for digital audio, efficient implementation of narrowband digital filters.									
					ТОТ	AL = 45 PERIODS			
COL	IRSE C	OUTCOMES:							
At th	e end o	of the course, the s	tudents will be ab	le to:					
CO	s Co	Course Outcome Cognitive Level							
CO	I aut	Characterize discrete random processes using statistical measures such as autocorrelation, autocovariance, and power density spectrum, applying these Understand concepts to practical signal processing problems.							
CO	Eva 2 mo in c	aluating various sp del-based approach lifferent scenarios.	ectrum estimation les, to accurately de	methods, includin etermine the spect	g periodograms and ral content of signals	Apply			
CO	3 Sol the	ve linear prediction se techniques to filt	models using algo er and predict disc	rithms like Levins rete-time signals e	on-Durbin, applying	Apply			
CO	4 filte sup	sign adaptive filters ers to solve com pression, and signa	s using algorithms s plex problems in l equalization.	such as LMS and adaptive noise	RLS, applying these cancellation, echo	Apply			
CO	CO5Implement multi-rate digital signal processing systems, including sampling rate converters and polyphase filter structures, and apply these systems to improve digital audio processing and narrowband filter design.Apply					Apply			
TEX	т вос	OKS							
1	Monso Secon	on H. Hayes, Stati d Edition, 2009.	stical Digital Sigr	al Processing an	d Modeling, Wiley	India Pvt. Limited,			
2	John Applic	G. Proakis, Dimit cations, Pearson Ed	tris G.Manolakis, lucation India, Fou	Digital Signal l rth Edition, 2014.	Processing: Principle	es Algorithms and			
REFE	RENCES	S BOOKS:							
3	Emma Wesle	nuel C. Ifeachor, E y publishing comp	Barrie N. Jervis, Di	gital Signal Proce n, 2002.	ssing - A Practical A	pproach, Addison –			
4	Sanjit Delhi,	Kumar Mitra., Dig Fourth Edition, 20	ital Signal Processi 11.	ing - A computer-	based approach, Tata	McGraw Hill, New			
5	Saeed	V. Vaseghi, Advar	nced Signal Proces	sing and Digital N	Noise Reduction, Wil	ey Teubner, 2013.			
			Mapping of C	Os with POs and	PSOs				
COs	COs/ POsPO1PO2PO3PSO1					PSO2			
CO1 3 - 2 2 3									
CO2 3 - 2 2 3									
CO3		3	-	2	2	3			
C	04	3	-	2	2	3			
C	05	3	-	2	2	3			
A	vg.	3	-	2	2	3			
1- Lo	1- Low, 2- Medium, 3- High								

PE24E14	POWER ELECTRONICS IN WIND AND SOLAR	Category	L	Т	Р	С			
	POWER CONVERSION		3	0	0	3			
PREREQUISI	ГЕ:								
A solid grasp of power electronics is vital for converting renewable energy sources into usable electrical energy. Knowledge of electrical machines is important as they are often integral to renewable energy systems. Knowledge about photovoltaic cells, modules, arrays, and system configurations including grid-tied vs. off- grid systems.									
OBJECTIVES									
• To analy and rene	• To analyze the trends in global energy consumption and focusing on the availability of conventional and renewable energy sources.								
• To unde	rstand the fundamental principles and characteristics of sola	r energy.							
• To deve	lop a robust solar photovoltaic system that maximizes efficient	ency, reliability	, and	adap	otabil	ity			
• To anal strategie	yze and synthesize the operational principles, performates of wind energy.	nce characteris	stics,	and	con	trol			
• To unde energy c	rstand the both stand-alone operations and grid integration streen version technologies	ategies for diffe	rent	types	s of w	vind			
UNIT - I	ENERGY SOURCES				(9)				
Trends in energ	gy consumption – World energy scenario – Energy so	urces and thei	r av	ailab	ility	_			
Conventional an	d renewable sources - Emerging energy technologies - Sola	ar potential in I	ndia	-Sola	ar cel	ls			
and their charac	teristics – Nature of Wind – Wind survey in India – Power	in the wind – N	/laxir	num	Pow	er			
					(0)				
UNIT - II	SOLAR PHOTOVOLTAICS				(9)				
Solar Energy: So	In and Earth – Basic Characteristics of solar radiation – Anglar Radiation Empirically – Equivalent circuit of PV Cell – I ve of cell – Impact of Temperature and Insolation on I-V christics – Bypass diode – Blocking diode.	gle of sunrays o Photovoltaic cel naracteristics – S	n sol l cha Shadi	ar co racte ing Ii	ollect ristic mpac	or es: ets			
UNIT - III	PHOTOVOLTAIC SYSTEM DESIGN				(9)				
Block diagram of solar photovoltaic system: Line commutated converters (inversion mode) – Boost and buck- boost converters – Selection of inverter, battery sizing, array sizing – PV systems classification – Standalone PV systems – Grid-tied and grid interactive inverters – Grid connection issues.									
UNIT - IV	WIND ENERGY CONVERSION				(9)				
Review of reference theory fundamentals – principle of operation and analysis of IG, PMSG, SCIG and DFIG, Power Converters – Three Phase AC voltage controllers – AC-DC-AC converters, Cyclo converter – PWM Inverters – Grid Interactive Inverters – Matrix Converters									
UNIT – V	ANALYSIS OF WIND SYSTEMS				(9)				
Stand-alone operation of fixed and variable speed wind energy conversion systems – Grid connection Issues – Grid integrated PMSG and SCIG Based WECS.									
TOTAL = 45 PERIODS									

COU	JRSE OUTCOMES:					
At tl	ne end of the course, tl	ne students will be	able to:			
CC	Ds	Cognitive Level				
CC	Describe the variable aspects of energy	Remember				
CC	Develop a stand- point tracking in	alone photo voltaic the PV system.	system and impleme	ent maximum power	Remember	
CC	Design a stand-al	one and Grid-conne	ected PV system.		Understand	
CC	Explain the oper converters.	ation of the wind e	nergy conversion sy	vstem with different	Remember	
CC	05 Analyze the wind	l system with differ	ent wind energy con	version systems.	Understand	
ТЕХ	T BOOKS:					
1	S.N. Bhadra, D. Kasth	a, S. Banerjee 'Win	d Electrical System	s', Oxford University	Press, 2009.	
2	Rashid, M.H., 'Power	Electronics Handbo	ook', Academic Pres	ss, Fourth Edition, 20	17.	
REF	ERENCES:					
1	Rai. G.D, 'Solar energ	y utilization', Khan	na publishes 1993.			
2	Chetan Singh Solank Learning Private Limi	i, 'Solar Photovol ted, 2012.	taics: Fundamental	s, Technologies and	Applications', PHI	
3	John Twideu and Ton	y Weir, 'Renewal E	nergy Resources', B	SP Publications, 200	6.	
4	B.H.Khan, 'Non-conv	entional Energy sou	urces', McGraw-Hil	l, Second Edition, 20	09.	
	,	Mapping of	f COs with POs and	d PSOs		
COs POs	PO1	PO2	PO3	PSO1	PSO2	
COI	3	-	-	1	1	
CO2	3	-	-	2	2	
CO3	3	-	-	3	3	
CO4	3	-	-	2	2	
COS	3	-	-	3	3	
Avg	. 3	•	-	2.2	2.2	
1- Lo	ow, 2- Medium, 3- High	1				

28

DF9/F15	ELECTRIC VEHICLES	Category	L	Т	Р	С		
1 124113	ELECTRIC VEHICLES	PEC	3	0	0	3		
PREREQUISITE:								
Strong foundation in basic automotive knowledge and electrical circuits and components. Familiarity with the types of batteries used in hybrids, such as lithium-ion and nickel-metal hydride, and their operation. Basic understanding of control systems and algorithms used in managing hybrid power trains.								
OBJECTIVES	:							
• To unde	erstand the basic concepts of hybrid vehicles and vehicle of	dynamics.						
• To expl topolog	ain plug-in hybrid vehicle architecture, design and comp ies used in hybrid vehicles.	oonent sizing a	nd tł	ne dr	ive tr	ain		
• To exam	nine various electric drives suitable for hybrid electric vel	nicles.						
• To unde	erstand the electric propulsion unit used in hybrid vehicles	8.						
• To disc manage	cuss different energy storage technologies used for hy ment.	brid vehicles	and	their	r pov	wer		
UNIT - I	HYBRID ELECTRIC VEHICLES				(9)			
Impact of different transportation technologies on environment and energy supply – Air pollution and global warming – History of hybrid electric and fuel cell vehicles – Vehicle motion – Dynamic equations for the vehicle – vehicle power plant and transmission characteristics – Fuel economy characteristics of internal combustion engine.								
UNIT - II	HYBRID POWER TRAIN TOPOLOGY AND DYN	AMICS			(9)			
Basic architectu estimations – S drive train – H components for	re – Analysis of drive trains and power flows – Drive cycle izing of components for different hybrid drive train topo Fuel efficiency estimations and wheel-to-wheel fuel e different electric drive-train topologies.	e implications a logies – Topo fficiency anal	ınd fu logie ysis	uel ef s for – Si	ficier elec izing	ncy tric of		
UNIT - III ELECTRIC PROPULSION UNIT					(9)			
Electric drives u drives – Permar traction motors,	sed in HEV/EVs – Classifications and characteristics – DO nent magnet BLDC motor drives – Switched Reluctance I inverters and efficiency maps.	C motor drives Motor (SRM) o	– Ind drive	luctio s – L	on mo .osse	otor s in		
UNIT - IV	SIZING OF DRIVES				(9)			
Sizing the power electronics based on switch technology – Switching frequency and ripple capacitor design – Selection of energy storage technology – Matching the electric drive and ICE – Transmission selection and gear step selection – Sizing the propulsion motor.								
UNIT - V VEHICLE POWER MANAGEMENT AND ENERGY STORAGE SYSTEMS					(9)			
Energy storage, battery-based energy storage and simplified models of battery – Fuel cells – Super capacitor – Flywheels and their modeling for energy storage in EHV/BEV – Energy management strategies and its general architecture – Rule and optimization-based energy management strategies.								
TOTAL = 45 PERIODS								

At the end of the course, the students will be able to:								
CO	s	Course Outcome			Cognitive Level			
CO	1 E	Elucidate the hybrid electric vehicles and their characteristics.			Understand			
со	2 I a	llustrate the different nalysis.	ent hybrid power t	train topology and	fuel efficiency	Understand		
CO	3 E	3 Enlighten the electric propulsion system and the drive motor control system.				Understand		
CO	D4 Explain the selection of energy storage technology and the sizing of Understandrives.					Understand		
CO	5 [¹ s	Describe the ener ystems.	gy management	strategies and	energy storage	Understand		
TEX	KT BO	DOKS:						
1	Iqba 202	l Hussein, 'Electric 1.	and Hybrid Vehic	les: Design Fundan	nentals', CRC Pres	s, Second Edition,		
2	Meh Fuel	rdad Ehsani, Yimin cell vehicles: Fund	Gao, Sebatien Gay amentals, Theory ar	y and Ali Emadi, 'N nd Design', CRC Pro	Modern Electric, H ess, First Edition, 2	ybrid Electric, and 009.		
REF	FERE	NCES:						
1	Jam Seco	es Larminie and Joh ond Edition, 2012.	n Lowry, 'Electric '	Vehicle Technology	Explained', John	Wiley & Sons Ltd,		
2	Sano	leep Dhameja, 'Elec	tric Vehicle Battery	Systems', Butterwo	orth – Heinemann, l	First Edition, 2015.		
3	Ron	ald K Jurgen, 'Elect	ric and Hybrid-Elec	etric Vehicles', SAE	, First Edition, 201	1.		
4	Ron Heir	Hodkinson and Jo nemann, First Edition	hn Fenton, 'Light n, 2009.	Weight Electric/H	ybrid Vehicle Des	ign', Butterworth-		
			Mapping of CO	Os with POs and P	SOs			
CO PO	Os/ Os	PO1	PO2	PO3	PSO1	PSO2		
C	01	2	-	2	3	2		
CO2		3	-	2	3	2		
C	03	2	-	2	3	2		
C	04	2	-	2	2	2		
C	05	3	-	2	3	3		
Av	vg.	2.4	-	2	2.8	2.2		

1- Low, 2- Medium, 3- High