

M. TECH - INFORMATION TECHNOLOGY Curriculum & Syllabus for Semester I and II

REGULATIONS 2024 (Academic Year 2024-25 Onwards)

K.S.R. COLLEGE OF ENGINEERING: TIRUCHENGODE - 637 215

(Autonomous)

DEPARTMENT OF INFORMATION TECHNOLOGY

M.Tech. - Information Technology

(REGULATIONS 2024)

Vision of the Institution

IV	We envision to achieve status as an excellent Educational Institution in the global
	knowledge hub, making self-learners, experts, ethical and responsible engineers,
	technologists, scientists, managers, administrators and entrepreneurs who will
	significantly contribute to research and environment friendly sustainable growth of the
	nation and the world.

Mission of the Institution

IM 1	To inculcate in the students self-learning abilities that enable them to become competitive												
	and considerate engineers, technologists, scientists, managers, administrators and												
	entrepreneurs by diligently imparting the best of education, nurturing environmental and												
	social needs.												
IM 2	To foster and maintain mutually beneficial partnership with global industries and Institutions through knowledge sharing, collaborative research and innovation.												

Vision of the Department / Programme: Information Technology

DV	To produce excellent and competent software professional, researchers and responsible
	engineers, who can significantly contribute to environment friendly societal industry
	through quality education.

Mission of the Department / Programme: Information Technology

DM1	To make the students competitive and efficient in technical field through technological							
	transformations in Information Technology, by providing them advanced curriculum,							
	infrastructure and nurturing human values.							
5.43	To provide an excellent forum for higher studies that leads to careers as Computer and IT							
DM2	professionals in the widely diversified domains of industry, government and academia.							

Programme Educational Objectives (PEOs) of M.Tech. - Information Technology

PEO 1	Evaluate Solutions: Incorporate with necessary background and significantly contribute to contemporary research in information technology to investigate complex problems.
PEO 2	Novelty in Technology: Apply and disseminate intellectual ideas related to IT field and advance in their profession.
PEO 3	Successful Career: Enhancing the abilities for successful teaching/research careers in industry or academia.

Programme Outcomes (POs) of M.Tech.-Information Technology (Regulations 2024)

M.Tech. - Information Technology graduates will be able to:

PO1	An ability to independently carry out research /investigation and development work to solve practical problems.
PO2	An ability to write and present a substantial technical report/document.
PO3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.
PSO1	Research Culture: Integrate and administrate the design and solutions through IT in software industry, society and R&D activities.
PSO2	Core Values: Contribute core universal values and social good in the community.

	SR College of Engineering	K. S. R COLLEGE OF ENGINEERING An Autonomous Institution Approved by AICTE and Affiliated to Anna University, Chennai Accredited by NAAC ('A++' Grade)									Curriculum PG R - 2024		
De	epartment	Department of Information 1	Fechnology										
Programme M.Tech Information Technology													
	SEMESTER I												
S.	Course			Periods / Week			Mi	Max. Marks					
No.	Code	Course Title	Category	L	т	Р	Tot	Credit	СА	ES	Tot		
THEO	THEORY COURSES												
1	MA24T16	Operations Research	FC	3	0	0	3	3	40	60	100		
2	IT24T11	Advanced Data Structures	PCC	3	0	0	3	3	40	60	100		
3	IT24T12	Research Methodology and IPR	RMC	3	0	0	3	3	40	60	100		
4	IT24T13	Software Engineering Methodologies	PCC	3	0	0	3	3	40	60	100		
5		Professional Elective - I	PEC	3	0	0	3	3	40	60	100		
6		Professional Elective - II	PEC	3	0	0	3	3	40	60	100		
LABO	RATORY CO	URSE					•						
7	IT24P11	Advanced Data Structures Laboratory	PCC	0	0	3	3	2	60	40	100		
8	IT24P12	XML and Web Services Laboratory	PCC	0	0	3	3	2	60	40	100		
TOTAL 18 0 6 24 22									800				

N	SR College of Engineering	K. S. R COLLEGE OF ENGINEERING An Autonomous Institution Approved by AICTE and Affiliated to Anna University, Chennai Accredited by NAAC ('A++' Grade)									Curriculum PG R - 2024		
Pr	ogramme	M.Tech Information Techno	ology										
	SEMESTER II												
s.	Course	Course Title	Catagory	Ре	riods	/ w	eek	Cradit	M	Max. Marks			
No.	Code	Course Title	Category	L	т	Ρ	Tot	Credit	CA	ES	Tot		
THEO	THEORY COURSES												
1	IT24T21	AI&ML Learning Techniques	PCC	3	0	0	3	3	40	60	100		
2	IT24T22	Advanced Algorithm	PCC	3	0	0	3	3	40	60	100		
3	IT24T23	Soft Computing	PCC	3	0	0	3	3	40	60	100		
4	IT24T24	Full Stack Web Application Development	PCC	3	0	0	3	3	40	60	100		
5		Professional Elective - III	PEC	3	0	0	3	3	40	60	100		
6		Professional Elective - IV	PEC	3	0	0	3	3	40	60	100		
LABO	RATORY CO	URSE											
7	IT24P21	AI&ML Learning Techniques Laboratory	PCC	0	0	3	3	2	60	40	100		
8	IT24P22	Advanced Algorithm Laboratory	PCC	0	0	3	3	2	60	40	100		
9	IT24P23	Mini Project with Seminar	EEC	0	0	3	3	2	60	40	100		
			TOTAL	18	0	9	27	24		900			

	SR College of Engineering	K. S. R COLLEGE OF ENGINEERING An Autonomous Institution Approved by AICTE and Affiliated to Anna University, Chennai Accredited by NAAC ('A++' Grade)									Curriculum PG R - 2024		
De	epartment	Department of Information	Technology										
Programme M.Tech Information Technology													
SEMESTER III													
s.	Course			Periods / Week			Ma	Max. Marks					
No.	Code	Course Title	Category	L	т	Р	Tot	Credit	СА	ES	Tot		
THEC	THEORY COURSES												
1	IT24T31	Advanced Computer Networks	PCC	3	0	0	3	3	40	60	100		
2	IT24T32	Cloud Computing Technologies	PCC	3	0	0	3	3	40	60	100		
3		Professional Elective - V	PEC	3	0	0	3	3	40	60	100		
4		Open Elective	OEC	3	0	0	3	3	40	60	100		
5		Audit course	AC	2	0	0	0	0	40	60	100		
LABC	RATORY CO	URSE											
6	IT24P31	Project Phase – I	EEC	0	0	10	10	6	60	40	100		
			TOTAL	14	0	10	22	18		600			

	SEMESTER IV											
s.	Course		Category	Periods / Week				Cuedit	Max. Marks			
No.	Code	Course Title		L	т	Ρ	Tot	Crean	СА	ES	Tot	
LABORATORY COURSE												
1	IT24P41	Project Phase – II	EEC	0	0	24	24	12	60	40	100	
			TOTAL	0	0	24	24	12		100		
				TO	TAL	CRE	DITS			76		
TOTAL NUMBER OF CREDITS TO BE EARNED FOR AWARD OF THE DEGREE = 76												
Note	Note: FC - Foundation Courses, RMC- Research Methodology Courses, PCC - Professional core courses, PEC											

	College of Engineering	EGE OF ENGINEERING nomous Institution filiated to Anna University, Chennai by NAAC ('A++' Grade)							Curriculum PG R - 2024			
Department Department of Information Technology												
Pro	ogramme	M.Tech Information Technol	logy									
S.	Course			Ре	riods	/ W	eek	o !!:	Ma	Max. Marks		
No.	Code	Course litle	Category	L	т	Ρ	Tot	Credit	СА	ES	Tot	
	L	FOUNDA		RSES	(FC)	<u>I</u>			1	<u> </u>	<u> </u>	
1	MA24T16	Operations Research	I	3	0	0	3	3	40	60	100	
			TOTAL	3	0	0	3	3				
	EMPLOYABILITY ENHANCEMENT COURSES (EEC)											
1	IT24P23	Mini Project with Seminar	11	0	0	3	3	2	60	40	100	
2	IT24P31	Project Phase – I		0	0	12	12	6	60	40	100	
3	IT24P41	Project Phase – II	IV	0	0	24	24	12	60	40	100	
		TOTAL	0	0	39	39	20					
		RESEARCH METH	HODOLOGY	cou	RSES	(RM	C)					
1	IT24T12	Research Methodology and IPR	I	3	0	0	3	3	40	60	100	
		I		3	0	0	3	3				
		PROFESSION	AL CORE CO	URS	ES (P	CC)			[1		
1	IT24T11	Advanced Data Structures	PCC	3	0	0	3	3	40	60	100	
2	IT24T13	Software Engineering Methodologies	PCC	3	0	0	3	3	40	60	100	
3	IT24P11	Advanced Data Structures Laboratory	РСС	0	0	3	3	2	60	40	100	
4	IT24P12	XML and Web Services Laboratory	РСС	0	0	3	3	2	60	40	100	
5	IT24T21	AI&ML Learning Techniques	PCC	3	0	0	3	3	40	60	100	
6	IT24T22	Advanced Algorithm	PCC	3	0	0	3	3	40	60	100	
7	IT24T23	Soft Computing	PCC	3	0	0	3	3	40	60	100	
8	IT24T24	Full Stack Web Application Development	РСС	3	0	0	3	3	40	60	100	

9	IT24P21	AI&ML Learning Techniques Laboratory	PCC	0	0	3	3	2	60	40	100
10	IT24P22	Advanced Algorithm Laboratory	PCC	0	0	3	3	2	60	40	100
12	IT24T31	Advanced Computer Networks	РСС	3	0	0	3	3	40	60	100
13	IT24T32	Cloud Computing Technologies	РСС	3	0	0	3	3	40	60	100
			TOTAL	24	0	15	39	32			
		PROFESSIONAL ELEC	T1VES – I a	nd II	(SEN	/IEST	ER – I)			
1	IT24E01	Advanced Computer Architecture	PEC	3	0	0	3	3	40	60	100
2	IT24E02	Ad-Hoc and Sensor Networks	PEC	3	0	0	3	3	40	60	100
3	IT24E03	Computer Vision	PEC	3	0	0	3	3	40	60	100
4	IT24E04	Data Science	PEC	3	0	0	3	3	40	60	100
5	IT24E05	Scientific Computing	PEC	3	0	0	3	3	40	60	100
6	IT24E06	Digital Image Processing	PEC	3	0	0	3	3	40	60	100
7	IT24E07	XML and Web Services	PEC	3	0	0	3	3	40	60	100
8	IT24E08	Distributed Systems	PEC	3	0	0	3	3	40	60	100
9	IT24E09	Multimedia Communications	PEC	3	0	0	3	3	40	60	100
10	IT24E10	Information Retrieval Techniques	PEC	3	0	0	3	3	40	60	100
		PROFESSIONAL ELECT	IVES – III a	nd IV	(SEN	ЛЕST	ER – I	1)			
1	IT24E11	Data Warehousing and Data Mining	PEC	3	0	0	3	3	40	60	100
2	IT24E12	Network Management	PEC	3	0	0	3	3	40	60	100
3	IT24E13	Object Oriented Programming in Python	PEC	3	0	0	3	3	40	60	100
4	IT24E14	Quantum Computing	PEC	3	0	0	3	3	40	60	100
5	IT24E15	Blockchain Technology and Applications	PEC	3	0	0	3	3	40	60	100
6	IT24E16	Digital Forensics	PEC	3	0	0	3	3	40	60	100
7	IT24E17	Social Network Analysis	PEC	3	0	0	3	3	40	60	100
8	IT24E18	Big Data and Analytics	PEC	3	0	0	3	3	40	60	100
9	IT24E19	Ontology and Semantic Web	PEC	3	0	0	3	3	40	60	100
10	IT24E20	Augmented Reality and Virtual Reality	PEC	3	0	0	3	3	40	60	100

	PROFESSIONAL ELECTIVES – V (SEMESTER – III)											
1	IT24E21	Applied Cybersecurity Analytics and Risk Management	PEC	3	0	0	3	3	40	60	100	
2	IT24E22	Deep Learning and Applications	PEC	3	0	0	3	3	40	60	100	
3	IT24E23	Human Computer Interaction Techniques	PEC	3	0	0	3	3	40	60	100	
4	IT24E24	AWS Cloud Solution Architecture	PEC	3	0	0	3	3	40	60	100	
5	IT24E25	Internet of Things	PEC	3	0	0	3	3	40	60	100	
6	IT24E26	GPU Computing	PEC	3	0	0	3	3	40	60	100	
7	IT24E27	Interactive and Digital Marketing	PEC	3	0	0	3	3	40	60	100	
8	IT24E28	Cognitive Science	PEC	3	0	0	3	3	40	60	100	
9	IT24E29	Data Visualization	PEC	3	0	0	3	3	40	60	100	
10	IT24E30	Advanced Business Analytics with R	PEC	3	0	0	3	3	40	60	100	
		OPEN ELECTIVE COURS	ES OFFEREI) BY .	THE	DEPA	RTMI	ENT				
1	IT24O01	IoT for Smart System	OEC	3	0	0	3	0	40	60	100	
2	IT24O02	Machine Learning for Intelligent Multimedia Analytics	OEC	3	0	0	3	0	40	60	100	
3	IT24003	DevOps and Microservices	OEC	3	0	0	3	0	40	60	100	
4	IT24004	Cyber security and Digital Awareness	OEC	3	0	0	3	0	40	60	100	
	AUDIT COURSE (SEMESTER – III)											
1	IT24A01	Disaster Management	AC	2	0	0	0	0	40	60	100	
2	IT24A02	Value Education	AC	2	0	0	0	0	40	60	100	
3	IT24A03	Constitution of India	AC	2	0	0	0	0	40	60	100	
Λ	IT24A04	Indian Knowledge System	AC	2	0	0	0	0	40	60	100	

TOTAL NUMBER OF CREDITS=76

Periods / Week Max. Marks S. Course **Course Title** Category Credit Code No. L Т Ρ Tot CA ES Tot CN24001 OEC **Energy Efficient Building Economics and Finance** CN24002 OEC management in Construction CN24003 Stress management OEC CU24001 Principles of Multimedia OEC CU24002 Software Defined Radio OEC CU24003 MEMS & NEMS OEC Introduction to cognitive CU24004 OEC **Radio Network** ET24001 Embedded Systems OEC ET24002 OEC Embedded Control ET24003 **Embedded Automation** OEC Switching Concepts and PE24001 **Power Semiconductor** OEC Devices PE24002 OEC Smart Grid Technology **Renewable Energy** PE24003 OEC Technology Energy Management and PE24004 OEC Conservation **Principles of Sustainable** ST24001 OEC development ST24002 Failure Analysis of Structures OEC Smart materials and Smart ST24003 OEC Structures **Digital Manufacturing** OEC CC24001 Design for Manufacturing and OEC CC24002 Assembly Smart Materials and OEC CC24003 Structures Industrial Safety Engineering OEC IS24001 Fire Engineering and OEC IS24002 Protection OEC Food and Bio-safety IS24003

OPEN ELECTIVE COURSES

	Summary											
Name of the Programme: M.Tech Information Technology												
CATEGORY	I	II	111	IV	TOTAL CREDITS	%						
FC	3	-	-	-	3	3.94						
EEC	-	2	6	12	20	26.31						
RMC	3	-	-	-	3	3.94						
PCC	10	16	6	-	32	42.10						
PEC	6	6	3	-	15	19.73						
OEC	-	-	3	-	3	3.94						
AC	-	-	~	-	-	-						
Total	25	24	18	12	76	100						

Category L						С		
MA24116	OPERATIONS RESEARCH	FC	3	0	0	3		
	(Common to M. E- CSE, M. E- BDA and M.Tec	h IT)						
PREREQU	ISITE:							
For Effectiv	e learning and applying resource management technique stude	ents must ha	ave a	four	datio	onal		
understandi	g of optimization technique like linear programming and	integer pr	ogran	nming	g, ba	asic		
knowledge of	f network programming, Queuing model.							
OBJECTIV						a.		
• To (letermine the most effective way to allocate the best value of line	ar programn	ung s	uch a	is pro	ofit		
or lo	ss based on decision variables.	. 1.	C" 1	.1	<i>.</i> .	1		
• 108	nalyze the most effective way to minimize the total transportation	n cost and to	find	the o	ptim	al		
way	to assign a set of tasks.	1		1 . 1.				
• 100	intermine the optimal quantity of inventory to hold the balancing	between exc	ess a	na sn	ortag	ge		
	miprove optimal efficiency and reduce waste.	favouing	notom	a				
• 10u	evelop the ability to analyze the basic components and behavior of	of noth Note		8 Ionia				
• 101 Proi	ect Scheduling	si paul, Netv	VOIKC	lesigi	1,			
UNIT-I	LINEAR PROGRAMMING				9			
Formation	Formation of LPP – Graphical method – Simplex method – Big M Method – Dual simplex method.							
UNIT-II	TRANSPORTATION AND ASSIGNMENT PROBLEM	IS			9			
Transporta	ion Models (Minimizing and Maximizing Problems) – Balance	d and unbal	anced	Prol	olem	s –		
Initial Basi	c feasible solution by North West Corner Rule, Least cost and Vo	ogel's appro	ximat	ion n	netho	ods		
–Optimum	solution by MODI Method -Assignment Models (Minimizing	and Maxim	izing	Prob	lems) —		
Hungarian	method - Balanced and Unbalanced Problems.							
UNIT-III	INVENTORY MODELS				9			
Types of I	nventory - Deterministic inventory models: Purchasing problem	n with no s	horta	ge ai	nd w	ith		
shortages -	Production problem with and without shortages - Purchase	problem wi	th pr	ice b	reak	s -		
Probabilist	c inventory model (excluding proof).							
UNIT-IV	QUEUING MODELS				9			
Characteris	tics of Queuing Models - Kendall's notations - Little's formula	- (M/M/1):	(∞/I	FIFO) Sin	gle		
Server wit	n infinite capacity - (M/M/C) :(∞/FIFO) Multi Server with in	nfinite capa	city -	(M	/M/1):		
(N/FIFO)	Single Server with finite capacity - (M/M/C) : (N/FIFO) Multi s	server with f	inite c	apac	ity .			
UNIT-V	PERT/CPM				9			
Network Co	nstruction-Critical Path Method – Computation of earliest star	t time, lates	t star	t tim	e, To	otal.		
free and ind	ependent float time-PERT Analysis – Computation of optimisti	ic, most like	ly Pe	ssimi	stic	and		
expected tin	e.							
TOTAL: 45 PERIODS								
COURSE	UTCOMES:							
At the end	f the course, the students will be able to:							
COs	Course Outcome	(Cogni	tive l	Leve	l		
CO1	Apply the concepts of linear programming approach during the		٨	nnl				
	uncertain situations.		A	рргу				

CO2	Analyze the transportation method and Assignment method to minimize costs	Analyze
CO3	Evaluate the inventory model using EOQ and EBQ with and without shortage.	Apply
CO4	Analyze and interpret the key features of various queuing systems	Analyze
CO5	Apply and Evaluate the concepts of network model	Analyze

TEXT BOOKS:

- 1. TahaH.A, "OperationResearch", Pearson Education, Noida , 9th Edition, 2013
- 2. Vohra N D, "Quantitative Techniques in Management", Tata McGraw Hill, New Delhi, 6th Edition, 2021.

- 1. P.K.GuptaandManMohan, "Problemsin Operations Research", S.Chand and Co, New Delhi, 12th Edition,2014
- 2. Wayne. L. Winston, "Operationsresearchapplicationsandalgorithms", Thomson learning, United States, 4th Edition,2016.
- 3. Kalavathy S, "Operations Research", Vikas Publishing House, Ahmedabad, 6th Edition, 2019.
- 4. HiraandGupta, "ProblemsinOperationsResearch", S.Chandand Co, New Delhi, 2ndEdition, 2012.

Mapping of COs with POs and PSOs									
COs/ POs	PO1	PO2	PO3	PSO1	PSO2				
CO1	3	-	-	2	1				
CO2	3	-	-	2	1				
CO3	3	-	-	2	1				
CO4	3	-	-	2	1				
CO5	3	-	-	2	1				
Avg.	3	-	-	2	1				
1-low, 2-medium	n, 3-high								

Cate		Category	L	Т	Р	С
1124111	ADVANCED DATA STRUCTURES		3	0	0	3
			1			
PREREQU	ISITE:					
Basic Data	Structures, Arrays and Linked Lists, Stacks and Queues,	Trees, Has	h Ta	bles,	Hea	aps,
Mathematics	, Discrete Mathematics, Graph Theory, Probability and Statistic	cs, Algorithm	Ana	lysis,	Sort	ing
and Searchi	ng Algorithms, Problem-Solving Techniques, Divide and	Conquer, Gr	eedy	Alg	orith	ms,
Dynamic Pro	ogramming, Proficiency in a Programming Language, Dynamic	Memory Man	agen	nent.		
OBJECTIV	ES:					
The student	should be able to					
• Imp	rove problem-solving and critical thinking					
• Desi	gn an Algorithm and Analysis the algorithm					
• Dev	elop skills to apply appropriate data structures in problem solvin	g				
• Und	erstand the necessary mathematical abstraction to solve problem	S				
• Und	erstand importance of data structures in context of writing efficient	ent programs.				
UNIT - I	HASHING				(9)	
General Idea	a – Hash Function – Separate Chaining – Hash Tables withou	t linked lists:	Line	ar P	robin	g –
Quadratic P	robing – Double Hashing – Rehashing – Hash Tables in the	e Standard Li	brary	7 – U	Inive	rsal
Hashing – Extendible Hashing.						
UNIT - II	UNIT - IISKIP LISTS AND PRIORITY QUEUES (HEAPS)(9)					
Skip Lists: N	leed for Randomizing Data Structures and Algorithms – Search	and Update C	Opera	tions	on S	kip
Lists – Probabilistic Analysis of Skip Lists – Deterministic Skip Lists – Heap: Model – Simple						
implementat	ions – Binary Heap : Structure Property – Heap Order Prop	erty – Basic	Heap	o Op	eratio	ons:
insert, delete	insert, delete, Percolate down, Other Heap Operations.					
UNIT - III	TREES				(9)	
AVL Trees -	- Red Black Trees : Properties of red-black trees, Rotations, Ins	ertion, Deletio	n - 2	2-31	rees	:2-
3 Trees: Sea	arching for an Element in a 2-3 Tree, Inserting a New Elem	ent in a 2-3	Tree,	Del	eting	an
Element from	n a 2-3 Tree – B-Trees – Splay Tree.				(0)	
UNII - IV	IEAT PROCESSING	D M	41-		(9)	T1
Text Process	Sing: Sting Operations – Brute-Force Pattern Matching – The	Boyer-Moore	Algo	orithi	n –	I ne
Algorithm	The Longest Common Subsequence Problem (LCS) Applyin	x Tries – Trie a Dunamia Di	Hui	iman 		ing the
Algorithm –	The Longest Common Subsequence Problem (LCS) – Applyin	g Dynamic Pi	ogra	mm	ig to	the
LUNIT V	II. COMDUTATIONAL CEOMETRY				(0)	
Computation	COMPUTATIONAL GEOMETRI	monsional D	ongo	See	(9)	<i>a</i>
Construction	a Driority Search Tree Searching a Driority Search Tree Pri	intensional K	Troos	Seal	und ti	g —
- k-d Trees	a monty search mee – searching a monty search mee – m	ionity Kange I	rees	- Qi	iau u	ces
		ТОТА	I · A	5 PF	'BIO	סחפ
		1014	L. 9	SIL		D B
COURSEO	NITCOMFS.					
At the end of	of the course, the students will be able to:					
COs	Course Outcome	C	ogni	tive I	Level	
CO1	Implement the hashing techniques and its types.		Unde	erstan	d	
CO2	Explain the concept of skip list and Heaps.		Unde	erstan	d	
CO3	Demonstrate the algorithms for different trees and its operations	8.	Unde	erstan	d	
CO4	Design algorithms for text processing applications. Apply					

CO5	Build algorithms for c	omputational geom	netry problems.		Apply
REFEREN	CES:				
1. Mark Alle	en Weiss, Data Structur	res and Algorithm	Analysis in C++, 4	th Edition, Pearson	n Education,
2014.					
2. Thomas H	I Cormen, Charles E. L	eiserson, Ronald L	. Rivest, Clifford	Stein, Introduction	to Algorithms
4th Editio	n, The MIT Press, 202	2.			
3. M T Goo	drich, Roberto Tamass	ia, Algorithm Desi	gn and Application	ns,1st edition, John	Wiley, 2014.
4. Alfred V.	Aho and John E. Hope	roft, Jeffrey D. Ull	man, Data Structu	res and Algorithms	s, Pearson
Education	n, Reprint 2006.				
	I	Mapping of COs v	vith POs and PSC)s	
COs/ POs	s PO1	PO2	PO3	PSO1	PSO2
CO1	3	-	2	1	3
CO2	3	-	2	1	3
CO3	3	-	2	1	3
CO4	3	-	2	1	3
CO5	3	-	2	1	3
Avg.	3	-	2	1	3

IT24T12 RESEARCH METHODOLOGY AND IPR Category L						C	
1124112	RESEARCH WE HODOLOGI AND II K		3	0	0	3	
	· · ·						
PREREQU	ISITE:	C . I					
A basic know	vledge of the scientific method, types of research, and the design	of studies, i	nclud	ing c	lata		
plagiarism	impling techniques, and basic statistics. Ethical considerations su	convrights t	ieu co	onsen oarke	ii, and		
their legal fr	ameworks is essential to protect innovations and ensure compliant	ice	auen	iai Ko	, and		
OBJECTIV	ES:	100.					
• To ı	nderstand the objectives and motivations driving research.						
 Το ι 	nderstand the need, guidelines, and process for conducting a lite	rature review	<i>.</i>				
• To e	xplore the international framework for intellectual property proto	ection, includ	ling c	oope	ratio	n	
and	procedures.						
 Το ι 	nderstand the scope and implications of patent rights.						
• To e	xplore the recent developments in IPR.						
UNIT – I	RESEARCH METHODOLOGY					[9]	
Objectives a	nd motivation of research - Types of Research - Research	Approaches	- Si	gnifi	cance	e of	
Research - Research Methods verses Methodology - Research and Scientific Method - Importance of							
Research M	ethodology - Research Process - Criteria of Good Research	1 - Problem	s En	coun	tered	by	
Researchers	in India - Benefits to the Society in general. Defining the Re	esearch Prob	lem:	Defi	nitior	n of	
Research pr	oblem - Problem formulation - Necessity of defining the Pro	blem - Tech	nique	e Inv	olveo	d in	
Defining a Problem.							
UNIT – II LITERATURE SURVEY [9]							
Information	through Internet - Literature Review: Need of Review - Guid	elines for R	nais a	r = R	ecor	d of	
Research Re	view.			- K	ccon	u 01	
UNIT – III	PROCESS AND DEVELOPMENT					[9]	
Nature of I	ntellectual Property: Patents - Designs - Trade and Copyright	ht - Process	of F	Paten	ting	and	
Developmen	t: technological research - Innovation - Patenting - Develo	pment. Inter	natio	nal S	Scena	ario:	
International	cooperation on Intellectual Property - Procedure for grants of pa	atents - paten	ting ı	ınder	PC	Γ.	
UNIT – IV	PATENT RIGHTS					[9]	
Patent Right	s: Scope of Patent Rights - Licensing and Transfer of Technol	ology - Pater	nt inf	orma	tion	and	
Databases -	Geographical Indications.						
UNIT – V	NEW DEVELOPMENTS IN IPR					[9]	
New Devel	opments in IPR: Administration of Patent System - New de	evelopments	in II	PR -	IPR	c of	
Biological Systems - Computer Software etc., - Traditional knowledge Case Studies - IPR and IITs							
TOTAL: 45 PERIODS							
			-	-			
COURSE C	UTCOMES:						
At the end o	f the course, the students will be able to:						
COs	Course Outcome	(ogni	tive]	Leve	1	
CO1	Analyze the concept of research problem.		An	alyze	;		
CO2	Develop and analyze literature study		Cr	eate			
CO3	Gain insight into how IP laws support technological Understanding						

	advancements and commercialization.	
CO4	Gain knowledge in product licensing.	Understanding
CO5	Identify intellectual property rights.	Applying

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students" 2014.
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"2014.
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners" 2005

Mapping of COs with POs and PSOs									
COs/ POs	PO1	PO2	PO3	PSO1	PSO2				
CO1	3	2	-	3	2				
CO2	3	2	-	3	2				
CO3	3	2	-	3	2				
CO4	3	2	-	3	2				
CO5	3	2	-	3	2				
Avg.	3	2	-	3	2				
1-low, 2-medium	1-low, 2-medium, 3-high								

177247712	SOFTWARE ENGINEERING	Category	L	Т	Р	С				
1124113	METHODOLOGIES	PCC	3	0	0	3				
PREREQU	ISITE:									
Prerequisites	s for Software Engineering Methodologies include basic program	ming skills,	know	ledge	e of t	he				
software dev	relopment life cycle	C I		U						
OBJECTIV	ES:									
• To ex	plore and analyze various software engineering methodolog	ies, focusin	g on	gene	eric	and				
prescr	prescriptive process models.									
• To co	mprehensively examine the processes of requirements engineerin	ıg.								
• To an	alyze and compare various object-oriented methodologies and me	odeling tech	nique	5.						
• To de	velop a structured approach for identifying use cases and condu	cting object	analy	vsis, t	focus	sing				
on cla	ss design.									
• To ex	plore software testing fundamentals and quality assurance practice	actices, emp	ohasiz	ing t	est c	ase				
design	n, methodologies.									
UNIT - I	INTRODUCTION				(9)					
Software En	gineering - Software Process - Generic process model - Prescr	riptive Proc	ess m	odels	- A	gile				
developmen	t-Agile Process- Extreme Programming - Other Agile process mo	odels: Adapt	ive pr	ocess	s moo	dels				
,Scrum, Dyn	,Scrum, Dynamic - Systems Development Method .									
UNIT - II	REQUIREMENT ANALYSIS				(9)					
Functional and Non-Functional Requirements - User Requirements - System Requirements - Interface										
Specifications - Software RequirementsDocument - Requirements Engineering Processes - Feasibility										
Studies- Elic	citation and Analysis - Validations - Management - System Mode	els – Contex	t - Be	havio	oral -	2				
Data - Objec	t - Structured.									
UNIT - III	OBJECT ORIENTED METHODOLOGIES				(9)					
Rumbaugh M	Methodology - Booch Methodology - Jacobson Methodology - P	atterns - Fra	mewo	rks -	Unit	fied				
Approach -	Unified Modeling Language - Use Case - Class Diagram - I	nteractive I	Diagra	m -	Pack	age				
Diagram - C	ollaboration Diagram-State Diagram - Activity Diagram.									
UNIT - IV	OBJECT ORIENTED ANALYSIS AND DESIGN				(9)					
Identifying	Use Cases - Object Analysis - Classification - Identifying Obje	ct Relations	hips -	Attr	ibute	2S				
and Methods	s - Design Axioms - Designing Classes - Access Layer - Object	Storage –V	ew La	iyer.						
UNIT - V	SOFTWARE TESTING AND SOFTWARE				(9)					
	QUALITYASSURANCE				()					
Software Te	sting Fundamentals - Test Case Design - White Box - Black	Box - Testi	ng fo	r Spe	ciali	zed				
Environmen	ts, Architectures and Applications - Software Testing Strategies -	- Approach	– Issu	es - 7	Festi	ng -				
Unit - Integr	ation - Validation - System - Art of Debugging.									
Software Quality Concepts - Quality Assurance - Software Technical Reviews - Formal Approach to										
Software Quality Assurance - Reliability - Quality Standards - Software Quality Assurance Plan - Software										
Maintenance	e - Software Configuration Management -SCM Standards.									
		ТОТ	AL: 4	5 PE	RIO	DS				
COUDSE	NITCOMES:									
At the end of	of the course, the students will be able to:									
COs	Course Outcome	(Cogni	tive I	Level					
CO1	Understand the Concepts of software development process		Und	lersta	nd					
CO2	Analyze the system requirements and system specification		Unc	lersta	nd					
=	That yze the system requirements and system specification onderstand									

CO3	Discuss about the different methodologies used in software systems	Analyzing
CO4	Understand the various software design methodologies	Evaluating
CO5	Investigate the software testing and Quality Assurance for developing Software systems	Creating

- 1. Roger S Pressman, "Software Engineering A Practitioner's Approach", 7th edition, McGraw Hill Education, 2014.
- 2. Ian Sommerville, "Software engineering", Seventh Edition, Pearson Education Asia.
- 3. Wiegers, Karl, Joy Beatty, "Software requirements", Pearson Education, 2013.
- 4. Pankaj Jalote, Software Engineering, A Precise Approachl, Wiley India, 2010.

	Manning of COs with POs and PSOs									
Mapping of COS with 1 OS and 1 SOS										
COs/ POs	PO1	PO2	PO3	PSO1	PSO2					
CO1	2	-	2	2	1					
CO2	2	-	2	2	1					
CO3	2	-	2	2	1					
CO4	2	-	2	2	1					
CO5	2	-	2	2	1					
Avg.	2	-	2	2	1					
1-low, 2-medium	1-low, 2-medium, 3-high									

IT7/D11	ADVANCED DATA STRUCTURES	Category L T				С
1124511	LABORATORY	PCC	0	0	3	2
PREREQUIS	SITE:					
Data Structure	es, Design, Analysis of Algorithms and Basic Programming sk	ills.				
OBJECTIVE	S:					
• Learn a	bout complex data structures					
Analyze	e and evaluate time and space complexity for various data strue	ctures.				
Develop	p problem-solving skills for applying data structures to real-wo	orld challenge	s.			
• Enhanc	e coding and implementation skills, including debugging and t	esting.				
• Gain fa	miliarity with real-world applications of advanced data structu	res.				
List of Exerc	ise/Experiments:					
Implem	entation of					
1. Depth-I	First Search (DFS) and Breadth-First Search (BFS).					
2. Dijkstra	's Algorithm for shortest paths in weighted graphs.					
3. Floyd-V	Varshall Algorithm for all-pairs shortest paths.					
4. Minimu	Im Spanning Tree using Prim's algorithms.					
5. Randor	nized quick sort algorithm					
6. Hash fu	nctions and associated algorithms					
7. Splay ti	ees and its functions					
8. Find the	e solution for the knapsack problem using the greedy method.					
9. Operati	ons on Fibonacci heaps					
10. Operati	ons on binary heaps					
11. Operati	ons on B-Trees					
12. N Quee	n's problem using Back Tracking algorithm					
13. 0-1 kna	psack problem using dynamic programming					
14. Single s	source shortest path for a given graph.					
15. Find mi	nimum cost spanning tree using Kruskal's algorithm					
		ТОТА	T . 1			DC
		IOIA	L: 3	o Pr	LKIU	D 2
COURSEO	ITCOMES.					
At the end of	the course, the students will be able to:					
	the course, the students will be able to.					

COs	Course Outcome	Cognitive Level
CO1	Implement List ADTs and their operations.	Apply
CO2	Develop programs for sorting, hash functions	Apply
CO3	Apply Greedy, divide and conquer algorithms	Apply
CO4	Apply dynamic programming concept in real time problems	Apply
CO5	Analyze and Apply various advanced data structures algorithms in real time applications	Apply

1. Thomas H. Cormen, Charles E"Introduction to Algorithms" 3rd Edition, MIT Press, 2009

2. Steven S. Skiena "The Algorithm Design Manual" 2nd Edition, Springer , 2008.

Mapping of COs with POs and PSOs									
COs/ POs	PO1	PO2	PO3	PSO1	PSO2				
CO1	2	-	1	2	-				
CO2	2	-	1	2	-				
CO3	2	-	1	2	-				
CO4	2	-	1	2	-				
CO5	2	-	1	2	-				
Avg.	2	-	1	2	-				
1-low, 2-medium, 3-high									

IT7/D17	XML AND WEB SERVICES	Category	L	Т	Р	С				
1124512	LABORATORY	PCC	0	0	3	2				
PREREQUISITE:										
A Basic kno	whedge in programming languages such as Java, Python, o	or C#. Famili	arity	wit!	h					
OBJECTIV	ES:	visual Stud	10.							
• To u	nderstand the structure and elements of HTML to create interact	tive and visua	lly st	ructu	ired v	veb				
page	S.		•							
• Tou	nderstand the functionality of ASP/JSP objects like Response, R	Request, Appli	catio	n, Se	essior	1,				
and S	Server.									
• Tou	nderstand the role of servlets in Java-based web applications.	. 1								
• Deve	elop expertise in XML for data exchange and integration with data	itabases.		o 11						
• 10 L	vise/Experiments:	iging data dyn	anne	any.						
1. Creation	of internal and external CSS along with HTML pages									
2. Usage 3 Client	side Programming									
i) Jav	aScript for displaying date and comparing two dates									
ii) For	m Validation including text field, radio buttons, check boxes, lis	st box and oth	er co	ntrol	s.					
4 Usage	of ASP/ISP objects Response Request Application Session S	erver ADO e	tc							
i) Wr	itingonlineapplicationssuchasshopping,railway/air/busticketrese	rvationsystem	n with	n set	of					
AS	P/JSP pages	5								
ii)	Using sessions and cookies asp art of the web applied	cation								
5. Writin	g Servlet Program using HTTP Servlet									
6. Any or	aline application with database access									
7. Creation	on of XML document for a specific domain									
8. Writin	g DID or XML schema for the domain specific XML documen	t								
9. Parsin 10. Conne	ct a Xml web page to any database engine									
TO: Conne	et a zzini web page to any database engine.									
		TOTA	T 1			DC				
		TOTA	L: 3	0 PE		DS				
COURSE O	UTCOMES:									
At the end o	f the course, the students will be able to:									
COs	Course Outcome	С	ognit	tive I	Level	l				
CO1	Develop web pages using markup languages and design by Cascading Style Sheets		Ap	plyin	g					
CO2	Build dynamic pages and perform validation using javascript		Cr	eatin	g					
CO3	Develop online applications using ASP/JSP and perform session management	n	Ap	plyin	g					
CO4	Design a XML document and parse these document using DOM SAX parsers	1 /	Cr	eatin	g					

CO5	CO5 Extend web applications using open source software								
REFERENCES:									
1. Schmel:	1. Schmelzer, XML and Web Services Unleashed, Pearson India, January 2008.								
2. Claudia	Zentner, Dieter Koen	ig , Doug Davis , G	len Daniels , Build	ding Web S	ervices with Java:				
Making	Sense of XML, SOAF	, WSDL, and UDD	I, Sams Publishin	g, June 200	4.				
	I	Mapping of COs w	vith POs and PSO	S					
COs/ POs	s PO1	PO2	PO3	PSO	1 PSO2				
CO1	2	-	2	1	-				
CO2	2	-	2	1	-				
CO3	2	-	2	1	-				
CO4	2	-	2	1	-				
CO5	2	-	2	1	-				
Avg.	2	-	2	1	-				
1-low, 2-me	dium, 3-high								

IT7/T71	Category		L	Т	Р	С				
1124121	AT and WIL LEARNING TECHNIQUES	PCC	3	0	0	3				
PREREQUISITE:										
A solid foundation in mathematics, including linear algebra, calculus, probability, and statistics, as these are										
fundamental to	o understanding algorithms and models. Proficiency in program	nming langua	ges li	ke P	ythor	1				
and familiarity	with libraries such as NumPy, Pandas, TensorFlow, and Scik	it-learn are es	sentia	al for						
implementatio	n. Basic knowledge of machine learning concepts, such as sup	ervised and u	nsupe	ervise	ed					
learning, as w	ell as algorithms like linear regression and clustering, is crucia	1.								
OBJECTIVE	S:									
• Grasp	the fundamental concepts of calculus, including derivatives ar	nd integrals, a	nd th	eir re	levai	nce				
to opt	imization in machine learning.	U /								
• To un	derstand the principles and process of supervised learning, dist	inguishing it	from							
unsup	ervised learning.									
• To ide	entify how Principal Component Analysis aids in data visualiz	ation and red	ices f	he						
comp	exity of high-dimensional datasets		aces	ne						
• To ex	plore multi-layer perceptrons (MIPs) and their role in more co	moley learnin	na tas	ks						
Devel	on an understanding of the challenges and considerations of in	nlementing e	thica	κ ΙΔΙά	vete	ms				
UNIT - I	FOUNDATIONS OF ALAND MACHINE LEADING	ipienienting e	tinea		(0)					
Introduction t	A l and MI Historical perspective and evolution Key an	plications in	vario	us de	() mai	ne				
Basic linear a	labra: Vectors, matrices - Probability theory: Bayes' theore	m_{-} Basic cal	culus	us uc • Dei	rivati	15 - Ves				
and integrals	igeora. Vectors, marilees - i robability theory. Dayes theore	III- Dasie car	cuius	. Du	Ivau	ves				
UNIT - II	SUPERVISED LEARNING TECHNIOUES				(9)					
Introduction to	Supervised Learning - Supervised vs. unsupervised learning	- Basic term	inolo	σν· Ί	<u>()</u> Traini	ino				
testing valida	tion - Linear regression - Logistic regression - k-Nearest Neig	yhhors (k-NN) - D	ecisio	n Ti	rees				
and Random F	Forests - Support Vector Machines (SVM)		, 2	001510	, , , , , , , , , , , , , , , , , , , ,	005				
UNIT - III	UNSUPERVISED LEARNING TECHNIOUES				(9)					
Clustering -	k-Means clustering - Hierarchical clustering - Dimensi	onality Redu	ction	- I	Princ	ipal				
Component A	nalysis (PCA) - Applications of PCA in data visualization.	· · · · · · · · · · · · · · · · · · ·				1				
UNIT - IV	NEURAL NETWORKS AND DEEP LEARNING				(9)					
Basic concept	s of neural networks - Perceptron and multi-layer perceptr	ons - Introdu	action	n to	CNN	ls -				
Convolution a	nd pooling operations - Data preprocessing and feature engi	ineering - M	odel	selec	tion	and				
hyperparameter	er tuning - Cross-validation.									
UNIT - V	ADVANCED TOPICS AND ETHICAL CONSIDERATI	ONS			(9)					
Model Deploy	ment and Monitoring - Saving and loading models - Model	deployment	basic	s - E	thics					
and Fairness in	n AI - Ethical implications of AI - Bias in machine learning alg	gorithms.								
		TOTA	L: 4	5 PE	RIO	DS				
COURSE OI	JTCOMES:									
At the end of	the course, the students will be able to:									
COs	Course Outcome	C	ognit	ive I	Level	l				
CO1 U	Inderstand the Fundamentals of AI and ML	τ	Jnder	stanc	1					
CO2 I	mplement Supervised Learning Techniques		Eval	uate		\neg				
CO3 In	mplement Unsupervised Learning Techniques		Eval	uate						
	ain knowledge in complex task solving using Multi layer		An	nlv						
СО4 р	erceptron.		Ap	pry						
CO5 A	Analyze ethical issues, biases, and fairness in AI and MLAnalyze									

- 1. Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach", 2010
- 2. Christopher Bishop, "Pattern Recognition and Machine Learning", 2016
- 3. Marc Peter Deisenroth, Mathematics for Machine Learning", 2020
- 4. Goodfellow, Yoshua Bengio, and Aaron Courville, "Deep Learning", 2016

Mapping of COs with POs and PSOs									
COs/ POs	PO1	PO2	PO3	PSO1	PSO2				
CO1	2	-	1	2	1				
CO2	2	-	1	2	1				
CO3	2	-	1	2	1				
CO4	2	-	1	2	1				
CO5	2	-	1	2	1				
Avg.	2	-	1	2	1				
1-low, 2-medium	n, 3-high								

1774772	24T22 ADVANCED ALCORITHM Category L					
1124122		PCC	3	0	0	3
PREREQUIS	SITE:					
Prerequisite for	or Advanced Algorithm includes Dynamic Programming metho	ods, graph tra	versa	l tech	nniqu	les,
brute-force an	d algorithms, NP-hard and NP-complete problems, probabilist	ic and randor	nized	algo	rithn	ıs.
OBJECTIVE	CS:					
• To app	ly core algorithmic strategies to solve complex problems.					
• To anal	yze and implement network flow algorithms for maximum flow	w problems.				
To impl	lement efficient string-matching techniques for pattern matching	ng.				
 To desi 	gn and evaluate approximation algorithms for optimization cha	allenges.				
• To use	probabilistic and randomized methods for solving non-determi	nistic probler	ns.			
UNIT - I	OVERVIEW				(9)	
Overview of	Divide and Conquer - Greedy and Dynamic Programming	strategies -	Basi	c sea	arch	and
traversal tech	niques for graphs – Backtracking - Branch and Bound.					
UNIT - II	FLOWS IN NETWORK				(9)	
Basic Concep	ts - Maxflow mincut theorem - Ford and Fulkerson augmenti	ng path Meth	nod –	integ	gral f	low
theorem – ma	ximum capacity augmentation - Edmond Karp method - Di	nic's method	and	its a	nalys	sis -
Strassen's algo	prithm.					
UNIT - III	STRING MATCHING ALGORITHM				(9)	
Introduction t	o string-matching problem - Naïve or Brute force algorithm	n - String m	atchir	ıg wi	ith fi	nite
automata - R	abin Karp algorithm - Knuth Morris Pratt Algorithm – Boy	erMoore alg	orithi	ns -	Lon	gest
Common Sul	ostring/Subsequence - Shortest Common Superstring - Big	partite Match	ning	- coi	mple	xity
analysis.						
UNIT - IV	APPROXIMATION ALGORITHMS				(9)	
Introduction	- Combinatorial Optimization - approximation factor - PI	TAS, FPTAS	- A	pproz	xima	tion
algorithms for	vertex cover, set cover, TSP, knapsack, bin packing, subset	-sum problen	1 - A	nalys	is of	the
expected time	complexity of the algorithms - Theory of NP- Hard and NP-C	omplete Prob	lems.			
UNIT - V	PROBABILISTIC AND RANDOMIZED ALGORITHM	IS			(9)	
Numerical pro	obabilistic algorithms - Las Vegas and Monte Carlo algorithm	s – Randomi	zed al	lgorit	hm -	
Game-theoret	ic techniques - Circuit Satisfiability Problem - Approximation	n Algorithms	- Ra	ndon	nized	l
Algorithms -	Multithreaded Algorithms - Parallel Algorithms - An	nortized Ana	alysis	and	d Its	•
Applications.						
		TOTA	L: 4	5 PE	ERIC	DS
COURSE OI	ITCOMES:					
At the end of	the course, the students will be able to:					
COs	Course Outcome	(Cogni	tive l	Leve	1
CO1 U	Jnderstand the basic concepts related to algorithms		Unc	lersta	nd	
CO2 I	Discuss about the various maximum flow algorithms		Unc	lersta	nd	
CO3 A	Analyze the complexity of different algorithms		An	alyzir	ng	
	Determine the appropriate algorithm for solving a particular set	of	-		-	
	problems.		Eva	luatii	ng	
CO5 I	Develop more sophisticated algorithms using these techniques		Cı	eating	g	
		I			<u>ل</u>	
REFERENC	ES:					
	$\mathbf{A} = \mathbf{A} = $	there ?				

2. Fundamentals of Algorithmics: G.Brassard And P.Bratley.

- 3. Horowitz Ellis, Sahani Sartaz, R. Sanguthevar "Fundamentals of ComputerAlgorithms".
- 4. T Cormen, C Leisersonand R Rivest "Introduction to Algorithms", PHI

Mapping of COs with POs and PSOs									
COs/ POs	PO1	PO2	PO3	PSO1	PSO2				
CO1	2	-	2	2	-				
CO2	2	-	2	2	-				
CO3	2	-	2	2	-				
CO4	2	-	2	2	-				
CO5	2	-	2	2	-				
Avg.	2	-	2	2	-				
1-low, 2-medium	1-low, 2-medium, 3-high								

177/773	Category L T						
1124123	SOFT COMPUTING	PCC	3	0	0	3	
	· · · · · ·			1			
PREREQU	SITE:						
A basic math	ematics, particularly in areas like linear algebra, probability, and	d calculus,	as these	e are			
essential for	understanding algorithms in soft computing. Familiarity with tra	ditional co	mputin	g me	thods	3	
and algorithm	ns is also important, as soft computing often contrasts with class	ical technic	ques. A	dditi	onall	у	
knowledge in	n artificial intelligence (AI), neural networks, and optimization n	nethods, su	ch as g	eneti	с		
algorithms a	nd fuzzy logic, is crucial, as these are core components of soft co	omputing.					
OBJECTIV	ES:						
• To u	nderstand the evolution of computing and the transition from con-	nventional	AI to c	ompu	itatio	nal	
intel	ligence.						
• To s	tudy fuzzy rules and fuzzy reasoning for decision-making in unc	ertain envi	ronmer	ts.			
• To e	xplore feedforward networks and their role in supervised learnin	g tasks.					
• To e	xplain the principles and basic concepts of Genetic Algorithms (GA).					
• To a	pply genetic algorithms and soft computing techniques in solvin	g real-worl	d probl	ems	using	5	
MAT	TLAB/Python.						
	INTRODUCTION TO SOFT COMPUTING AND NEUR	RAL			(0)		
01111-1	NETWORKS				(9)		
Evolution of	Computing: Soft Computing Constituents - From Conventional	AI to Com	putatic	nal			
Intelligence:	Machine Learning Basics.						
UNIT - II	FUZZY LOGIC				(9)		
Fuzzy Sets-	Operations on Fuzzy Sets - Fuzzy Relations - Membership - F	unctions: F	'uzzy R	ules	and		
Fuzzy Reaso	ning - Fuzzy Inference Systems - Fuzzy Expert Systems - Fuz	zy Decision	n Maki	ng.			
UNIT - III	NEURAL NETWORKS				(9)		
Machine Lea	rning Using Neural Network – Adaptive Networks – Feed forwa	ard Networ	ks – Su	perv	ised		
Learning Ne	ural Networks - Radial Basis Function Networks: Reinforcemen	t Learning	– Uns	uperv	vised		
Learning Ne	ural – Networks – Adaptive Resonance architectures – Advance	es in Neural	l netwo	rks.			
UNIT - IV	GENETICAL ALGORITHM				(9)		
Introduction	to Genetic Algorithms (GA) - Applications of GA in Machine I	Learning : N	Machin	e Lea	rning	5	
Approach to	Knowledge acquisition.						
UNIT - V	MATLAB/PYTHON LIB				(9)		
Introduction	to Matlab / Python – Arrays and array operations – Functions	and Files -	- Study	of n	eural		
network tool	box and fuzzy logic toolbox - Simple implementation of Art	ificial Neu	ral Net	work	and		
Fuzzy Logic	- Recent Trends in deep learning- various classifiers - No	eural netwo	orks ar	nd ge	netic		
algorithm – 1	implementation of recently proposed soft computing techniques.						
		TOT	ral: 4	15 PE	ERIO	DS	
COURSEO	UTCOMES.						
At the end o	f the course, the students will be able to:						
COs	COs Course Outcome Cognitive Level						
	Identify and describe soft computing techniques and their roles in						
CO1	building intelligent machines.		Ev	aluat	e		
	Apply fuzzy logic and reasoning to handle uncertainty and solve						
CO2	various engineering problems.	-	Α	pply			
├	Design and implement feedforward neural networks (FFNs) for						
CO3	supervised learning tasks.		Ev	aluat	e	I	
supervised rearing tasks.							

CO4	Build genetic algorith	ms to combinatoria	l optimization prol	olems .	Create				
CO5	Explain Matlab / Pyth	on Libraries.			Understand				
÷									
REFEREN	CES:								
1. Jyh	Shing Roger Jang, Chuen Tsai Sun, EijiMizutani, Neuro:Fuzzy and Soft Computing, 2nd								
Edit	ion, Prentice Hall of In	ndia.							
2. Geo	rge J, Klir and Bo Yua	n, Fuzzy Sets and F	Fuzzy Logic: Theor	ry and Application	s, 4 th Edition				
Pren	tice Hall.								
3. Prof	. Prasun Chakrabarti K	Kuntal Barua ,Funda	mentals of Soft Co	omputing,BpB pub	lication, January				
2017	7.				-				
4. Sam	ir Roy ,Soft Computir	ng: Neuro-Fuzzy an	d Genetic Algorith	nms,Pearson public	cation, January				
2013	3.		-	-	-				
	I	Mapping of COs w	vith POs and PSO	s					
COs/ PO	s PO1	PO2	PO3	PSO1	PSO2				
CO1	3	-	2	1	-				
CO2	3	-	2	1	-				
CO3	3	-	2	1	-				
CO4	3	-	2	1	-				
CO5	3	-	2	1	-				
Avg.	3	-	2	1	-				
1-low, 2-me	dium, 3-high								

ITOATOA	FULL STACK WEB APPLICATION	Category	L	Т	Р	C
1124124	DEVELOPMENT PCC 3		0	0	3	
PREREQUIS	ITE:					
Students shoul	d have a foundational understanding of web development con-	cepts, includir	ng the	e dist	incti	on
between serve	r-side and client-side web applications. Familiarity with basic	c programming	g prii	ncipl	es su	ch
as variables, da	ata types, operators, and functions is essential. Exposure to Ol	oject-Oriente	d Pro	ogra	mmi i	ng
(OOP) concept	ts (e.g., classes, inheritance, interfaces, and generics) is benefi	cial, as these	are ii	ntegr	al to	
TypeScript.						
OBJECTIVE	S:					
• To und	erstand the basic concepts of typescript languages.					
• To und	erstand the Angular framework and its role in building dynamic and	interactive sing	gle-pa	ige		
applica	tions.					
• To dev	elop modular applications using Node.js modules.					
• To imp	lement RESTful services using Express.js routing and middleware.					
• To und	erstanding of MongoDB, its structure, and the concept of documents	s, collections, a	nd da	tabas	es.	
UNIT - I	FUNDAMENTALS & TYPESCRIPT LANGUAGE				(9)	
Server-Side V	Veb Applications - Client-Side Web Applications - Sing	le Page App	olicat	ion	- At	out
TypeScript - C	reating TypeScript Projects - TypeScript Data Types – Variab	les- Expressio	on an	d Op	erato	ors -
Functions - OO	DP in Typescript – Interfaces - Generics. Modules – Enums –I	Decorators – E	Enum	s – It	erato	ors -
Generators.						
UNIT - II	ANGULAR				(9)	
About Angula	r. Angular CLI - Creating an Angular Project - Compone	ents: Compon	ents	Inter	actic	n -
Dynamic Com	ponents - Angular Elements - Angular Forms - Template D	Oriven Forms	- Pro	opert	y, St	yle,
Class and Eve	nt Binding - Two way Bindings - Reactive Forms - Form C	Group - Form	Con	trols	- Ab	out
Angular Route	r: Router Configuration - Router State - Navigation Pages - 1	Router Link -	Quer	y Pa	rame	ters
- URL matchi	ng - Matching Strategie – Services -Dependency Injection – H	Ittp Client - R	ead I	Data	from	the
Server - CRUI	O Operations - Http Header Operations - Intercepting requests	and responses	5.			
UNIT - III	NODE.Js				(9)	
Node.jsConfig	uring - Node.js environment - Node Package Manager NP	M – Modules	s - A	sync	hron	ous
Programming	- Call Stack and Event Loop - Callback functions - Callback	errors - Abstr	actir	g ca	llbac	ks -
Chaining callb	acks - File System - Synchronous vs. asynchronous I/O - Patl	n and director	у оре	ratio	ns - I	File
Handle - File S	Synchronous API - File Asynchronous API - File Callback AP	I - Timers S	Sched	luling	g Tin	ners
- Timers Prom	ises API - Node.js Events - Event Emitter - Event Target an	d Event API -	– Bu	ffers:	Buf	fers
and TypedArra	ays - Buffers and iteration - Using buffers for binary data - Fl	owing vs. nor	n-flov	ving	strea	ms.
JSON.		-		-		
UNIT - IV	EXPRESS.Js				(9)	
Express.js: Ho	w Express.is Works - Configuring Express.is - App Settings	- Defining Ro	utes	- Sta	rting	the
App - Express	s.is Application Structure – Configuration – Settings – Midd	lleware - bod	v-par	ser -		kie-
parser - expre	ss-session - response-time - Template Engine Jade EJS. P	arameters – F	Routi	ng —	rout	er -
route(path) - R	outer Class - Request Object - Response Object - Error Handl	ing - RESTfr	ıl.	0		
UNIT - V	MONGODB	- <u>0</u> 1120111			(9)	
Introduction to	\sim MongoDB – Documents – Collections - Sub collections – Γ	atabase - Dat	a Tvi	nes –	Date	es –
Arraye - Emb	edded Documents - CRUD Operations - But concertoils - L	ert Validation	⊶ - y] n _ ()]]erv	ving '	The
Documents (Sursors Indexing - Unique Indexes - Sparse Indexes - Sparse	1 Index and C	י - ג מווסר	euci y	Typ	- 110 - 60
Full_Text Indo	ves - Geospatial Indexing - Aggregation framework		20110		тур	- 60
	res - Geospatial Indexing - Aggregation framework.	ТОТА	τ. /	5 DI	סוסי	ne
		IUIA	L i 4	ST	WIO	'DO

COURSE OUTCOMES:

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Develop basic programming skills using Javascript	Evaluate
CO2	Implement a front-end web application using Angular	Apply
CO3	Create modules to organise the server	Create
CO4	Build RESTful APIs with Node, Express and MongoDB with confidence	Evaluate
CO5	Gain knowledge in Storing complex, relational data in MongoDB using Mongoose	Understand

- 1. Adam Freeman, Essential TypeScript, Apress, 2019
- 2. Mark Clow, Angular Projects, Apress, 2018
- 3. Alex R. Young, Marc Harter, Node. js in Practice, Manning Publication, 2014
- 4. Pro Express.js, Azat Mardan, Apress, 2015
- 5. MongoDB in Action, Kyle Banker, Peter Bakkum, Shaun Verch, Douglas Garrett, Tim Hawkins, Manning Publication, Second edition, 2016

Mapping of COs with POs and PSOs							
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	2	-	1	2	-		
CO2	2	-	1	2	-		
CO3	2	-	1	2	-		
CO4	2	-	1	2	-		
CO5	2	-	1	2	-		
Avg.	2	-	1	2	-		
1-low, 2-medium	, 3-high		•		•		

IT24P21	AI and ML LEARNING TECHNIQUES	Category L	L	Т	Р	С	
1127121	LABORATORY	PCC	0	0	3	2	
PREREQU	SITE:						
Mathematics	and Statistics, Linear Algebra, Calculus, Probability and S	Statistics, Pro	gram	ming	g Sk	ills,	
Libraries and Frameworks, Code Debugging and Optimization, Basic Machine Learning Concepts,							
Supervised Learning, Unsupervised Learning, Model Evaluation, Data Preprocessing and Feature							
Engineering, Data Cleaning, Feature Scaling and Transformation, Feature Selection, Artificial Intelligence							
Fundamental	s, concepts of Neural Networks.						
UBJECIIV	ES:						
	J and ML Tools and Frameworks						
Have 1	Hands-On Experience with $\Delta I \& MI$ Algorithms						
Prenar	e data set for analysis						
• Know	where AI and MI techniques used						
Know	Advanced Machine Learning Techniques						
List of Exer	cise/Experiments:						
1. Perfe	orm data manipulation using NumPy and Pandas and, data visua	lization using	matp	olotli	b.		
2. Impl	ement Naive Bayes classification and predict the class label for	a given data.					
3. Impl	ement linear models to approximate the given data						
4. Impl	ement multi-layer perceptron algorithm for the specified data.						
5. Impl	ement K-NN algorithm for the specified data.						
6. Impl	ement SVM algorithm for the given data.						
7. Impl	ement the concept of decision tree with suitable dataset.						
8. Impl	ement K-means clustering algorithm for the given data and visu	alize and inter	rpret	the re	esult.		
9. Impl	ement genetic operators and Q-learning for the given data.						
10. Build	a supervised model / unsupervised model using appropriate dataset in	n cloud framew	ork				
		TOTA			DIO	Da	
		101A	L: 4	5 PE	'KIO	D5	
COURSEO	UTCOMES.						
At the end o	f the course, the students will be able to:						
COs	Course Outcome Cognitive Level						
CO1	Demonstrate probabilistic based learning and supervised learning	ng n	Inde	rator	d		
	algorithms for the given data.		unde	istan	u		
CO2	Explain how multi layer perceptron algorithm is working for		Unde	rstan	d		
CO3	Breelon K-NN and SVM algorithm for given data		Δn	nlv			
	Summarize where decision trees and K-means clustering		μ	P13			
CO4	algorithm are used.		Unde	rstan	d		
CO5	Build a model in cloud framework.		Ap	ply			

- 1. Russell/Norvig, Artificial Intelligence: A Modern Approach, Pearson Education, may 2022.
- 2. vinod chandra s.s, Anand hareendran S., Artificial intelligence and machine learning, PHI learning, March 2014.

Mapping of COs with POs and PSOs							
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	3	-	2	2	1		
CO2	3	-	2	2	1		
CO3	3	-	2	2	1		
CO4	3	-	2	2	1		
CO5	3	-	2	2	1		
Avg.	3	-	2	2	1		
1-low, 2-medium,	, 3-high		•	·	·		

IT24P22		Category	L	Т	Р	С
1124	22 ADVANCED ALGORITHMS LABORATORY	PCC	0	0	3	1
	· · ·					
PRERI	QUISITE				_	
The stu	dents should have the Knowledge on basic algorithmic concepts, i	including sea	ching	g and	l sort	ting
algorith	ms, and their time and space complexities and should Familiar with	basic graph c	once	pts 1	nclud	ing
types of	graphs (directed, undirected, weighted, unweighted), graph traversa.	I methods, and	1 pro	pertie	es.	
ORIF(CIIVES:					
• 1	o Implement Graph Algorithms.					
• 1	o Explore Optimization and Heuristic Algorithms	1 \ 1	1	1		
• 1	o Implement various searching algorithms (e.g., binary search, linear	r search) and e	evalu	ate tr	leir	
p	erformance in different scenarios.	. 1	1	1	.1	
• 1	o Implement a variety of sorting algorithms (e.g., quicksort, mergeso	ort, heapsort)	and a	nalyz	the the	nr:
e T	fliciency and suitability for different data sets.	6 1 4		1		
• 1	o Write a menu-driven program to implement and test DFS and BFS	for graph tra	versa	l,		
	nderstanding their use cases and performance characteristics.					
LISU OI	Exercise/Experiments:			11		
1.	in a graph with potentially pogetive adge weights. Test your in	ni a single so			verti	that
	contain negative weight cycles	ipiementation	witt	i gra	plis	mai
2	Implement Dijkstra's algorithm to find the shortest paths from a si	nale source to	ر العر	other	verti	ices
۷.	in a graph with non-negative edge weights. Compare its perfor	rmance with	Relli	man_	Ford	on
	different types of graphs	inance with	Dem	nan-	loiu	on
3	Implement Prim's algorithm to find the minimum spanning tree of	f a weighted	undi	recte	d ora	nh
5.	Visualize the resulting minimum spanning tree and compare it	with the ou	tnut	of K	rusk	al's
	algorithm if implemented	with the ou	iput	01 1	LI USK	ui 5
4	Implement Warshall's algorithm to compute the transitive closure	of a directed	oran	h V	erify	the
	results by comparing with the adjacency matrix of the original graph).	8- "P		J	
5.	Implement the Monte Carlo algorithm to estimate the value of π or	solve an opt	imiza	tion	prob	lem
	(e.g., finding the approximate solution to a large-scale optimization	problem). An	alvze	the a	accur	acv
	and performance of your implementation.	1 ,	5			2
6.	Develop a menu-driven program that allows users to choose from	n various sea	rchin	g al	gorith	ıms
	(e.g., binary search, interpolation search) and apply them to sea	arch in differ	ent t	ypes	of c	lata
	structures (arrays, linked lists).					
7.	Implement and compare various sorting algorithms (e.g., quick	sort, merges	ort, 1	heaps	ort)	for
	different datasets. Measure their performance and analyze the result	s based on tin	ne co	mple	xity	and
	space complexity.					
8.	Implement a solver for linear modular equations of the for	rm ax≡b(moo	1 m)	. Те	est y	our
	implementation with various equations and modulus values, and ve	erify correctno	ess u	sing	differ	ent
	input scenarios.					
9.	Create a menu-driven program to perform Depth-First Search (I	DFS) and Bro	eadth	-Firs	t Sea	ırch
	(BFS) on a graph. Allow users to input the graph, choose the traver	rsal algorithm	, and	visu	alize	the
	traversal order.					
10.	Implement the Euclidean algorithm to compute the greatest common	n divisor (GCI	D) of	two	integ	ers.
	Extend the implementation to handle multiple integers and verify it	ts correctness	with	diffe	rent	test
	cases.					
11.	Implement algorithms such as Johnson's algorithm for finding	all pairs sho	test	path	s or	the
	Edmonds-Karp algorithm for solving the maximum flow problem.					

- 12. Implement and experiment with advanced data structures such as AVL trees, Red-Black trees, or B-trees, and evaluate their performance in various scenarios.
- 13. Implement advanced string matching algorithms like the Knuth-Morris-Pratt (KMP) algorithm or the Boyer-Moore algorithm and compare their performance with naive string matching approaches

TOTAL: 30 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Demonstrate and Implement the bellman algorithm	Understand
CO2	Apply linear modulo operation and design the algorithm	Apply
CO3	Construct Dijkstra algorithm	Create
CO4	Design and develop various sorting algorithms	Create
CO5	Illustrate searching algorithms	Understand

REFERENCES:

1. https://www.khanacademy.org/computing/computer-science/algorithms

2. https://www.coursera.org/specializations/algorithms

Mapping of COs with POs and PSOs

COs/ POs	PO1	PO2	PO3	PSO1	PSO2
CO1	2	-	2	2	1
CO2	2	-	2	2	1
CO3	2	-	2	2	1
CO4	2	-	2	2	1
CO5	2	-	2	2	1
Avg.	2	-	2	2	1
1-low, 2-medium	. 3-high				

IT24P23	MINI PROJECT WITH SEMINAR	Category	L	Т	Р	С
1121120		PCC	3	0	0	3

PREREQUISITE:

Students should start by conducting thorough research on their chosen topic, reviewing recent journals and conference papers. They must select their topic with guidance from faculty to ensure relevance. Additionally, students need to develop strong presentation skills to clearly and effectively communicate their findings, using appropriate visual aids.

OBJECTIVES:

- To identify your core knowledge in research, search various projects.
- To identify needs for the chosen topic.
- Incorporate your recently acquired knowledge into the projects.
- Writing technical papers in scientific journal style and format and creating video pitches.
- Showcase it at various events and gain feedback to improvise your project.

Guidelines:

- 1. Students will engage in mutual discussions with faculty to select a specific area within personal finance management for their project.
- 2. Throughout the project duration, students will deliver weekly seminars on their chosen topic, sharing progress updates, insights gained from research, and challenges encountered.
- 3. One week before the final presentation, students will submit a comprehensive technical report to the corresponding faculty member.
- 4. The report should be between 30 to 50 pages in length and encompass project objectives, methodology, implementation details, results, and future recommendations.
- 5. References to recent journals, conference proceedings, and other scholarly sources must be cited appropriately to support the project findings.
- 6. The final presentation will serve as a culmination of the project, where students will showcase the developed personal budgeting application and present key findings from their research.
- 7. A Q&A session will follow the final presentation, allowing faculty and peers to engage with the student presenters, ask questions, and provide feedback.
- 8. The students should have published their project paper in journals or conference.
- 9. The student has to submit a technical report having 30 50 pages to the corresponding faculty one week before the final presentation.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level							
CO1	Utilize various technical resources available from multiple fields	Apply							
CO2	Analyze the importance of intonation, word and sentence stress for improving communicative	Analyze							
CO3	Identify and overcom	Identify and overcome problem sounds. Apply							
-------------------------	--------------------------	---	--------------------	-----------	------------	--	--	--	--
CO4	Illustrate their technic	cal knowledge to en	hance the leadersh	ip skills	Understand				
CO5	Build report and pres	ent oral demonstrati	ions		Create				
		Mapping of COs v	vith POs and PSC)s					
COs/ PO	ls PO1	PO2	PO3	PSO1	PSO2				
CO1	3	3	1	3	2				
CO2	3	3	1	3	2				
CO3	3	3	1	3	2				
CO4	3	3	1	3	2				
CO5	3	3	1	3	2				
Avg.	3	3	1	3 2					
1-low, 2-medium, 3-high									

	ADVANCED COMPUTER ARCHITECTURE	Category	L	Т	Р	С	
1124EU1	(PROFESSIONAL ELECTIVES – I and II)	PEC	3	0	0	3	
PREREQUI	SITE:		1				
Prerequisite f	or Advanced Computer Architecture includes Basic Computer	Architecture,	Perfo	rmar	nce		
Metrics, Men	nory Concepts, Parallelism and Multithreading, Multicore and C	GPU Basics.					
OBJECTIV	ES:						
• To u	nderstand and evaluate computer design principles and perform	ance metrics.					
• To an	halyze memory hierarchy and optimization techniques for impro	oved performation	ince.				
• To id	entify and address issues in multiprocessor architectures, includ	ling cache col	neren	ce an	ıd		
synch	nronization.		_				
• To ex	plore multicore architectures and their applications in modern	computing en	viron	ment	s.		
• To ex	camine vector, SIMD, and GPU architectures for parallel compu	uting and mul	timec	lia			
proce	essing.				(0)		
UNIT - I	FUNDAMENTALS OF COMPUTER DESIGN	T	T	1.D	(9)		
Fundamental	s of Computer Design - Measuring and Reporting Performance	e - Instruction	Leve	el Pai	rallel	ısm	
and its Explo	itation - Concepts and Challenges - Exposing ILP - Advanced	d Branch Pred		n - I	Jyna	mic	
Scheduling -	Hardware-Based Speculation - Exploiting ILP - Instruction	on Delivery a	and S	specu	llatio	n -	
Limitations o	I ILP – Multithreading				(0)		
UNII - II	MEMORY HIERARCHY DESIGN	nd Ontimizati	0.000	Dreat	(9)		
Virtual Mar	optimizations of Cache Performance - Memory Technology a	nu Opunnizau	lons -	PIO	ectio	<u>п:</u>	
	MULTIDDOCESSOD ISSUES	ise Studies.			(0)		
Introduction	Centralized Symmetric and Distributed Shared Memory	Architectures	Cach		(9)	nco	
Issues - Pe	rformance Issues - Synchronization - Models of Mem	ory Consiste	enev-		Stu	dv-	
Interconnecti	on Networks - Buses Crossbar and Multi-stage Interconnection	n Networks	ne y-	case	510	uy-	
UNIT - IV	MULTICORE ARCHITECTURES				(9)		
Homogeneou	s and Heterogeneous Multi-core Architectures - Intel Multic	ore Architect	ures	- SU	$\frac{(r)}{NC}$	MP	
architecture -	IBM Cell Architecture. Introduction to Warehouse-Scale com	outers – Arch	itectu	res-	Phys	ical	
Infrastructure	and Costs- Cloud Computing-Case Study- Google Warehouse	-Scale Compu	iter.				
UNIT - V	VECTOR, SIMD AND GPU ARCHITECTURES TLE	1			(9)		
Introduction-	Vector Architecture - SIMD Extensions for Multimedia - Gra	aphics Proces	sing	Units	s - C	lase	
Studies - GPO	GPU Computing - Detecting and Enhancing Loop Level Paralle	lism-Case Stu	idies.				
		TOTA	L: 4	5 PE	RIO	DS	
COURSE OUTCOMES: At the end of the course, the students will be able to:							
COs	Course Outcome	C	ognit	ive I	Level	l	
CO1	Describe the basic concepts of computer architecture		Und	erstai	nd		
CO2	Discuss the various techniques used for optimizing the cache		Und	erstai	nd		
CO3	Analyze the issues related to multiprocessing		An	alyzin	g		
CO4	CO Finally and house for an analysis of different multicore architectures Finally and house for an analysing						
CO5	CO5 Illustrate the concept of Vector and GPU architectures Creating						
	COS Inustrate the concept of vector and GPU architectures Creating						
REFERENC	ES:						
1. Darryl G	 ove, Multicore Application Programming: For Windows, Linux	, and Oracle S	Solari	sl, P	earsc	on,	

2. John L Hennessey and David A Patterson "Computer Architecture – A quantitative approach" Morgan Kaufmann Elsevier 5th Edition 2012

3.David B. Kirk, Wen-mei W. Hwu, -Programming Massively Parallel Processorsl, Morgan Kauffman, 2010

4. William Stallings "Computer Organization and Architecture – Designing for Performance" Pearson Education 8th Edition 2010

Mapping of COs with POs and PSOs							
		Γ	Γ	T	I		
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	1	-	2	1	-		
CO2	1	-	2	1	-		
CO3	1	-	2	1	-		
CO4	1	-	2	1	-		
CO5	1	-	2	1	-		
Avg.	1	-	2	1	-		
1-low, 2-medium, 3-high							

Category L Т Р С AD-HOC AND SENSOR NETWORKS **IT24E02** (PROFESSIONAL ELECTIVES – I and II) 3 3 PEC 0 0 PREREQUISITE A foundational understanding of computer networks is essential, including concepts such as network topologies, routing protocols, and wireless communication principles. Familiarity with wireless technologies like Wi-Fi, Bluetooth, and cellular networks will help grasp the decentralized nature of adhoc networks. Basic knowledge of energy constraints and resource management in computing systems is valuable, particularly for understanding sensor networks. **OBJECTIVES:** To understand the basics of Ad-hoc & Sensor Networks. To learn various fundamental and emerging protocols of all layers. To study about the issues pertaining to major obstacles in establishment and efficient management of Ad-hoc and sensor networks. To understand the nature and applications of Ad-hoc and sensor networks. To understand various security practices and protocols of Ad-hoc and Sensor Networks. UNIT - I AD HOC NETWORKS -INTRODUCTION AND ROUTING PROTOCOLS (9) Elements of Ad-hoc Wireless Networks - Issues in Ad-hoc wireless networks - Example commercial applications of Ad-hoc networking – Ad-hoc wireless Internet – Classifications of Routing Protocols - Table Driven Routing Protocols - Destination Sequenced Distance Vector (DSDV) - On-Demand Routing protocols - Ad-hoc On-Demand Distance Vector Routing (AODV). UNIT - II SENSOR NETWORKS - INTRODUCTION & ARCHITECTURES (9) Issues - Classifications of routing protocols - Hierarchical and Power aware - Multicast routing -Classifications - Tree based - Mesh based - Ad Hoc Transport Layer Issues - TCP Over Ad Hoc -Feedback based - TCP with explicit link - TCP BuS - Ad Hoc TCP and Split TCP. UNIT - III WSN NETWORKING AND PROTOCOLS (9) Physical Layer and MAC Protocols- Network layer protocol - Transport layer protocol - energy efficiency in WSNs - Data aggregation and management - Security in WSNs - Case Study: Smart Cities and Healthcare. UNIT - IV SENSOR NETWORK SECURITY (9) Network Security Requirements -Issues and Challenges in Security Provisioning - Network Security Attacks - Layer wise attacks in wireless sensor networks - possible solutions for jamming - tampering black hole attack -flooding attack -Key Distribution and Management - Secure Routing - SPINS UNIT - V **MESH NETWORKS** (9) Necessity for Mesh Networks – MAC enhancements – IEEE 802.11s Architecture – Opportunistic routing - Self configuration and Auto configuration - Capacity Models - Fairness - Heterogeneous Mesh Networks - Vehicular Mesh Networks. **TOTAL: 45 PERIODS COURSE OUTCOMES:** At the end of the course, the students will be able to: Cognitive Level COs **Course Outcome** Analyze the function design issues and classification of MAC **CO1** Analyze protocols that have been proposed for ad hoc networks

CO2	Summarize the different types of routing protocols and transport layer issues in ad-hoc networks	Understand
CO3	Compile the principles, architecture and MAC protocol of wireless sensor networks (WSNs)	Create
CO4	Discuss the localization types and various routing issues in wireless sensor networks	Create
CO5	Rephrase the architecture, MAC enhancement, routing and capacity models of mesh networks	Understand

- 1. Feng Zhao and Leonidas Guibas, "Wireless Sensor Networks", Morgan Kaufman Publishers, 2011
- 2. C.Siva Ram Murthy and B.Smanoj, Ad Hoc Wireless Networks Architectures and Protocols, Pearson Education, 2011.
- 3. C.K.Toh," Ad Hoc Mobile Wireless Networks", 3rd Edition, Pearson Education, 2011

4. Thomas Krag and SebastinBuettrich," Wireless Mesh Networking, O'Reilly Publishers", 2007

Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	1	-	1	2	-			
CO2	1	-	1	2	-			
CO3	1	-	1	2	-			
CO4	1	-	1	2	-			
CO5	1	-	1	2	-			
Avg.	1	-	1	2	-			
1-low, 2-medium	, 3-high							

	COMPUTER VISION	Category	L	Т	P	С
TT24E03	(PROFESSIONAL ELECTIVES – I and II)	PEC	3	0	0	3
PREREOUIS	SITE:					
A solid fou	ndation in mathematics is essential, particularly in li	near algebra	(e.	g., r	natric	ces,
transformation	ns), calculus (e.g., optimization), and probability and statistic	cs (e.g., distri	butio	ns, E	Bayes	ian
inference). Fa	miliarity with programming languages such as Python, alor	ng with librar	ies li	ke C) penC	CV.
TensorFlow.	or PvTorch, is crucial for implementing computer vision a	lgorithms. Ba	sic k	now	edge	of
image process	ing concepts such as filtering edge detection and color space	s is also impo	ortant	-		01
	S	s, is also impo	Jituin	•		
• To un	derstand the fundamental image processing techniques such as	filtering, thre	shold	ling.	and	
edge o	letection.	intering, the	511010	····· _D ,	una	
• To exactive	plore distance functions, skeletonization, and shape recognition contours.	n using deform	nable	mod	els a	nd
• To de GHT.	velop skills in object location and feature collation using spatia	al matching te	chnic	ues a	ınd	
• To un surfac	derstand 3D vision methods, including projection schemes, share representations.	ape-from-X te	chnic	ques,	and	
• To ap	ply image processing and computer vision techniques to real-w	vorld applicati	ons,	inclu	ding	
face d	etection, face recognition, and surveillance systems.					
UNIT - I	IMAGE PROCESSING FOUNDATIONS				(9)	
Review of image	age processing techniques – classical filtering operations – Thr	esholding tecl	hniqu	les –	edge	
detection tech	niques – corner and interest point detection – mathematical mo	orphology – te	xture			
UNIT - II	SHAPES AND REGIONS				(9)	
Binary shape	analysis - connectedness - object labeling and counting - size	filtering – dis	tance	func	tions	, —
skeletons and	thinning – deformable shape analysis – boundary tracking pro	cedures – acti	ve co	ntou	<u>s</u> –	
shape models	and shape recognition – centroidal profiles – handling occlusion	on – boundary	leng	th m	easur	es
- boundary de	scriptors – chain codes – Fourier descriptors – region descripto	ors – moments	5.		(0)	
	HOUGH I KANSFORM		1 1	:	(9)	
Line detection	ANSAC for straight line detection – HT based sirewlar object	detection	local	izati	on –	
location – spe	ed problem – ellipse detection – Case study: Human Iris locati	a = bole determined as	ction		ner	
generalized H	ough Transform (GHT) – spatial matched filtering – GHT for	ellinse detecti	on -	ohiea	۰t	
location – GH	T for feature collation.	empse detecti	on	oojee	, c	
UNIT - IV	3D VISION AND MOTION				(9)	
Methods for 3	D vision – projection schemes – shape from shading – photom	etric stereo –	shap	e froi	n	
texture – shap	e from focus – active range finding – surface representations –	point-based r	epres	senta	ion -	-
volumetric rep	presentations – 3D object recognition – 3D reconstruction – int	roduction to r	notio	n –		
triangulation -	- bundle adjustment – translational alignment – parametric mo	tion – spline-t	based	moti	on –	
optical flow –	layered motion.					
UNIT - V	APPLICATIONS				(9)	
Application: F	Photo album – Face detection – Face recognition – Eigen faces	- Active appe	earan	ce an	d 3D	
shape models	of faces Application: Surveillance - foreground-background se	eparation – pa	rticle	filte	rs –	
Chamfer mate	hing, tracking, and occlusion - combining views from multiple	e cameras – h	uman	gait		
analysis Appli	cation: In-vehicle vision system: locating roadway - road mar	kings – identi	fying	road	sign	s –
locating pedes	trians.	тота	T /			DO
		TOTA	L: 4	is Pe	'KIO	D 2
COURSE OU	JTCOMES:					
At the end of	the course, the students will be able to:					
COs	Course Outcome		ogni	ivo I	AVA	
			ogm			

M.Tech. - Information Technology

CO2	Develop skills in shape recognition by integrating deformable models.	Applying
CO3	Apply spatial matching and GHT to solve real-world challenges.	Applying
CO4	Summarize the 3D vision methods, including the principles .	Understanding
CO5	Assimilate image processing and computer vision solutions into practical applications.	Creating

REFERENCES:

- 1. D. L. Baggio et al., —Mastering OpenCV with Practical Computer Vision Projects, Packt Publishing, 2012.
- 2. E. R. Davies, —Computer & Machine Vision^{II}, Fourth Edition, Academic Press, 2012.
- 3. Jan Erik Solem, —Programming Computer Vision with Python: Tools and algorithms for analyzing imagesl, O'Reilly Media, 2012.
- 4. Mark Nixon and Alberto S. Aquado, —Feature Extraction & Image Processing for Computer Visionl, Third Edition, Academic Press, 2012.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	2	-	1	1	-	
CO2	2	-	1	1	-	
CO3	2	-	1	1	-	
CO4	2	-	1	1	-	
CO5	2	-	1	1	-	
Avg.	2	-	1	1	-	
1-low, 2-medium	, 3-high					

K.S.R. College of Engineering

IT24E04	DATA SCIENCE	Category	L	Т	Р	С
1124EV4	(PROFESSIONAL ELECTIVES – I and II)	PEC	3	0	0	3
PREREQUIS	SITE:					
A solid under	standing of calculus, linear algebra, and basic statistics is crucia	al. Proficiency	/ in F	ytho	n is	
essential, part	icularly familiarity with libraries like NumPy and Pandas. To k	now the conc	epts	of da	tabas	ses,
SQL for data	storage solutions is important for effective data collection and 1	nanagement.				
OBJECTIVE	S:		_	_		
To und	erstand the terminology and foundational concepts of data scien	nce, including	the o	lata s	scien	ce
process	and toolkit.	11	1 1.			
• To expl	ore the sources of data and understand the techniques for data	collection, inc	cludir	ig wo	orkin	g
With A	18.					
• To und	erstand the fundamental terminology and concepts in data analy	ysis. ing missing d	oto al	footi	volv	
• To deve	to the methods used in modern data science applications	ing missing u		10011	very.	
	INTRODUCTION TO CODE CONCEPTS AND TECHN				(0)	
Introduction -	Terminology – Data science process – Data science toolkit – 7	Types of data	– Fx	nlor	()	
Data Analysis	Example applications.	rypes or uata	- L7	pior	atory	
UNIT - II	DATA COLLECTION AND MANAGEMENT				(9)	
Introduction -	- Sources of Data – Data collection and APIs – Exploring and f	ixing data – I	Data s	torag	ge an	d
management -	-Using Multiple Data Sources	-				
UNIT - III	DATA ANALYSIS				(9)	
Introduction -	- Terminology and concepts – Introduction to statistics – Centra	al tendencies a	and d	istrit	oution	ıs
- variance -L	ion SVM Naive Bayes	achine learnii	ng aig	goritr	ims –	-
UNIT - IV	PYTHON LIBRARIES FOR DATA WRANGLING				(9)	
Basics of Nur	npv Arrays – Aggregations – Computations on Arrays – Comp	arisons. Mask	s. Bo	olear	1 log	ic
- Fancy Index	ing – Structured Arrays – Data Manipulation with Pandas – Data	ata Indexing a	nd S	electi	on –	-
Operating on	Data – Missing Data.	-				
UNIT - V	DATA VISUALISATION AND APPLICATIONS				(9)	
Introduction -	- Types of data visualization – Data for visualization – Data typ	bes – Data enc	odin	gs –]	Retin	al
variables –Ma	upping variables to encodings – Visual Encodings- Visualization	n with Seabor	me. A	Appli		ns:
Techniques —	- Application Development Methods of Used in Data Science		i and	Anai	ysis	
Teeninques	representation Development methods of Clock in Dual Science.	ТОТА	L: 4	5 PE	RIO	DS
COURSE OU						
At the end of	the course, the students will be able to:					
COs	Course Outcome	С	ognit	tive I	Level	
CO1	Discuss the key concepts in data science- including their real-w	orld	Cr	ootin	a	
	pplications and the toolkit used by data scientists		CI	cating	g	
CO2 I	Build data collection and management scripts using MongoDB		Ap	plyin	g	
CO3 A	Analyze the concept of Data Analysis		Ana	alyzir	ıg	
	Develop Python programming language to manipulate and clean	1	An	nluin	a	
04	latasets using various libraries.		Applying			
	dentify Data Visual encoding Techniques and applications usag	ge of	of			
	Data Science		Applying			

- 1. Luca Massaron John Paul Mueller, "Python Data Science Handbook", 2nd Edition, Wiley 2019.
- 2. Cathy O'Neil and Rachel Schutt. "Doing Data Science", Straight Talk From The Frontline, First Edition, O'Reilly, 2013.
- 3. Foster Provost, Tom Fawcet, "Data Science for Buisness", 1st Edition, O'Reilly Publishers, 2013
- 4. Bill Franks, "Taming the Big Data Tidal Wave: Finding Oppurunities in Huge Data Streams with Advanced Analytics", 1st Edition, John Wiley & Sons, 2012

Mapping of COs with POs and PSOs							
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	2	-	2	2	-		
CO2	2	-	2	2	-		
CO3	2	-	2	2	-		
CO4	2	-	2	2	-		
CO5	2	-	2	2	-		
Avg.	2	-	2	2	-		
1-low, 2-medium, 3-high							

IT24F05	SCIENTIFIC COMPUTING	Categ	ory	L	Т	Р	С
11241203	(PROFESSIONAL ELECTIVES – I and II)	PEC	С	3	0	0	3
		L					
PREREQUI	SITE:						
A solid found	ation in calculus, linear algebra, and basic programming conce	pts is ess	sential	. Far	nilia	rity v	vith
statistical me	thods, particularly in understanding randomness and rando	m numt	ber ge	enera	tion,	is a	ılso
important. A	dditionally, exposure to mathematical software or program	nming la	angua	ges	like	Pyth	ion,
MATLAB, or	R will be beneficial for simulation and numerical methods.	-	-	-			
OBJECTIV	ES:						
• Underst	and the principles of modeling and general systems theory.						
Compre To und	whend the role of computational methods in addressing scientific problem the stand optimization techniques, including problem formulation, so	lems. Iution me	ethods.	and	kev	conc	epts
like exi	stence, uniqueness, and convexity.			,			- P
• To exp	ore methods for solving equations and systems, including graphica	al and ite	erative	tech	nique	s, ma	ıtrix
inversio	n, interpolation methods, and regression analysis.	IZ (. 1				<i>.</i> .
• 10 stud	y numerical methods for differentiation and integration, including Ki	unge-Kut	ta and	vario	ous in	itegra	tion
UNIT - I	INTRODUCTION TO SYSTEM MODELING					(9)	
Modelling an	d general systems theory - Concepts of simulation - Types	of sim	ulatio	1 – I	Expe	rime	ntal
design consid	leration - Comparison and selection of simulation languages	s – Deve	elopm	ent o	of sir	nula	ion
models using	g any one of the languages for some problems – stochastic	simulati	on –	Ran	domr	ness	and
random numb	pers – Random number generators – software for generating ran	idom nui	mbers	•		(0)	
	APPROXIMATIONS IN SCIENTIFIC COMPUTING	1.0				(9)	
Overview of	Scientific Computing – Importance of Approximations - Gen	eral Stra	tegy -	- Ap	prox	imati	ons
In Scientific	computation – Mathematical Software – Mathematical S	onware	Libra	ries	- 3	cient	.111C
	OPTIMIZATION					(9)	
Optimization	Problems – Existence and Uniqueness – Convexity – Onti	mization	in ()ne '	Dime	usio	n _
Multidimensi	onal Unconstrained Optimization – Constrained Optimization -	- Linear	Proor	amm	ing	11510	
withtensi	POOTS OF FOULTION LINEAR ALCERRALC FOUL			amm	mg		
UNIT - IV	INTERPOLATION					(9)	
Graphical M	ethod – Iterative Methods – Newton Raphson Method – I	Break F	ven A	nals	reie -	- Ga	1155
Flimination -	Solution Of Linear Systems By Gaussian – Gauss Jordan – Ja	cobi And	d Gaus	s Se	idel 1	Ueth	ode
– Matrix Inve	ersion – Gauss – Jordan Method – Least Square Regression –	Newton'	's Div	ided		ffere	nce
Interpolating	Polynomials – Lagrange's polynomials – Newton's Forw	ard and	Back	war	- Di d Di	ffere	nce
Formula St	right and Bassel's Central Difference Formula	aru anu	Daer	war		nere	nee
Tornara – St		лті а ті	ON				
UNIT - V	AND INTEGRATION					(9)	
Numerical Di	fferentiation: Runge – Kutta Methods – Boundary – Value and	Eigen v	alue F	robl	ems -	– Pai	rtial
Differential H	Equation – Elliptic Equation – Parabolic Equations – Numeric	al Integr	ration	: Tra	pezo	idal	and
Simpson's R	ules – Two and Three Point Gaussian Ouadrature Form	ula – I	Double	e In	tegra	1 Us	sing
Tranezoidal and Simpson's Rule					-0		
	r						
TOTAL: 45 PERIODS							
COURSE OUTCOMES:							
At the end of	the course, the students will be able to:						
COs	Course Outcome		Co	ognit	ive I	Level	
CO1 7	To understand system modeling and simulation concepts, focus	ing		Ana	alyzir	ng	

	on types, experimental design, and random number generation.	
CO2	To recognize the significance of approximations in scientific computing and familiarize with relevant mathematical software and computing environments.	Understanding
CO3	To grasp essential optimization concepts, including problem formulation, existence, convexity, and methods for constrained and unconstrained optimization.	Creating
CO4	Categorize the various methods to find out the roots of the equation	Analyzing
CO5	Compare the partial difference equation along with integration	Evaluating

- 1. Steven C, Chapra Raymond P Canale, Numerical Methods for Engineering, 8th Edition, McGraw-Hill 2021
- 2.George F. Pinder, Numerical Methods for Solving Partial Differential Equations: A Comprehensive Introduction for Scientists and Engineers, 1st Edition, Wiley 2019.
- 3. Norbert Schorghofer, Lessons in Scientific Computing, 1st Edition, CRC Press, 2018.
- 4. Jerry Banks and John Carson, Discrete Event System Simulation, 5th Edition, Pearson Education India, 2013.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	2	-	2	2	-	
CO2	2	-	2	2	-	
CO3	2	-	2	2	-	
CO4	2	-	2	2	-	
CO5	2	-	2	2	-	
Avg.	2	-	2	2	-	
1-low, 2-medium, 3-high						

IT24F06	DIGITAL IMAGE PROCESSING	Category	L	Т	Р	С		
1124200	(PROFESSIONAL ELECTIVES – I and II)	PEC	3	0	0	3		
PREREQUI	SITE:							
Understand	ing of linear algebra and calculus, particularly concepts r	elated to mat	rices	,				
transformat	ions, and functions. Knowledge of signal processing func	lamentals, in	cludi	ng				
continuous	and discrete signals, Fourier analysis, and filtering techni	ques. To kno	ow h	ow i	magi	ng		
systems wo	rk, including sensors, optics, and the capture of images.							
OBJECTIV	ES:							
Grasp visual	the basic principles of digital image processing, includir perception, and pixel relationships.	ng image repr	resen	itatic	on,			
• Learn	techniques for image enhancement through spatial and f	requency do	main	met	hods	5,		
focus	ng on transformations, filtering, and histogram processin	lg.						
• Explo	re methods for image restoration, including various noise	e models and	filte	ring				
techni	ques such as Wiener and geometric mean filters.			U				
• Devel	op skills in spatial feature extraction and segmentation te	chniques, in	cludi	ng e	dge			
detect	ion, region-based methods, and clustering.	1		U	U			
• Under	stand the importance of image compression techniques a	and recognition	on m	etho	ds,			
incluc	ling coding standards like JPEG and MPEG, as well as fe	eature-based	reco	gniti	on			
strate	gies.							
UNIT - I	INTRODUCTION TO DIGITAL IMAGING				(9)			
Introduction	to Digital Image Processing – Elements of Digital Image	e Processing	Syst	em ·	Vis	sual		
perception an	d properties of human eye - Image Representation - AS	Simple Imag	e Mo	odel	- Ba	asic		
Relationship	Between Pixels – Image Geometry.							
UNIT - II	IMAGE OPTIMIZATION				(9)			
Spatial Doma	in: Gray Level Transformations – Histogram Processing	g – Basics of	Spat	ial F	Filter	ing		
-Smoothing	and Sharpening-Frequency Domain: DFT (Discrete For	urier Transfo	orm)	– FF	T (F	⁷ ast		
FourierTrans	form) - DCT (Discrete Cosine Transform)- Smoothing	g and Sharp	ening	g fre	que	ncy		
domain filte	ers – Gaussian Filters – Homomorphism Filterin	g –Multi	Spec	tral	Im	age		
Enhancement	– Color Image Enhancement.							
UNIT - III	IMAGE RESTORATION				(9)			
Image Resto	ration Model - Properties - Noise Models - Inverse	and Wiener	Filt	erin	g-Fii	nite		
Impulse Res	ponse (FIR) Wiener Filtering-Geometric Mean Filter	- Constraine	d Le	ast	Squa	ires		
Filtering- Image Reconstruction from Projections.								
UNIT - IV	IMAGE ANALYSIS AND SEGMENTATION				(9)			
Spatial Feat	ure Extraction- Edge Detection- Boundary Extraction	on- Scale-Ir	ivari	ant	Feat	ure		
Transform (S	SIFT) - Thresholding - Region Based Segmentation -	Region Gr	owin	g –	Reg	ion		
Splitting and	Merging - Region Segmentation Using Clustering and	Superpixels	- Mo	orph	olog	ical		
Watersheds - Motion in Segmentation.								
UNIT - VIMAGE COMPRESSION AND RECOGNITION(9)								
Need for Da	ta Compression – Huffman – Run Length Encoding	– Shift Cod	les –	Ari	thm	etic		
Coding – JPE	EG Standard – MPEG Standard – Boundary Representati	on – Bounda	ry D	escr	iptio	n –		
Regional De	scriptors – Topological Feature – Recognition based of	on Matching	- Ap	plica	ation	of		
Image Processing.								

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Explain digital image processing fundamentals- sampling and quantization concepts for 2D images	Understanding
CO2	Build image enhancement techniques	Applying
CO3	Develop new techniques in the areas of image enhancement- restoration	Creating
CO4	Explain key concepts in image analysis and apply various image segmentation techniques	Understanding
CO5	Recommend various image processing techniques for real time applications	Evaluating

- Rafael C. Gonzalez, Richard Eugene Woods, Digital Image Processing, 4th Edition, Pearson Education 2018
- 2. Anil K. Jain, Fundamentals of Digital Image Processing, 1st Edition, Pearson Education 2015
- 3. S Jayaraman, S Esakkirajan, T Veerakumar, Digital Image Processing, 2nd Edition, McGraw Hill 2020
- Alasdair McAndrew, A Computational Introduction to Digital Image Processing, 2nd Edition, Taylor & Francis Group, CRC Press, 2016

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	1	-	2	2	1	
CO2	1	-	2	2	1	
CO3	1	-	2	2	1	
CO4	1	-	2	2	1	
CO5	1	-	2	2	1	
Avg.	1	-	2	2	1	
1-low, 2-medium, 3-high						

11241.07	XML AND WEB SERVICES	Category	L	Т	Р	С
	(PROFESSIONAL ELECTIVES – I and II)	PEC	3	0	0	3
PREREQUIS A foundational commonly use including HT internet. Addit how data is str OBJECTIVE • To und • To und using v • Gain an betwee • Explore engage • To und system UNIT-I XML - bene Databases - 2 Files - XML	ITE: I knowledge of programming languages such as Java, Python d to implement and interact with web services. A basic und IP, HTML, and CSS, is crucial for comprehending how ionally, familiarity with data formats like XML and JSON uctured and exchanged between systems. S: lerstand the fundamentals of XML and its benefits. lerstand the business motivations for using web services Under veb services n understanding of Simple Object Access Protocol, its structure, and n clients and servers. e the role of XML in vertical industries and how web services for m with customers on mobile platforms. erstand how to manage, store, and organize digital content effective s. XML TECHNOLOGY FAMILY efits – Advantages of XML over HTML – EDI (Ele KML based standards – DTD (Document Type Declaration processing – DOM (Document Object Model) – SA technologies – XSL (XML Style sheet Language) – X	a, or C# is esse erstanding of web services is important rstand the busin how it support obile devices en ly in modern con- ectronic Data ion) – XML X (simple A FORMS – λ	ential web for u ness m s mes nable ontent a Int Sche PI fo KHTI	, as t techr ate o nder: otiva sagin busin mana ercha mas or X ML -	hese nolog over stand tions g esses ageme [9] ange – XI ML) – Vo	are ies, the ling for to ent) - ML
XML						лес
UNIT-II	ARCHITECTING WEB SERVICES				[9]	<u> </u>
UNIT–II Business mot Customer) – ' Architecture technology st application se	ARCHITECTING WEB SERVICES ivations for web services – B2B (Business to Business) – Technical motivations – Limitations of CORBA and DC (SOA) – Architecting web services – Implementation via ack – Logical view – Composition of web services – De- erver to peer to peer – Process view – Life in the runtime	– B2C (Busir OM – Servic ew – Web ser ployment vie	ness t e Or rvice w fro	io iente s om	[9] ed]
UNIT-II Business mot Customer) – ' Architecture technology st application se UNIT-III	ARCHITECTING WEB SERVICES ivations for web services – B2B (Business to Business) – Technical motivations – Limitations of CORBA and DC (SOA) – Architecting web services – Implementation via ack – Logical view – Composition of web services – Dep erver to peer to peer – Process view – Life in the runtime WEB SERVICES: SOAP & WSDL	– B2C (Busir OM – Servic ew – Web ser ployment vie	ness t e Or rvice w fro	io iente s om	[9]	<u> </u>
UNIT–II Business mot Customer) – ' Architecture of technology st application se UNIT–III Web Services –SOAP Mess WSDL Decl Implementati	ARCHITECTING WEB SERVICES ivations for web services – B2B (Business to Business) – Technical motivations – Limitations of CORBA and DC (SOA) – Architecting web services – Implementation via ack – Logical view – Composition of web services – De- erver to peer to peer – Process view – Life in the runtime WEB SERVICES: SOAP & WSDL s SOAP: – Structure of SOAP – SOAP Namespaces – S saging Modes – SOAP Faults – SOAP over HTTP. W arations – WSDL Abstract Interface – Messaging H on.	– B2C (Busin OM – Servic ew – Web ser ployment vie SOAP Header /SDL: Struct Exchange pa	the or rescale of $rs - s$	o iente s om SOA of W s –	[9] ed [9] P Bo /SDI WS	DDL
UNIT–II Business mot Customer) – ' Architecture technology st application se UNIT–III Web Services –SOAP Mess WSDL Deck Implementati UNIT–IV	ARCHITECTING WEB SERVICES ivations for web services – B2B (Business to Business) – Technical motivations – Limitations of CORBA and DC (SOA) – Architecting web services – Implementation vide ack – Logical view – Composition of web services – De- erver to peer to peer – Process view – Life in the runtime WEB SERVICES: SOAP & WSDL SOAP: – Structure of SOAP – SOAP Namespaces – So saging Modes – SOAP Faults – SOAP over HTTP. We arations – WSDL Abstract Interface – Messaging H on. IMPLEMENTING XML IN E-BUSINESS	– B2C (Busir OM – Servic ew – Web ser ployment vie SOAP Header SDL: Struct Exchange pa	ness t e Or rvice w fro trs – S ture o ttern	o iente s om SOA of W s –	[9] ed [9] P Bo /SDI WS	Ddy Ddy DL DL [9]
UNIT-II Business mot Customer) – ' Architecture of technology st application se UNIT-III Web Services –SOAP Mess WSDL Decl Implementati UNIT-IV B2B – B2C A systems – eb devices	ARCHITECTING WEB SERVICES ivations for web services – B2B (Business to Business) – Technical motivations – Limitations of CORBA and DC (SOA) – Architecting web services – Implementation via ack – Logical view – Composition of web services – Deg erver to peer to peer – Process view – Life in the runtime WEB SERVICES: SOAP & WSDL S SOAP: – Structure of SOAP – SOAP Namespaces – S saging Modes – SOAP Faults – SOAP over HTTP. W arations – WSDL Abstract Interface – Messaging H on. IMPLEMENTING XML IN E-BUSINESS Applications – Different types of B2B interaction – Con XML– Rosetta Net Applied XML in vertical industry	- B2C (Busin OM – Servic ew – Web ser ployment vie SOAP Header /SDL: Struct Exchange pa	ness f e Or rvice w fro rs – S ture ttern	iente s om SOA of W s – sines for	[9] P Bo /SDI WS	Ddy Ddy DL DL [9] ML Dile
UNIT-II Business mot Customer) – ' Architecture technology st application se UNIT-III Web Services –SOAP Mess WSDL Deck Implementati UNIT-IV B2B – B2C A systems – eb devices UNIT-V	ARCHITECTING WEB SERVICES ivations for web services – B2B (Business to Business) – Technical motivations – Limitations of CORBA and DC (SOA) – Architecting web services – Implementation via ack – Logical view – Composition of web services – De- erver to peer to peer – Process view – Life in the runtime WEB SERVICES: SOAP & WSDL SOAP: – Structure of SOAP – SOAP Namespaces – So saging Modes – SOAP Faults – SOAP over HTTP. We arations – WSDL Abstract Interface – Messaging H on. IMPLEMENTING XML IN E-BUSINESS Applications – Different types of B2B interaction – Con XML – Rosetta Net Applied XML in vertical industry XML AND CONTENT MANAGEMENT	- B2C (Busin OM – Servic ew – Web ser ployment vie SOAP Header SDL: Struct Exchange pa	rs – S ture of ttern	som SOA SOA SOA s – sines for	[9] ed [9] P Bo /SDI WS ss XI mol [9]	DL [9] ML pile
UNIT-II Business mot Customer) – ' Architecture technology st application se UNIT-III Web Services –SOAP Mess WSDL Deck Implementati UNIT-IV B2B – B2C A systems – eb devices UNIT-V Semantic We schema – Arc	ARCHITECTING WEB SERVICES ivations for web services – B2B (Business to Business) – Technical motivations – Limitations of CORBA and DC (SOA) – Architecting web services – Implementation vide ack – Logical view – Composition of web services – De- erver to peer to peer – Process view – Life in the runtime WEB SERVICES: SOAP & WSDL as SOAP: – Structure of SOAP – SOAP Namespaces – Staging Modes – SOAP Faults – SOAP over HTTP. We arations – WSDL Abstract Interface – Messaging H on. IMPLEMENTING XML IN E-BUSINESS Applications – Different types of B2B interaction – Con XML – Rosetta Net Applied XML in vertical industry XML AND CONTENT MANAGEMENT eb – Role of Meta data in web content – Resource De- thitecture of semantic web – Content management workf	- B2C (Busin OM – Servic ew – Web ser ployment vie SOAP Header SDL: Struct Exchange pa nponents of e - Web ser escription Fra	ness f e Or rvice w fro rs – S ture o ttern e- bu vices	som SOA of W s – sines for	[9] ed [9] P Bo /SDI WS ss XI mol [9] – R	DL [9] [9] [9] [0] [9] [0]

COURSE OUTCOMES:

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Discuss the basics of XML Technology	Understanding
CO2	Outline the basic concepts of Web Services	Understanding
CO3	Develop web services using SOAP and WSDL technologies.	Creating
CO4	Illustrate the use of XML Line-business	Understanding
CO5	Importance of usage of XML and content management	Evaluating

- 1. Ron schmelzer et al, XML and Web Services, Pearson Education, 3rd Edition, 2012
- 2. Richard Monson-Haefel, "J2EE Web Services", 8th Edition, Person Education, 2012.
- 3. H.M.Deitel, P.J.Deitel, T.R.Nieto, T.M.Lin, XML How to Program, Pearson Education, 2012
- 4. Frank P, Coyle, XML, Web Services and the Data Revolution, Pearson Education, 2011

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	1	-	2	1	-	
CO2	1	-	2	1	-	
CO3	1	-	2	1	-	
CO4	1	-	2	1	-	
CO5	1	-	2	1	-	
Avg.	1	-	2	1	-	
1-low, 2-medium, 3-high						

-						<u> </u>
IT24E08	DISTRIBUTED SYSTEMS	Category	L	Т	Р	C
	(PROFESSIONAL ELECTIVES – I and II)	PEC	3	0	0	3
PREREQUIS The students s IP addressing, such as Java communication queues, trees, a OBJECTIVE • To gain fundame • To exan architect • To study	ITE: hall have the Knowledge of networking concepts such as the routing, and basic network security and Proficiency in at le a, C++, or Python, particularly for implementing algor n and also have the knowledge on fundamental data structures and graphs, and how they are used in algorithms. S: a comprehensive understanding of various system mode ental models, and understands networking concepts and inter p mine the operating system layer, focusing on protection ture of operating systems in distributed environments. y synchronization techniques in distributed systems, including	e OSI model, ast one progra rithms and 1 s like arrays, 1 els, including process comm n, processes, g clock synch	TCP/ ammi nandl inkec arch unica threa	/IP p ing la ing l lists itectu ition. ads, ation	rotoc angua netw s, sta- ural and a, log	ols, ige, ork cks, and the
 Fo study synchronization teeningless in distributed systems, including crock synchronization, logical clocks, global states, and distributed debugging. To gain insights into the concepts of replication, distributed shared memory, and web services as they relate to distributed transaction processing. To analyze mutual exclusion problems and algorithms, including lockout-free mutual exclusion, and understand the lower bound on the number of registers in asynchronous shared memory models. UNIT - I BASIC CONCEPTS (9) 						hey and
Architectural representation	and fundamental models- Networking Inter process of and marshalling- Client-server and Group communication.	communication	s- Sy n- E	stem Extern	$\frac{\text{mod}}{(9)}$	els- lata
UNIT - IIDISTRIBUTED OBJECTS AND PROCESS(9)Distributed objects and remote invocation- Communication between distributed objects- Remote procedure call- Events and notifications - The operating system layer- Protection- Processes and Threads- Communication and invocation- OS Architecture. Security techniques- Cryptographic algorithms- Access control- Digital signatures- Cryptography pragmatics- Needham-Schroeder- Kerberos- Securing electronics transaction_IEEE 202.11 WiEi						
UNIT - III	OPERATING SYSTEM ISSUES				(9)	
Distributed file systems - Name services- Domain name system- Directory and discovery services- Peer to peer systems- Napster file sharing system- Peer to peer middleware routing overlays – Clocks- Events and process states Clock Synchronization - Logical clocks Global states - Distributed debugging - Distributed mutual exclusion - Elections - Multicast communication.						
UNIT - IV	DISTRIBUTED TRANSACTION PROCESSING	nol Timostor		dania	(9)	Flat
Transactions - Nested transactions - Locks - Optimistic concurrency control - Timestamp ordering - Flat and nested distributed transactions - Atomic commit protocols - Concurrency control in distributed transactions - Distributed deadlocks - Transaction recovery - Overview of replication, Distributed shared memory and Web services						
UNIT - V	DISTRIBUTED ALGORITHMS				(9)	
Synchronous network model - Algorithms: leader election- maximal independent set -Asynchronous system model: I/O automata- operations on automata- fairness - Asynchronous shared memory model - Mutual exclusion: model- the problem- stronger conditions- lockout-free mutual exclusion algorithms- lower bound on the number of registers - Asynchronous network model - Asynchronous network algorithms: leader election in a ring and an arbitrary network.						

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Have knowledge on basics of distributed systems.	Understand
CO2	Know about distributed objects and process.	Understand
CO3	Ability to understand Operating System issues.	Understand
CO4	Gain Knowledge on Transactions Processing.	Understand
CO5	Ability to design distributed systems for basic level applications.	Understand

REFERENCES:

1.George Coulouris, Jean Dollimore, and Tim Kindberg, "Distributed Systems Concepts and Design", 5th ed., Pearson Education, 2011

2.Andrew S. Tanenbaum, Maartenvan Steen, "Distributed Systems Principles and Paradigms", 2nd ed., Pearson Education, 2006

3.Andrew S. Tanenbaum, Maarten Van Steen ,"Distributed Systems, Principles and Paradigms", , 2nd Edition, PHI,2018

4. Ajay D. Kshemakalyani and Mukesh Singhal ,"Distributed Computing, Principles, Algorithms and Systems", Cambridge, 2010.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	1	-	2	1	-	
CO2	1	-	2	1	-	
CO3	1	-	2	1	-	
CO4	1	-	2	1	-	
CO5	1	-	2	1	-	
Avg.	1	-	2	1	-	
1-low, 2-medium, 3-high						

IT24E09	MULTIMEDIA COMMUNICATON	Category	L	Т	Р	С
112-1202	(PROFESSIONAL ELECTIVES – I and II)	PEC	3	0	0	3
PREREQUI	SITE:					
Basic knowle	dge in computer hardware, software and networking along with	n programmin	g ski	lls in	HTN	ИL,
CSS and Java	ascript.					
OBJECTIV	ES:					
• To Lea	rn about create, manage, and deliver multimedia content across	various platf	orms.			
• To Enl	nance Understanding of Text, Image Formats and Compression	Standards.				
• To Ga	in Proficiency in Audio and Video Compression Formats and Co	odecs.				
To Lea	rn about Popular Video Compression Standards.					
To Stu	dy About Synchronization and Multimedia Operating Systems.					
UNIT - I	INTRODUCTION				(9)	
Introduction	about Multimedia Information Representation - Multimed	ia Networks	-	Mu	ltime	edia
Applications	- Application and Network Terminology - Network QoS and	Application (QoS ·	- Dig	itiza	tion
Principles – 7	Text. Image, Audio and Video.					
UNIT - II	TEXT AND IMAGE COMPRESSION				(9)	
Compression	Principles - Text Compression Techniques - Run length, Huf	fman, LZW -	Doc	umer	nt Im	age
compression	Techniques - T2 and T3 coding - Image Compression Techniqu	es - GIF, TIF	F and	I JPE	G	
UNIT - III	AUDIO AND VIDEO COMPRESSION				(9)	
Audio Comp	ression – Principles, DPCM, ADPCM - Adaptive and Linear pr	redictive codi	ng - (Code	-Exc	ited
LPC - Percep	tual coding - Video Compression Principles - MPEG and Dolby	y Coders Vide	eo Co	mpre	essio	n
UNIT - IV	VIDEO COMPRESSION STANDARDS				(9)	~ •
Introduction	about Video Compression – Different Standards - H.261, H.26	53, MPEG, M	IPEG	1, N	APEC	э2,
MPEG-4 - F	Reversible VLCs - MPEG / Standardization Process of Mul	timedia Cont	tent I	Jesci	riptic)n -
MPEG 21 m	iltimedia framework.				(0)	
UNIT - V	SYNCHRONIZATION	0 1 1		T .	(9)	
Need for Syn	chronization - Presentation Requirements, Reference Model for	Synchroniza	tion -	Intro	oduc	tion
to SMIL - I	Multimedia Operating Systems - Resource Management, Pro	ocess - Resol	urce	Man	agen	ient
Techniques.						
		тота	T. /	5 DL		חר
		101A	L; 4	STE		05
COURSE O	UTCOMES:					
At the end o	f the course, the students will be able to:					
COs	Course Outcome	C	ognit	ive I	Leve	1
C01	Comprehension of Basic Multimedia Concepts		Reme	mbe	rino	
<u>CO2</u>	Familiarity with Text Image Compression Techniques	1	Reme	mbe	ring	
	Gain the Skill in Implementation of audio and video Compressi	on	ixeme	moe	mg	
CO3	Techniques]	Reme	mbe	ring	
CO4	CO4 Gain the Knowledge of Video Compression Standards Remembering					
CO5	Acquire Knowledge in Synchronization and its Various Technic		Reme	mhe	ring	
		1		moe	mg	
REFERENC	'ES:					
1. Fred F	Jalsall's "Multimedia Communications: Applications Networ	ks. Protocols	s. and	d Sta	andar	ds"
Pearson Education, 2001						

- 2. K. R Rao, Zoran S. Bojkovic, Dragorad A. Milovanovic "Multimedia Communication Systems", Pearson Education, 2004.
- 3. Ze-Nian Li and Mark S. Drew"Fundamentals of Multimedia"Pearson, 2014
- 4. Raifsteinmetz, Klara Nahrstedt, "Multimedia: Computing, Communications and Applications", Pearson Education, 2002.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	1	-	2	1	-	
CO2	1	-	2	1	-	
CO3	1	-	2	1	-	
CO4	1	-	2	1	-	
CO5	1	-	2	1	-	
Avg.	1	-	2	1	-	
1-low, 2-medium, 3-high						

IT24E10 INFORMATION RETRIEVAL TECHNIQUES Category L						С		
11471210	(PROFESSIONAL ELECTIVES – I and II)	PEC	3	0	0	3		
PREREQUIS	ITE:							
A basic knowl	edge in data structures and algorithms, as these are critical f	or efficiently	stori	ng, i	ndex	ing,		
and retrieving	information. Familiarity with databases and query langua	ges like SQI	is i	mpo	rtant	for		
understanding	how data is organized and accessed. Basic knowledge of sea	arch engines,	web	techr	nolog	gies,		
and HTML wi	ll help in grasping how content is retrieved from the web.							
OBJECTIVE	S:							
• To und	lerstand the basic concepts and practical issues related to info	mation retrie	val (I	R) sy	stem	ıs.		
• To exp	plain structural queries and query operations, and how they con	ntribute to im	provi	ng re	triev	al		
perfor	mance.							
• To ana	lyze document preprocessing techniques, including clustering	and text con	press	sion.				
• To und	lerstand the data models and query languages used in multime	dia informati	on re	trieva	al.			
To foc	using on search engines and how they index and rank content.							
UNIT - I	INTRODUCTION				(9)			
Basic Concept	s — Practical Issues - Retrieval Process –Open Source IR	Systems – N	/lodel	ing -	- Cla	ssic		
Information R	etrieval – Set Theoretic- Algebraic and Probabilistic Mode	els – Structur	red T	ext I	Retrie	eval		
Models – Retr	ieval Evaluation	JIS DI UCIU	100 1	0/11 1	cours	Jvui		
UNIT - II	QUERYING				(9)			
Languages – k	Key Word based Querying- Queries in IR Systems – Pattern M	Matching – S	tructu	ral C	Juerio	es –		
Ouery Operat	ions – User Relevance Feedback – Local and Global An	alysis – Tex	t and	l Mu	ltime	edia		
languages		5						
UNIT - III	TEXT OPERATIONS AND USER INTERFACE			(9)				
Document Pre	processing – Clustering – Text Compression – Indexing and S	earching – Ir	verte	d file	s – U	Jser		
Interface and	Visualization – Human Computer Interaction – Access Pro	cess – Starti	ng Po	ints	– Οι	Jerv		
Specification -	- Context – User relevance Judgment – Interface for Search		0			5		
UNIT - IV	MULTIMEDIA INFORMATION RETRIEVAL			(9)				
Data Models -	- Ouery Languages – Spatial Access Models – Generic Appr	roach – One	Dime	nsior	nal T	ime		
Series – Two I	Dimensional Color Images – Feature Extraction							
UNIT - V	APPLICATIONS			(9)				
Searching the	Web – Structure of the Web – Characterizing the Web- IR an	d web search	– Sea	arch	Engi	nes-		
Web Crawling	and Indexing — Online IR systems – Online Public Access	s Catalogs –	Digit	al Lil	brarie	es –		
Architectural I	ssues – Document Models – Representations and Access – Pr	ototypes and	Stand	ards				
	*	• •						
		TOTA	L: 4	5 PE	ERIC	DS		
COURSE OU	TCOMES							
At the end of	the course, the students will be able to:							
COs	Course Outcome	(Cogni	tive l	Leve	1		
CO1 E	xplain the basics of the information retrieval technique		Eva	luati	ng			
CO2 Discuss the retrieval process by using the query method Creating								
CO3 Examine the text operation process along with the user interface Analyzing								
CO4 D	CO4 Discuss the various multimedia information retrieval techniques Understanding							
CO5 D	Design an efficient search engine and analyze the Web content structure Applying							

- 1. Ricardo Baeza, Yate, Berthier Ribeiro, Neto, Modern Information Retrieval, Addison Wesley, 2011
- 2. Daniel lurafsky and James H Martin, Speech and Language Processing, Pearson Education, International Edition, 2014.
- 3. Ricardo Baeza Yates, Berthier Ribeiro Neto, "Modern Information Retrieval: The Concepts and Technology behind Search", ACM Press Books, Second Edition, 2016.
- 4. G G Chowdhury, Introduction to Modern Information Retrieval, Neal Schuman Publishers, Third edition, 2010.

Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	2	-	1	2	-			
CO2	2	-	1	2	-			
CO3	2	-	1	2	-			
CO4	2	-	1	2	-			
CO5	2	-	1	2	-			
Avg.	2	-	1	2	-			
1-low, 2-medium	, 3-high			•	•			

Category L Т Р С DATA WAREHOUSING AND DATA MINING **IT24E11** (PROFESSIONAL ELECTIVES – III and IV) PEC 3 0 3 0 PREREQUISITE This course helps the students to understand the overall architecture of a data warehouse and methods for data gathering and data pre-processing using OLAP tools. The different data mining models and techniques will be discussed in this course. Data mining and data warehousing applications in bioinformatics will also be explored. **OBJECTIVES:** To understand warehousing architectures and tools for systematically organizing large database and use their data to make strategic decisions To impart knowledge of the fundamental concepts that provide the foundation of data mining To learn about the data mining tasks and pre-processing activities. • Apply the techniques of clustering, classification and visualization to real world data Develop a data mining application for data analysis using various tools. DATA WAREHOUSING AND ONLINE ANALYTICAL UNIT - I (9) **PROCESSING (OLAP)** Basic Concepts of Data Warehousing - Data warehousing Components - Data warehouse Architecture -Data Warehouse Schemas for Decision Support – Online Analytical Processing (OLAP) – Characteristics of OLAP - OLAP and Multidimensional Data Analysis - Typical OLAP Operations - OLAP and OTAP -Data Warehousing to Data Mining UNIT - II **INTRODUCTION TO DATA MINING** (9) Data Mining - Knowledge discovery Process - Issues and Applications - Data Mining Techniques - Data Objects and Attribute Types - Statistical Descriptions of Data - Data Visualization - Measuring Data Similarity and Dissimilarity - Data Preprocessing - Cleaning, Integration, Reduction, Transformation and discretization UNIT - III DATA MINING - FREQUENT PATTERN ANALYSIS (9) Basic Concepts of Mining Frequent Patterns, Associations, and Correlations - Frequent Item set Mining Methods - Advanced Pattern Mining - Pattern Mining in Multilevel, Multidimensional Space - Constraint-Based Frequent Pattern Mining - Classification using Frequent Patterns UNIT - IV **CLASSIFICATION AND CLUSTERING** (9) Classification: Decision Tree Induction – Bayesian Classification – Rule Based Classification –Back propagation - Support Vector Machines - Associative Classification - Lazy Learners - Model Evaluation and Selection - Techniques to Improve Classification Accuracy Clustering Techniques: Cluster Analysis – Partitioning Methods – Hierarchical methods – Density Based Methods - Grid Based Methods - Model Based Clustering Methods - Advanced Cluster analysis - Outlier Detection. UNIT - V TRENDS AND APPLICATIONS IN DATA MINING (9) Mining Object - Spatial, Multimedia, Text and Web Data - Multidimensional Analysis and Descriptive Mining of Complex Data Objects - Spatial Data Mining - Multimedia Data Mining - Text Mining -Mining the World Wide Web - Data mining tools - DB Miner - WEKA - Applications: Data Mining for Intrusion Detection and Prevention - Financial Data Analysis **TOTAL: 45 PERIODS**

COs Course Outcome Cognitive Level C01 Understand the basic concepts of data warehousing and Online Analytical Processing Understand C02 Discuss about the various Data Mining Techniques Understand C03 Examine the Suitable Frequent Patterns for mining applications Evaluating C04 Analyze the various data classification and Clustering techniques Analyzing C05 Outline the recent tools and applications used for data mining Understand REFERENCES: 1. Jiawei Han and Micheline Kamber" Data Mining Concepts and Techniques" 3rd Edition Elsevier Reprinted 2011 Alex Berson and Stephen J Smith" Data Warehousing Data Mining & OLAP" Tata McGraw – Hill Edition 13th Reprint 2010 3. Andrew H. Johnston, "Practical Machine Learning: A Beginner's Guide to Data Mining with WEKA", July 2018. Yuly 2018. Mapping of COs with POs and PSOs COs/ POs PO1 PO2 PO3 PSO1 PSO2 C01 2 1 1 COS PO1 PO2 PO3 PSO1 COS/ POS PO1 PO2 PO3 <td< b=""></td<>	COURSE OUTCOMES: At the end of the course, the students will be able to:							
CO1 Understand the basic concepts of data warehousing and Online Analytical Processing Understand CO2 Discuss about the various Data Mining Techniques Understand CO3 Examine the Suitable Frequent Patterns for mining applications Evaluating CO4 Analyze the various data classification and Clustering techniques Analyzing CO5 Outline the recent tools and applications used for data mining Understand REFERENCES: I. Jiawei Han and Micheline Kamber" Data Mining Concepts and Techniques" 3rd Edition Elsevier Reprinted 2011 Understand 2. Alex Berson and Stephen J Smith" Data Warehousing Data Mining & OLAP" Tata McGraw – Hill Edition 13th Reprint 2010 Andrew H. Johnston, "Practical Machine Learning: A Beginner's Guide to Data Mining with WEKA", July 2018. 4. Paulraj Ponniah, "Data Warehousing Fundamentals Comprehensive Guide for IT Professionals, Wiley, 2010 - CO3 2 - 1 - CO4 2 - 1 1 - CO3 2 - 1 1 -	COs		Course Outco	me		Cognitive Level		
CO2Discuss about the various Data Mining TechniquesUnderstandCO3Examine the Suitable Frequent Patterns for mining applicationsEvaluatingCO4Analyze the various data classification and Clustering techniquesAnalyzingCO5Outline the recent tools and applications used for data miningUnderstandREFERENCES:1.Jiawei Han and Micheline Kamber" Data Mining Concepts and Techniques" 3rd Edition Elsevier Reprinted 20112.Alex Berson and Stephen J Smith" Data Warehousing Data Mining & OLAP" Tata McGraw – Hill Edition 13th Reprint 20103.Andrew H. Johnston, "Practical Machine Learning: A Beginner's Guide to Data Mining with WEKA", July 2018.4.Paulraj Ponniah, "Data Warehousing Fundamentals Comprehensive Guide for IT Professionals, Wiley, 2010CO3PO3PSO1PO2PO3PSO1CO421111Alex 20Mapping of COs with POs and PSOsCO3PSO1PO2PO3PSO1PSO2CO421111CO52CO6<	CO1	Understand the basic of Analytical Processing	nderstand the basic concepts of data warehousing and Online nalytical Processing Understa					
CO3Examine the Suitable Frequent Patterns for mining applicationsEvaluatingCO4Analyze the various data classification and Clustering techniquesAnalyzingCO5Outline the recent tools and applications used for data miningUnderstandREFERENCES:1. Jiawei Han and Micheline Kamber" Data Mining Concepts and Techniques" 3rd Edition Elsevier Reprinted 20112. Alex Berson and Stephen J Smith" Data Warehousing Data Mining & OLAP" Tata McGraw – Hill Edition 13th Reprint 2010Andrew H. Johnston, "Practical Machine Learning: A Beginner's Guide to Data Mining with WEKA", July 2018.4. Paulraj Ponniah, "Data Warehousing Fundamentals Comprehensive Guide for IT Professionals, Wiley, 2010Yeo PO3PSO1PO2PO3PSO2CO12-11-CO32-111-CO42-11CO52-11CO52-11CO52-1Ave:	CO2	Discuss about the vari	ous Data Mining T	echniques		Understand		
CO4Analyze the various data classification and Clustering techniquesAnalyzingCO5Outline the recent tools and applications used for data miningUnderstandREFERENCES:1. Jiawei Han and Micheline Kamber" Data Mining Concepts and Techniques" 3rd Edition Elsevier Reprinted 20112. Alex Berson and Stephen J Smith" Data Warehousing Data Mining & OLAP" Tata McGraw – Hill Edition 13th Reprint 20103. Andrew H. Johnston, "Practical Machine Learning: A Beginner's Guide to Data Mining with WEKA", July 2018.4. Paulraj Ponniah, "Data Warehousing Fundamentals Comprehensive Guide for IT Professionals, Wiley, 2010COs/ POsPO1PO2PO3PS01PS02COs/ POsPO1PO2PO3PS01PS02COs/ POsPO1PO2PO3PS01PS02CO12-1111COs/ POSPO1PO2PO3PS01PS02CO12-111P	CO3	Examine the Suitable	Frequent Patterns f	or mining applicat	tions	Evaluating		
CO5 Outline the recent tools and applications used for data mining Understand REFERENCES: 1. Jiawei Han and Micheline Kamber" Data Mining Concepts and Techniques" 3rd Edition Elsevier Reprinted 2011 2. Alex Berson and Stephen J Smith" Data Warehousing Data Mining & OLAP" Tata McGraw – Hill Edition 13th Reprint 2010 3. Andrew H. Johnston, "Practical Machine Learning: A Beginner's Guide to Data Mining with WEKA", July 2018. 4. Paulraj Ponniah, "Data Warehousing Fundamentals Comprehensive Guide for IT Professionals, Wiley, 2010 COs/ POs< PO1 PO2 PO3 PSO1 PSO2	CO4	Analyze the various da	ata classification ar	nd Clustering tech	niques	Analyzing		
REFERENCES: 1. Jiawei Han and Micheline Kamber" Data Mining Concepts and Techniques" 3rd Edition Elsevier Reprinted 2011 2. Alex Berson and Stephen J Smith" Data Warehousing Data Mining & OLAP" Tata McGraw – Hill Edition 13th Reprint 2010 3. Andrew H. Johnston, "Practical Machine Learning: A Beginner's Guide to Data Mining with WEKA", July 2018. 4. Paulraj Ponniah, "Data Warehousing Fundamentals Comprehensive Guide for IT Professionals, Wiley, 2010 Mapping of COs with POs and PSOs COs/ POs PO1 PO2 PO3 PSO1 PO2 COs/ POs PO1 PO2 PO3 PSO1 PSO2 CO1 CO3 Q 1 CO3 Q 1 CO3 Q Q Q CO3 Q Q <td colsp<="" td=""><td>CO5</td><td>Outline the recent tool</td><td>s and applications</td><td>used for data mini</td><td>ng</td><td>Understand</td></td>	<td>CO5</td> <td>Outline the recent tool</td> <td>s and applications</td> <td>used for data mini</td> <td>ng</td> <td>Understand</td>	CO5	Outline the recent tool	s and applications	used for data mini	ng	Understand	
Mapping of COs with POs and PSOs COs/ POs PO1 PO2 PO3 PSO1 PSO2 CO1 2 - 1 1 - CO2 2 - 1 1 - CO3 2 - 1 1 - CO4 2 - 1 1 - CO5 2 - 1 1 - CO5 2 - 1 1 - Avg. 2 - 1 1 - Low 2 medium 3 high - 1 1 -	 Jawer Han and Wichenne Kamber Data Winnig Concepts and Techniques Sid Edition Elsevier Reprinted 2011 Alex Berson and Stephen J Smith" Data Warehousing Data Mining & OLAP" Tata McGraw – Hill Edition 13th Reprint 2010 Andrew H. Johnston, "Practical Machine Learning: A Beginner's Guide to Data Mining with WEKA", July 2018. Paulraj Ponniah, "Data Warehousing Fundamentals Comprehensive Guide for IT Professionals, Wiley, 2010 							
COs/ POs PO1 PO2 PO3 PS01 PS02 CO1 2 - 1 1 - CO2 2 - 1 1 - CO3 2 - 1 1 - CO4 2 - 1 1 - CO5 2 - 1 1 - Avg. 2 - 1 1 - Low 2 medium 3 high - 1 1 -		1	Mapping of COs v	vith POs and PSC)s			
CO1 2 - 1 1 - CO2 2 - 1 1 - CO3 2 - 1 1 - CO4 2 - 1 1 - CO5 2 - 1 1 - Avg. 2 - 1 1 - Low 2 medium 3 high - 1 1 -	COs/ POs	s PO1	PO2	PO3	PSO1	PSO2		
CO2 2 - 1 1 - CO3 2 - 1 1 - CO4 2 - 1 1 - CO5 2 - 1 1 - Avg. 2 - 1 1 - 1 low 2 medium 3 high - 1 1 -	CO1	2	-	1	1	-		
CO3 2 - 1 1 - CO4 2 - 1 1 - CO5 2 - 1 1 - Avg. 2 - 1 1 - 1 low 2 medium 3 high - 1 1 -	CO2	2	-	1	1	-		
CO4 2 - 1 1 - CO5 2 - 1 1 - Avg. 2 - 1 1 - 1 low 2 medium 3 high - 1 1 -	CO3	2	-	1	1			
COS 2 - 1 1 - Avg. 2 - 1 1 - 1 low 2 medium 3 high - 1 1 -	CO4	2	-			-		
Avg. 2 - 1 1 - 1 low 2 modium 3 high - 1 1 - <td>CU5</td> <td>2</td> <td>-</td> <td>1</td> <td></td> <td></td>	CU5	2	-	1				
	Avg. $1 \log 2 max$	dium 3 high	-	1		-		

COUDSE OUTCOMES

		Catag		т	т	D	C
IT24E12	(DOFESSIONAL ELECTIVES III and IV)		ory	L	1	r	
	(PROFESSIONAL ELECTIVES – III and IV)	PE	C	3	0	0	3
PREREQUI	SITE:						
Basic	e understanding of TCP/IP protocol suite are required.						
• Basic	c computer networks and data systems						
• Be fa	miliar with Linux environment and basic commands						
• Stude	ents must have Basic Scripting/Programming concepts						
OBJECTIV	ES:						
• To un comp	derstand the principles of network management, different standards a lex networks.	and protoc	cols us	ed in	mana	aging	
• To un netwo	derstand the Automation of network management operations and malork management systems.	king use c	of read	ily av	ailab	le	
• Expla	in the concepts and terminology associated with SNMP.						
• Descr	ibe network management as a typical distributed application.						
• To ga	in knowledge in using tools and models for measuring the network pe	erformanc	ce.				
UNIT - I	DATA COMMUNICATION AND NETWORK MANAG	EMEN	Г			(9)	
	OVERVIEW					(-)	
Networking l	pasics – LANs and WANs – Network hardware components –	- Server-l	based	netv	vorks	-P	eer-
to-peer netwo	orks – Server based vs peer-to-peer networks – Specialized ser	vers – C	Combi	natio	n net	work	(S –
Network pac	kets – Addressing packets – Multiplexing – Protocols – The	OSI refe	erence	moc	lel –	Inter	rnet
Protocol Stac	k.						
UNIT - II	MAC MANAGEMENT					(9)	
MAC Layer	in Networking-Role and functions of the MAC layer- MAC	addressi	ng –	MAG	C pro	otoco	ls –
CSMA/ CD -	- Collision detection mechanism – CSMA/ CA – Hidden node	problem	s - M	AC 1	ayer	secu	rity
– Performanc	e and optimization – Emerging trends in MAC management.						
UNIT - III	TCP/ IP NETWORKING					(9)	
OSI vs TCP/	IP Model – IPV ₄ addressing and subnetting– IPV ₆ Addressing	ng and C	Config	uring	g – V	VLSN	И –
Address resol	ution protocol – DHCP – ICMP – Error reporting – TCP – UD	P - Rout	ting pi	rotoc	ols.		
UNIT - IV	SNMP MANAGEMENT					(9)	
SNMPv1: SI	NMP network management concepts -SNMP management	informati	ion –	star	dard	MII	3 –
SNMP proto	col specification - SNMP Group - SNMPv2 - Protocol oper	rations –	-SNM	Pv2	Man	agen	ient
Information	Base-Conformance Statements-SNMPv2 Management In	nformatic	on Ba	ase–	Conf	orma	nce
Statements.							
UNIT - V	SWITCHING AND ROUTING					(9)	
Traffic mode	ling and simulation – Self-similar and heavy tailed models	– Buffer	ring –	Blo	cking	g – I	Fast
Forwarding I	nternet traffic: Self-similarity – Ethernet traffic – World-Wide	-Web t	traffic	– IF	S wi	tchin	ıg –
IP multicast -	- Multicast routing.						
		Т	OTA	L: 4	5 PF	CRIO	DS
COUPER O	UTCOMES.						
At the end of	f the course, the students will be able to:						
COs	Course Outcome		С	ognit	tive l	Leve	
	Apply the knowledge in fundamental concepts and basic taxon	omy					
COI	and terminology used in computer networks	-		A	pply		

Discover about IEEE 802-11 LAN system architecture and MAC

59

CO2

Analyze

CO3 Identify the necessity of TCP/ IP networking Apply	
CO4 Understand the historical development and versions of SNMP (SNMPv1, SNMPv2 Understand	
CO5Summarize about various tools and models used for measure the network performanceUnderstand	

- 1. Mani Subramanian, "Network Management Principles and Practice", Second Edition, Pearson Education, 2010.
- 2. William Stallings, "SNMP, SNMPN2, SNMPV3, RMON 1 AND 2", Third Edition, Pearson Education, 2009.
- 3. J. Richard Burke: Network management Concepts and Practices: a Hands-On Approach, PHI, 2008.
- 4. Morris, "Network management", 1st Edition, Pearson Education, 2008.

Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	1	-	2	2	1			
CO2	1	-	2	2	1			
CO3	1	-	2	2	1			
CO4	1	-	2	2	1			
CO5	1	-	2	2	1			
Avg.	1	-	2	2	1			
1-low, 2-medium, 3-high								

	OBJECT ORIENTED PROGRAMMING IN	NTED PROGRAMMING IN Category L T P							
IT24E13	PYTHON		2	•	•	2			
	(PROFESSIONAL ELECTIVES – III and IV)	PEC	3	U	U	3			
PREREQU	ISITE:								
Basic knowl	edge of Python - syntax, writing and invoking functions, creating	g variables, 1	eadin	g inp	outs,	and			
generating o	utputs from the Python console, Familiarity with using a text edit	or or IDE, k	Know]	ledge	on h	IOW			
to execute a	Python program, Python keywords, Knowing how to raise exce	ptions in Py	thon.	, rea	ding	and			
Writing File	s, Understanding of Modules and Libraries.								
OBJECTIV	ES:								
• Under	stand the basics of Oops.								
• Desig	n a program for constructors, Destructors, arrays.								
Imple	ment inheritance concepts in Python.								
• Under	stand the concept of file streams.								
• Devel	op the program for exceptional handling using Python.								
UNIT - I	INTRODUCTION				(9)				
Need for ob	ect oriented programming - Procedural Languages vs. Object ori	ented approa	ach C	harad	cteris	tics			
Object orier	ted programming - Python Programming Basics: Basic Progra	um Construc	tion	- Op	erato	rs -			
Control Stat	ements - Manipulators - Type conversion. Function Prototyping	g- call by re	feren	ce, r	eturn	by			
reference - I	nline function- Default arguments - Function overloading.								
UNIT - II	OBJECTS AND CLASSES				(9)				
Objects and	Classes Simple Class - Constructors: Parameterized Constructors	- Multiple	Const	ructo	ors in				
Class - Cons	structors with Default Arguments - Dynamic Initialization of Ob	jects - Copy	and	Dyn	amic	;			
Constructors	- Destructors - Structures and Classes - Arrays and Strings.	5 1.		5					
UNIT - III	OPERATOR OVERLOADING AND INHERITANCE				(9)				
Operator O	verloading and Inheritance Need of operator overloading- (Overloading	Una	ry C	pera	tors			
Overloading	binary Operators - Overloading Special Operators - Data Co	nversion In	herita	nce:	Deri	ved			
Class and B	ase Class - Derived Class Constructors - Overriding Member I	Functions -C	Class	Hiera	archi	es -			
Public and P	rivate Inheritance - Levels of Inheritance - Multiple Inheritance.								
UNIT - IV	POLYMORPHISM AND FILE STREAMS				(9)				
Polymorphis	m and File Streams Virtual Function - Friend Function - Stati	ic Function	- Ass	signn	nent	and			
Copy Initial	ization - Memory Management: new and delete Pointers to Ol	bjects, this 1	Pointe	er- S	trean	ns -			
String I/O -	Character I/O - Object I/O - I/O with Multiple Objects - File Poi	inters - Disk	I/O	with	Men	ıber			
Functions -	Error Handling in File I/O.								
UNIT - V	TEMPLATES AND EXCEPTION HANDLING				(9)				
Templates:	Introduction - Function Templates - Overloading Function Tem	plates - use	r defi	ned	temp	late			
arguments -	Class Templates - Exception Handling - Syntax, multiple	exceptions	, exc	eptio	ons v	vith			
arguments.		_		_					
		TOTA	L: 4	5 PF	RIC	DDS			
COURCE	NITCOMES.								
At the end of	of the course, the students will be able to:								
COs	Course Outcome	0	ogni	tive l	Leve	<u> </u>			
CO1	Know the syntax on control statements and type conversions in Python.	ons in Remember							

CO2	Explain the Constructors and its types.	Understand
CO3	Demonstrate the concept of Operator over loading and inheritance.	Understand
CO4	Summarize the concept of Polymorphism and File streams.	Understand
CO5	Apply Exception handling in Python.	Apply

- 1. Steven F.Lott, Dusty Phillips, Python Object Oriented Programming, 4th Edition, Packet, 2021.
- 2. Dusty Phillips, Python 3 Object Oriented Programming, 2nd Edition, Packet, 2015.
- 3. Mark Lutz, Learning Python, Fifth Edition, O'Reilly, 2015.
- 4. Steven F.Lott, Mastering Object Oriented Python, 1st Edition, Packet, 2014.

Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	3	1	2	2	1			
CO2	3	1	2	2	1			
CO3	3	1	2	2	1			
CO4	3	1	2	2	1			
CO5	3	1	2	2	1			
Avg.	3	1	2	2	1			
1-low, 2-medium	ı, 3-high							

	QUANTUM COMPUTING	Catego	ry I	T	P	C
1124E14	(PROFESSIONAL ELECTIVES – III and IV)	PEC	3	0	0	3
		1			1	<u> </u>
PREREQU	SITE:					
Te	know about linear algebra, quantum mechanics, classical comp	puting fun	dament	als,		
probability the	neory, and programming skills in languages like Python or Qisk	it.				
OBJECTIV	ES:					
• To exp transfe	plore fundamental concepts of quantum theory, including quantum prmations.	um bits an	d state			
• To and	alyze quantum circuits and algorithms, focusing on universal qu	antum gat	es, mea	sure	nent.	
• To inv	estigate key quantum algorithms, including Deutsch's, Grover's	, and Shor	's, alon	g wit	h	
conce	ots of quantum parallelism and complexity classes.	,		C		
• To exa	mine classical cryptography and the principles of quantum info	rmation. i	ncludir	g sta	te	
disting	tion.	,		0		
• To ext	olore quantum error correction and fault-tolerant quantum comm	utation th	rough t	he Sh	or co	le
and st	abilizer codes.		0			
UNIT - I	FOUNDATION				(9)	
Basic Conce	pts of Quantum theory - Quantum Bits – The Leap from Classic	cal to Qua	ntum –	Oua	ntum s	state
spaces – Sin	igle Oubit Systems – Multiple Oubit Systems – Ouantum st	ate transf	ormatio	ons -	Ouan	tum
mechanics -	Application: super dense coding - Models for computation -	The anal	vsis of	com	putati	onal
problems.			<i>.</i>			
UNIT - II	OUANTUM COMPUTATION				(9)	
Quantum C	rcuits - Quantum algorithms Single Orbit operations Con	trol Oper	ations	Mea	surem	ent
Universal O	antum Gates. Simulation of Quantum Systems. Quantum Four	ier transfo	orm. Ph	ase e	stimat	ion.
Applications	Quantum search algorithms - Quantum Counting - Speeding 1	in the solu	tion of	NP -	comr	olete
problems - C	Juantum Search for an unstructured database.	·r ····			r	
UNIT - III	OUANTUM ALGORITHMS				(9)	
Deutsch's A	lgorithm - The Deutsch–Jozsa Algorithm - Simon's Periodicit	ty Algorit	hm - C	rove	's Se	arch
Algorithm -	Shor's Factoring Algorithm – Quantum Parallelism – Quantur	n Fourier	Transfe	orm –	Mac	hine
models and (Complexity Classes.					
UNIT - IV	OUANTIM INFORMATION THEORY				(9)	
Classical Cr	vntography - Distinguishing quantum states and the accessible	informatic	on - Da	ta co	npres	sion
- Classical in	formation over noisy quantum channels - Quantum information	1 over nois	sv quar	tum	chann	els -
Entanglemer	t as a physical resource.		y quu			
UNIT - V					(0)	
	QUANTUM ERROR CORRECTION		<u> </u>	1	(J)	
introduction	- Short code - Theory of Quantum Error-Correction - Construct	ling Quant	um Co	des -		izer
coues - rat	Entropy Von Noumann Strong Sub Additivity	ion Sham		urop	/ - D	asic
properties of	Entropy - von Neumann - Strong Sub Additivity.					
		T		15 5	ED14	סת
		10	JIAL:	43 I	ĽKI(JD2
COURSE O	UTCOMES:					
At the end o	f the course, the students will be able to:					
COs	Course Outcome		Cog	nitive	Leve	1
CO1	Understand the Basics of Quantum computing and its application	ons.	Und	erstan	ding	
CO2	Describe about the Quantum Computations and its operations		Und	erstan	ding	

CO3	Analyze the various quantum algorithms for solving the problems	Analyzing
CO4	Apply quantum information theory in various case studies	Evaluating
CO5	Discuss about the different quantum error correction techniques.	Creating

- 1. "Quantum Computation and Quantum Information" by Michael Nielsen and Isaac Chuang, October 2000.
- 2. "Quantum Computing: A Gentle Introduction" by Eleanor Rieffel and Wolfgang Polak, 2011.
- 3. Yanofsky's and Mannucci, Quantum Computing for Computer Scientists, 2008.
- 4. Chris Bernhardt, Quantum Computing for Everyone, The MIT Press, Cambridge, 2020.

Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	3	1	3	2	-			
CO2	3	1	3	2	-			
CO3	3	1	3	2	-			
CO4	3	1	3	2	-			
CO5	3	1	3	2	-			
Avg.	3	1	3	2	-			
1-low, 2-medium, 3-high								

IT24F15	BLOCKCHAIN TECHNOLOGY AND	Category	L	Т	Р	C			
1124013	(PROFESSIONAL ELECTIVES – III and IV)	PEC	3	0	0	3			
			1		1				
PREDEOLUSITE.									
Familiarity with	h databases and networking protocols including peer-to-peer	networks wi	ll hel	n in					
understanding	how decentralized systems operate. A basic understanding of	cryptographic	e tech	p m miau	es. s	uch			
as public-key of	encryption and digital signatures, is crucial as blockchain tech	nology relies	heav	ilv oi	n the	se			
for ensuring da	ta integrity and security. Additionally, knowledge of smart co	ontracts, conse	ensus	algo	orithr	ns			
(such as Proof	of Work and Proof of Stake), and decentralized applications ((dApps) will t	be bei	nefic	ial fo	or			
exploring bloc	kchain-based solutions.								
OBJECTIVE	S:								
• To un	derstand the fundamental concepts of blockchain technology	, including its	s hist	ory,	featu	ires,			
and ter	minologies.					_			
• To dis	cuss the various cryptographic algorithms such as SHA-1,	RC4, Blowf	ish, a	ind h	low	they			
contrit	bute to data encryption and system security.	1 .							
• To ana	lyze Bitcoin's role and public perception in the global financia	al ecosystem.				a)			
• To exa	amine other consensus algorithms such as Proof of Burn, De	legated Proof	of S	take	(DP	oS),			
and Pr	actical Byzantine Fault Tolerance.								
• To exp	plore the tools used in Ethereum and their applications in varie	ous industries.		-					
UNIT - I	BLOCKCHAIN FOUNDATION				(9)				
Blockchain: In	troduction - History- Features - Blockchain Terminologies - E	Different Vers	ion o	f Blo	ockch	ain-			
Types Of Blo	ckchain - Benefits- Peer-To-Peer - Decentralization: Role	in Blockchai	n- Co	ompo	onent	s of			
Blockchain- C	entralized, Decentralized and Distributed Systems.			-					
UNIT - II	CRYPTOGRAPHY IN BLOCKCHAIN				<u>(9)</u>				
Cryptography:	Introduction- Cryptography in Blockchain- Public and Priva	ate key Crypt	ograf	hy-	Туре	s of			
Cryptography-	Cryptography and Network Security Principles- Data Enci	ryption- Encr	yptio	n alg	gorith	ims-			
SHA-1 Hash-	RC4 Encryption Algorithm- Hash Functions in System Secu	rity- Blowfish	n Alg	orith	ım —I	Jata			
Integrity in Cr	yptography: Digital Signature.			<u> </u>	(0)				
	BITCOIN AND CRYPTOCURRENCY				(9)	1			
Cryptocurrenc	y- creation of cryptocurrency- Initial coin offering(ICO)- I	Bitcoin Peer-	o-Pe	er f	Netw	ork-			
Proof-of-Stake	Mining Cryptocurrencies- Tracking Bitcoin: Unspent Trans	action Output	s(UI	хO	- Bit	coin			
In Public perce	PUION.			1	(0)				
	BITCOIN CONSENSUS	Concension	1~~~	41a.caa	(9) Drea	ef ef			
Consensus Alg	gorithms in Blockchain- Proof of Work (Pow)- Proof of Burn	Consensus A	lgori	tnm-	Proc				
Stake (POS)-	Byzantine Generals Problem- Cryptographic Consensus Me	manisins- D	elega	leu I	PTOO	. OI			
Stake - practic	IVDEDI EDCED ETHEDELM AND DI OCKCHAIN A		NIC		(0)				
UNII - V	Inderstanding Humanladger, Humanladger fabria, Tools and its	Application		rour	(9) n: Da	ios			
Hyperledger: Understanding Hyperledger-Hyperledger fabric, Tools and its Applications-Ethereum: Basics									
of Einereum - Networks- Clients- Smart Contract in Ethereum - Tools used in Ethereum. Blockchain									
Applications: Sinart Contract, Supply chain industry, Digital flat Currency, Cross border money Transfer,									
mouranee.									
		ΤΟΤΔ		15 PI	ERIO)DS			

COURSE OUTCOMES:

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Acquire knowledge in blockchain technology	Understanding
CO2	explain how these cryptographic algorithms are used in blockchain and cryptocurrency systems	Understanding
CO3	Analyze Bitcoin's market behavior, including factors that drive its price fluctuations, investor interest	Analyzing
CO4	Gain insights into Practical Byzantine Fault Tolerance (PBFT), its role in achieving consensus in a decentralized environment	Evaluating
CO5	Analyze the practical implications of Ethereum tools in real- world industries,	Analyzing

REFERENCES:

1. Amit Dua, Blockchain Technology and Applications : A systematic and Practical approach, Kindle Edition, August 2022

2. Asharaf S, Sivadas Neelima , Adarsh S. , Franklin John , Blockchain Technology: Algorithms and Applications, Wiley publisher, December 2023

3. Blockchain Technologies Applications And Cryptocurrencies [Paperback] Dr. P.S. Ramesh,Prof. Gaikwad Anil Pandurang,Ravi Teja Bhamidipati,Dr. K. Sridharan, Kindle Edition, February 2022.

4. Peter Lipovyanov, Blockchain for Business 2019: A user-friendly introduction to blockchain technology and its business applications, Packt Publishing Limited, January 2019.

Mapping of COs with POs and PSOs							
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	3	-	2	3	1		
CO2	3	-	2	3	1		
CO3	3	-	2	3	1		
CO4	3	-	2	3	1		
CO5	3	-	2	3	1		
Avg.	3	-	2	3	1		
1-low, 2-medium	n, 3-high						

IT24E16 DIGITAL FORENSICS	Category	L	Т	Р	С			
11 2 4E10	(PROFESSIONAL ELECTIVES – III and IV)		3	0	0	3		
PREREOUISITE:								
The students s	hould familiar with basic programming concepts in languages	s such as Pyth	ion, J	ava,	or C	++,		
which can aid	in scripting and automation tasks within digital forensics and	d have knowl	edge	on n	nalwa	are,		
phishing, socia	I engineering, and the basic measures to protect against these	threats.	C					
OBJECTIVE	S:							
• To iden	tify and classify various types of cybercrimes and understar	nd the proced	ures	for 1	nandl	ing		
electron	ic evidence, including the collection, searching, and storage of	digital media	L.			0		
• To lear	n investigation methods for collecting digital evidence w	ith a focus of	on ha	ockin	o ch	nild		
pornogr	aphy, cyber talking, and other cyber offenses, as well	as underst	andir	ig th	e le	egal		
consider	rations under Indian and international law.			8		Bur		
• To lear	n how to validate data acquisitions and handle compl	ex scenarios	SUC	h as	RA			
configur	rations and remote network data acquisition.		540	11 u.				
• To expl	ore advanced techniques for recovering and analyzing digit	al evidence	such	as re	etriev	ing		
deleted	data handling damaged SIM cards and recovering multi	imedia evider	nce f	rom	vari			
devices	auta, minoming duringed brive euros, and recovering man			10111	vuii	ous		
 To under 	rstand the methodologies for validating forensic software add	lressing data_	hidin	σ tec]	hniai	165		
and con	ducting specialized investigations such as email crime and rem	note acquisitic	ns	5 100	uniqu	,		
	INTRODUCTION TO DIGITAL FORENSICS	iote acquisitie			(9)			
Cyber Crime a	and computer crime: Introduction to Digital Forensics- Defin	ition and type	es of	cvhe	rcrim	les-		
electronic evid	ence and handling, electronic media, collection, searching a	nd storage of	elect	ronic	n me	lia_		
introduction to	internet crimes- backing and cracking- credit card and	ATM frauds-	weh	tech	molo	ov-		
cryptography-	emerging digital crimes and modules	1111 Hauds-	web		moro	gy-		
	DIGITAL CRIME AND INVESTIGATION				(9)			
Digital Crime	- Substantive Criminal Law - General Conditions - Offens	es – Investio	ation	Met	hods	for		
Collecting Die	vital Evidence – International Cooperation to Collect Digit	al Evidence (r P (and	1 Ind	lian		
Evidence Act	- Cyber crimes under the Information Technology Act	t 2000 - Cvł	per c	rime	s iin	der		
International	aw - Hacking Child Pornography Cyber Stalking De	nial of servi	ce A	ttack	· Vi	rus		
Dissemination	Software Piracy Internet Relay Chat (IRC) Crime Cred	lit Card Frau	d N	et Ex	storti	ion		
Phishing etc	Cyber Terrorism Violation of Privacy on Internet - Data P	rotection and	Priv	acv -	– Ind	lian		
Court cases	cycer renorisin violation of rinnary on internet. Data r		1 11 1	uey	inc	iuii		
UNIT - III	DATA ACOUISITION				(9)			
Data acquisiti	on- understanding storage formats and digital evidence- de	etermining the	e bes	t acc	misit	ion		
method- acqui	sition tools- validating data acquisitions- performing RAID da	ta acquisition	s- rei	note	netw	ork		
acquisition too	ls- other forensics acquisitions tools	au acquisition		11010		on		
UNIT - IV	PROCESSING CRIMES				(9)			
Processing cri	mes and incident scenes- securing a computer incident or cri	ime- seizing (ligita	l evi	dence	e at		
scene- storing	digital evidence- Processing of digital evidence- digital in	nages- damag	ed S	IM a	ind d	lata		
recovery, multimedia evidence, retrieving deleted data: desktone, lantons and mobiles, retrieving data from								
slack space- renamed file- ghosting- compressed files.								
UNIT - V	COMPUTER FORENSICS TOOLS				(9)			
Current comp	iter forensics tools- Types of Computer Forensics Tools-	Tasks Perform	ned ł	ov C	ompi	ıter		
Forensics Tool	s -software- hardware tools- validating and testing forensic so	oftware- addr	essin	g dat	a-hid	ing		
techniques- n	erforming remote acquisitions- E-Mail investigations- ir	vestigating	email	cri	me	and		
violations- unc	lerstanding E-Mail servers- specialized E-Mail forensics tool							

COURSE (At the end o	OUTCOMES: of the course, the stude	ents will be able to):		
COs		Course Outcon	ne		Cognitive Level
CO1	Have knowledge on di	gital forensics.			Understand
CO2	Know about digital cri	me and investigation	ons		Understand
CO3	Examine digital evide analysis.	nces such as the da	ta acquisition, ide	ntification	Analyze
CO4	Investigate, identify an	nd extract digital ev	ridence		Apply
CO5	Know about computer	forensics tools			Understand
2. Linda V Practice 3. Vacca, 2020 4. Altheid	e Learning, 6th Edition Volonino, Reynaldo An: es", Pearson,2017. J, Computer Forensics, e.C & Carvey .H,"Dig	,2018. zaldua, and Jana G Computer Crime S gital Forensics with	odwin, "Computer Scene Investigation Open Source Toc	Forensics: Pr n, 2nd Ed, Cha ls", Syngress,	inciples and arles River Media, 2018.
		happing of COs w	nth PUs and PSU	S DGO1	DCO 2
	s POI	FO2	PO3		PS02
	2	1	2	2	
		1	2	2	
<u> </u>	2	1	2	2	
<u> </u>	2	1	2	2	
Avg.	2	1	2	2	
1-low, 2-me	dium, 3-high				l

IT7/F17	SOCIAL NETWORK ANALYSIS	Catego	ry	L	Т	Р	C
11 24E 17	(PROFESSIONAL ELECTIVES – III and IV)			3	0	0	3
PREREQUI	SITE:						
The students	should be familiar with Data Structure and Algorithms, Python	Programm	ning .				
OBJECTIV	ES:						
 To gai 	n a solid foundation in the principles of Social Network Analysi	S					
• To lea Analys	rn how different types of network models and visualization sis.	technique	es in	Soc	ial 1	Netw	ork
• To gra	sp the concept of communities within social networks						
• To exp	olore the mechanisms and models that explain how social netwo	rks evolve	e over	tim	ne,		
• To lea	rn how to apply SNA techniques to analyze and solve prac	tical prob	lems	acr	oss	diffe	ent
domai	ns	•					
UNIT - I	INTRODUCTION					(9)	
Introduction	to Web - Limitations of Current Web - Development of Sema:	ntic Web	– Em	erge	ence	of th	e
Social Web	- Statistical Properties of Social Networks - Network Analys	sis – Dev	elopn	nent	of	Soci	ıl
Network Ana	alysis – Key Concepts and measures in Network Analysis – Bl	ogs and C	nline	Co	mmı	unitie	s
- Web based	Networks.						
UNIT - II	MODELING AND VISUALIZATION					(9)	
Visualizing (Online Social Networks - A Taxonomy of Visualizations - Grap	oh Repres	entati	on -	- Ce	ntral	ty -
Clustering -	Node Edge Diagrams - Visualizing Social Networks with M	latrix - N	ode L	ink	Dia	gran	ıs –
Hybrid Repr	esentations - Modeling and Aggregating Social Network Da	ta - Ranc	lom V	Wal	ks a	and t	heir
Applications	- Use of Hadoop and Map Reduce.						
UNIT - III	MINING COMMUNITIES					(9)	
Aggregating	and reasoning with Social Network Data - Advanced Represe	ntations –	Extra	acti	ng E	volu	tion
of Web Con	nmunity from a Series of Web Archive - Detecting Comm	nunities in	n Soc	cial	Net	work	s –
Evaluating (Communities - Core Methods for Community Detection a	nd Minin	- g	Ap	plica	tions	of
Community	Mining Algorithms – Node Classification in Social Networks.						
UNIT - IV	EVOLUTION					(9)	
Evolution in	Social Networks - Framework - Tracing Smoothly Evolving	g Commu	nities	—]	Mod	el ar	d
Algorithm for	r Social Influence Analysis - Social Similarity and Influence	– Influen	ce Ma	axir	nizat	ion i	n
Virtual Mark	teting - Algorithms and Systems for Expert Location in Social	Networks	s - E x	kper	t Lo	catic	n
without Grap	bh Constraints - Expert Location with Score Propagation - E	xpert Tea	m Fo	rma	tion	- Lir	k
Prediction in	Social Networks – Feature based Link Prediction.						
UNIT - V	APPLICATIONS					(9)	
A Learning	Based Approach for Real Time Emotion Classification of	Tweets	– A	Nev	w L	ingui	stic
Approach to	Assess the Opinion of Users in Social Network Environme	ent – Sci	entific	e ar	nd T	echn	ical
Emergence	Forecasting – Social Network Analysis for Biometric Template	Protection	ı.				
		TO	DTAL	: 4	5 PE	ERIC	DS
CUIBCEO	UTCOMES.						
At the end o	f the course, the students will be able to:						
COs	Course Outcome		Cog	gnit	ive l	Leve	l
CO1	Work on the internal components of social networks		Re	eme	mbe	ring	
CO2	Apply the different types of network models and visualization		1	Ana	lyziı	ng	

	techniques in social network analysis	
CO3	Mine the behavior of the users in asocial network	Remembering
CO4	Predict the possible next outcome of the social networks	Remembering
CO5	Apply social network in real time applications	Analyzing

- 1. Guandong Xu, Yanchun Zhang "Web Mining and Social Networking Techniques and Applications", Springer, 1st Edition, 2012.
- Borko Furht, "Handbook of Social Network Technologies and Applications", Springer, 1st Edition, 2011.
- 3. Przemyslaw Kazienko, Nitesh Chawla, " Applications of Social Media and Social Network Analysis", Sringer , 2015.
- 4. Charu C, Aggarwal, "Social Network Data Analytics", Springer, 2014.

Mapping of COs with POs and PSOs							
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	2	-	2	2	2		
CO2	2	-	2	2	2		
CO3	2	-	2	2	2		
CO4	2	-	2	2	2		
CO5	2	-	2	2	2		
Avg.	2	-	2	2	2		
1-low, 2-medium	, 3-high	•	•		•		

IT24E18 BIG DATA AND ANALYTICS	Category	L	Т	Р	С				
11241210	(PROFESSIONAL ELECTIVES – III and IV)	PEC	3	0	0	3			
(Common to All Branches)									
PREREQUISITE:									
The stude	ent should be familiar with database management systems a	and SQL which	ch is	esse	ntial	for			
storing and qu	erying large data sets. Also, they should have the understand	ding of basic	statis	tics a	and c	lata			
analysis techn	iques. This is useful for working with large datasets, per	forming data	expl	orati	on,	and			
deriving mean	ingful insights. Requires any basic programming knowledge f	or learning Ha	idoop).					
OBJECTIVE	S:								
• To gain	in-depth knowledge of all the concepts related to bigdata.								
Analyze	appropriate NoSQL database techniques for storing and proce	essing large vo	olume	es of					
structure	e and unstructured data.								
• Learn to	use various techniques for analysis of bigdata.								
• Explore	the tools and algorithms like Hadoop, Map Reduce and NO S	QL used in big	g data	a ana	lytics	s.			
• Able to	evaluate the techniques and theories to large-scale data science	e problems us	ing v	ariou	S				
database	s with analytics and visualizations.								
UNIT - I	FUNDAMENTALS OF BIG DATA AND ANALYTICS				(9)				
Introduction	to Big Data - Big Data Characteristics – Different Types of	f Big Data - 7	Fradit	iona	l Ver	sus			
Big Data App	roach – Big data Analytics Lifecycle – Enterprise Techno	ologies and B	ig D	ata 1	Busir	less			
Intelligence - I	Big Data Challenges .								
Big Data Ana	lytics: Classification of Analytics – Challenges – Importanc	e of Big Data	1 Ana	lytic	s - C)ata			
Science - Data	Scientist - Terminologies used in Big Data Environments - Te	op Analytics 7	Cools	•					
UNIT - II	STORING AND PROCESSING BIG DATA				(9)				
Big data Stor	age Concepts: Clusters – File Systems – Distributed File S	ystems – NoS	SQL -	– Sh	ardin	g –			
Replication – (CAP Theorem – ACID – BASE.			_					
Big data Proc	essing Concepts: Parallel Data Processing – Hadoop – Proc	essing Workl	oads	– Pr	ocess	ing			
in Batch mode	- Processing in Realtime mode – On-Disk Storage Devices.		1						
UNIT - III	BIG DATA ANALYSIS & ANALYTICS TECHNIQUES				(9)				
Analysis Tecl	nniques : Quantitative Analysis - Qualitative Analysis – S	tatistical Ana	lysis	– S	ema	ntic			
Analysis – Vi	sual Analysis – Case Study: Correlation – Regression – T	ime Series Pl	ot –	Clus	terin	g –			
Classification.			~		Ŧ				
Analytics Tec	hniques: Predictive Analytics - Descriptive Analytics - Surv	vival Analysis	- So	cial I	Netw	ork			
Analytics.	MONGORD MAROOR AND MARRENUCE BROOD A		1		(0)				
UNII - IV	MONGODB, HADOOP AND MAPREDUCE PROGRAM		M		(9)				
MongoDB: W	ny Mongo DB - Terms used in RDBMS and Mongo DB -	Data Types -	MON	goDi	s Qu	.ery			
Language.	he Hadeon & Hadeon Facewater Maying Date in and out of	Hadoon Da	to So	ioliz	otion				
Hadoop: Apache Hadoop & Hadoop Ecosystem, Moving Data in and out of Hadoop - Data Serialization									
MapReduce. Mapper – Reducer – Combiner – Partuoner – Searching – Sorting – Compression.									
UNII - V	HDFS, HIVE AND HIVEQL, HBASE	d Installation	Com	moni	(9)				
Traditional Da	tabase HiyeOI Ouerving Data Sorting And Aggregating	Map Reduce		iparis	Join				
Traditional Database, HiveQL Querying Data - Sorting And Aggregating - Map Reduce Scripts, Joins &									
Sub queries - Induse concepts, Advanced Usage - Schema Design - Advance indexing, PIG, Zookeeper - Build Applications with Zookeeper									
Build Applicat									
		ТОТА	L: 4	5 PF	RIO	DS			
						- ~			
COURSE OUTCOMES:

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
C01	Understand Die Deterstalite en daties in the mediated	Understand
COI	Understand Big Data and its analytics in the real world	Understand
CO2	Discuss the storage and processing techniques for big data	Understand
CO3	Analyze web contents and Social Networks to provide analytics with	Analyzing
	relevant visualization tools.	
CO4	Demonstrate the Map Reduce programming model to process the big	Evaluating
CO4	data along with Hadoop tools.	
CO5	Illustrate the concepts of HDFS, HIVE AND HIVEQL, HBASE	Creating

REFERENCES:

- 1. Michael Minelli Michelle Chambers and AmbigaDhiraj "Big Data Big Analytics: Emerging Business and Analytic trends for todaysBusiness"First Editionwiley, 2013.
- 2. Paul Buhler, Wajid khattak, Thomas Erl, "Big Data Fundamentals: Concepts, Drivers & Techniques", Second Edition, Prentiee Hall, 2016.
- Seema Acharya, SubhashiniChellappan, "Big Data and Analytics", Wiley Publications, First Edition, 2015.
- 4. Dirk Deroos, Paul C.Zikopoulos, Roman B.Melnky, Bruce Brown, Rafael Coss, "Hadoop For Dummies", Wiley Publications, 2014.

Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	2	1	2	1	-			
CO2	2	1	2	1	-			
CO3	2	1	2	1	-			
CO4	2	1	2	1	-			
CO5	2	1	2	1	-			
Avg.	2	1	2	1	-			
1-low, 2-medium,	3-high		•	•	•			

		-				
IT24E19	ONTOLOGY AND SEMANTIC WEB	Catego	ory I	. T	P	C
	(PROFESSIONAL ELECTIVES – III and IV)	PEC	: 1	. 0	3	1
PREREQU	ISITE:					
A basic und	erstanding of logic, specifically propositional and predicate log	ic, is imp	ortant,	as it	under	pins
the principle	es of knowledge representation and reasoning. Familiarity with n	harkup lan	iguages	like	XML	and
HTML, as	well as an understanding of web development technologies su	uch as H	ГТР, R	EST,	and	web
services, wi	Il be helpful. Additionally, an introductory knowledge of da	atabases a	and qu	ery la	angua	ages,
particularly	SQL, will provide a strong basis for understanding RDF and	SPARQL	in the	conte	ext of	f the
Semantic W	eb.	-				
OBJECTIV	VES:					
• To un	derstand the definition and purpose of ontologies and their real-	world app	licatior	IS.		
• To ex	plore the RDF Primer and SPAROL Ouery Language Specificat	ions.				
• To un	derstand the concept of Semantic Web Services and explore OW	/L-S and o	other se	rvice		
ontol	noies	L 5 una	stiler se	1 100		
To ide	entify the challenges of ontology alignment and the techniques for	or ontolog	w mate	hing :	and	
mergi	ng	Ji ontolog	,y mater	ing (ina	
	ng. alvza, samantic web applications in various domains					
• 10 an	INTRODUCTION TO ONTOL OCIES AND KNOWLEI	DCF				
UNIT - I	DEDESENTATION	JGE			(9)	1
Definition (and purpose of optologies Real world applications Opto	logy dev	alonma		ifoow	
Methodolog	ies for ontology design - Tools for ontology engineering - Basic	s of know	vledge 1	n -n	entat	ion -
Description	Logic (DL)	S OI KIIOW	fleuge I	cpres	Cinat	1011 -
	SEMANTIC WEB FUNDAMENTALS				(0)	
Vision and	goals of the Semantic Web Differences between the traditions	al web an	d the S	aman	$\frac{(\mathbf{y})}{\mathbf{tic}}$	lah
Resource D	escription Framework (RDF) SPAROL query language RD	II WED allo	u ille 5			Uorv
Language St	pecifications	/1 1111101	and S.		ζĽ Ų	uery
	ONTOLOCY LANCHACES AND SEMANTIC WED SE	DVICES			(0)	
	f OWL OWL syntax and somentias Using OWL for anto	logy mod)	Introv	(e)	n to
Somentie W	a Sorvices OWL S and other service optologies	logy mou	ening -	muoc	Juctic	лі то
Semantic w	ONTOLOCY ALICNMENT INTECRATION AND L	NIZED				
UNIT - IV	UNIOLOGY ALIGNMENT, INTEGRATION, AND LI	NKED			(9))
Challanges	DATA	manaina	Duina		ofI	mlrad
Doto Dublic	bing and consuming Linked Date	merging -	- FINC	pies		likeu
Data- Fuolis						
UNIT - V	SEMANTIC WEB APPLICATIONS AND ADVANCED	TOPICS			(9)	ł.
Case studie	s of Semantic Web applications - Trends and future direction	ons - Ont	ology	learni	ng a	nd
automatic o	ntology generation - Semantic search and query expansion	- Machir	ne lear	ning	for t	he
Semantic W	eb					
		TC)TAL:	45 P	'ERI(ODS
COUDSE	NITCOMES.					
At the end	of the course, the students will be able to:					
COs	Course Outcome		Cogi	nitive	Leve	el
001	Define and explain the purpose and significance of ontologies in	n	T 7	1 .	1	
COI	information systems		Un	aersta	nd	
	intormation systems					

73

CO2	Acquire the skills to use the Resource Description Framework (RDF) to represent structured data on the Semantic Web	Understand
CO3	Describe services using OWL-S and other service ontologies.	Understand
CO4	Use tools and methodologies to align and integrate different ontologies effectively.	Apply
CO5	Analyze and evaluate case studies of Semantic Web applications to understand their architecture and impact.	Analyze

REFERENCES:

- 1. Dean Allemang and James Hendler, "Semantic Web for the Working Ontologist", 2020.
- 2. Asunción Gómez-Pérez, Mariano Fernández-López, and Oscar Corcho, "Ontology Engineering", 2018.
- 3. Toby Segaran, Colin Evans, and Jamie Taylor, "Programming the Semantic Web", 2011

Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	3	-	2	2	-			
CO2	3	-	2	2	-			
CO3	3	-	2	2	-			
CO4	3	-	2	2	-			
CO5	3	-	2	2	-			
Avg.	3	-	2	2	-			
1-low, 2-medium, 3-high								

IT24E20	AR/VR/XR DEVELOPMENT	MENT Category L		L	TI		С		
1124E20	(PROFESSIONAL ELECTIVES – III and IV)		С	1	0	3	1		
PREREQU	PREREQUISITE:								
The students	s must knowledge in programming languages such as C, C	C++, Sw	vift, P	ytho	n, Ja	ıva,	and		
JavaScript. S	kill at using game engines such Unreal Engine and Unity. Fam	iliarity w	with p	rogra	mmi	ng to	ols		
such as Git.	The ability to use animation and design tools such as 3DS Max,	Blender,	, and l	Maya	ì.				
OBJECTIV	ES:								
Provid	• Provide a foundational understanding of augmented, virtual, and extended reality technologies								
• Introd	ice fundamental modeling tools and techniques in Blender.								
Master	subdivision modeling and sculpting for high-detail 3D creation	1.							
• Under	stand the fundamental principles of keyframe animation for dyn	amic mo	oveme	nt.					
Discov	ver how to create basic interactions and user interfaces for imme	rsive exp	perien	ces.					
UNIT - I	INTRODUCTION TO AR/VR/XR					(9)			
Overview of	AR, VR, and XR technologies - Applications and use cases	- Introc	ductio	n to	Bler	der	and		
related tools	- Definition and concepts of AR, VR, and XR - Historical	evolutio	on and	l cur	rent	trenc	ls -		
Comparison	of AR/VR/XR technologies - Potential applications and use	cases -	Disc	ussir	ig re	al-wo	orld		
examples of	AR/VR/XR applications								
UNIT - II	GETTING STARTED WITH BLENDER					(9)			
Overview of	f Blender interface and workspace - Basic navigation and	l manipu	ulatio	n of	3D	obj	ects		
Introduction	to modeling tools and techniques - Understanding Blender	's workf	flow	for a	isset	- Ba	asic		
modeling tec	hniques - UV unwrapping and texturing - advanced modeling	tools an	nd mo	difie	rs Ar	nimat	ion		
and Rigging	- Keyframe animation - Rigging characters and objects -	Animat	tion -	Pr	incip	les A	And		
techniques									
UNIT - III	ADVANCED MODELING IN BLENDER					(9)			
Advanced m	odeling techniques (e.g., subdivision modeling, sculpting) -	UV unv	vrappi	ing a	and t	extu	ring		
fundamental	s - Introduction to Blender's material editor - Exploring Ble	ender's m	nodifi	er st	ack f	for n	on-		
destructive n	nodeling								
UNIT - IV	ANIMATION AND RIGGING					(9)			
Keyframe ar	imation principles - Rigging basics: bones, armatures, and co	nstraints	- We	ight	pain	ting	and		
skinning - Ir	troduction to Blender's animation tools and timeline - Integr	ating Bl	ender	· wit	h Ur	nity a	and		
Unreal Engi	ne : Overview of game engines (Unity and Unreal Engine) - E	Exporting	g Blen	der a	assets	s for	use		
in Unity and	Unreal Engine - Basics of scene setup and importing assets	- Introd	uctior	to to	scrip	ting	and		
interactivity									
UNIT - V	TESTING AND DEBUGGING STRATEGIES					(9)			
Principles of	scene composition and layout - Lighting techniques for AR/	/VR/XR	envir	onme	ents	Mate	rial		
and texture	optimization for real-time rendering - Implementing basic int	eractions	s and	user	Inte	erface	es -		
Techniques for optimizing assets and scenes for real-time performance - Building and deploying									
AR/VR/XR applications for different platforms - Testing and debugging strategies.									
	TOTAL: 45 PERIODS								
COURSE OUTCOMES.									
At the end of the course, the students will be able to:									
COs	Course Outcome		С	ognit	ive I	Leve			
CO1	Understand the Basics of Quantum computing and its applicati	ons.		Unde	rstan	b			

75

CO2	Describe about the Quantum Computations and its operations	Understand
CO3	Analyze the various quantum algorithms for solving the problems	Analyzing
CO4	Apply quantum information theory in various case studies	Evaluating
CO5	Discuss about the different quantum error correction techniques.	Creating

REFERENCES:

- 1. The Essential Guide to Game Audio: The Theory and Practice of Sound for Games" by Steve Horowitz and Scott R. Looney, March 2014.
- 2. Jonathan Linowes "Unity Virtual Reality Projects: Learn Virtual Reality by Developing More Than 10 Engaging Projects with Unity", 2019.
- 3. Tomas Akenine-Möller, Eric Haines, and Naty Hoffman "Real-Time Rendering" August 2019.
- 4. Robert Scoble and Shel Israel,"The Fourth Transformation: How Augmented Reality & Artificial Intelligence Will Change Everything", kindle Edition, December 2016.

Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	2	-	3	2	1			
CO2	2	-	3	2	1			
CO3	2	-	3	2	1			
CO4	2	-	3	2	1			
CO5	2	-	3	2	1			
Avg.	2	-	3	2	1			
1-low, 2-medium, 3-high								