KSR College of Engineering

M.E. - COMPUTER SCIENCE AND ENGINEERING Curriculum & Syllabus for Semester I and II

REGULATIONS 2024 (Academic Year 2024-25 Onwards)

K.S.R. COLLEGE OF ENGINEERING: TIRUCHENGODE - 637 215 (Autonomous) <u>DEPARTMENT OF COMPUTER SCIENCE AND ENIGNEERING</u>

M.E. - Computer Science and Engineering

(REGULATIONS 2024)

Vision of the Institution

IV	We envision to achieve status as an excellent Educational Institution in the global
	knowledge hub, making self-learners, experts, ethical and responsible engineers,
	technologists, scientists, managers, administrators and entrepreneurs who will
	significantly contribute to research and environment friendly sustainable growth of the
	nation and the world.

Mission of the Institution

IM1	To inculcate in the students self-learning abilities that enable them to become competitive
	and considerate engineers, technologists, scientists, managers, administrators and
	entrepreneurs by diligently imparting the best of education, nurturing environmental and social needs.
IM 2	To foster and maintain mutually beneficial partnership with global industries and

Institutions through knowledge sharing, collaborative research and innovation.

Vision of the Department / Programme: (Computer Science and Engineering)

DV To create ever green professionals for software industry, academicians for knowledge cultivation and researchers for contemporary society modernization.

Mission of the Department / Programme: (Computer Science and Engineering)

DM 1	To produce proficient design, code and system engineers for software development.
DM 2	To keep updated contemporary technology and fore coming challenges for welfare of the society.

Programme Educational Objectives (PEOs): (Computer Science and Engineering)

The gra	The graduates of the programme will be able to									
PEO 1	Engineering knowledge: Apply the necessary mathematical tools and fundamental &									
	advanced knowledge of computer science & engineering.									
PEO 2	Development of solutions: Develop computer/software/network systems understanding									
	the importance of social, business, technical, environmental, and human context in which									
	the systems would work.									
PEO 3	Individual and Teamwork: Contribute effectively as a team member/leader, using									
	common tools and environment, in computer science and engineering projects, research,									
	or education.									

Programme Outcomes (POs) of B.E. - Computer Science and Engineering

	M.E Computer Science and Engineering graduates will be able to attain:
PO1	An ability to independently carry out research /investigation and development work to solve practical problems.
PO2	An ability to write and present a substantial technical report/document.
PO3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.
PSO1	Computer System Design: Apply the knowledge of computer system design principles in building system software and hardware components.
PSO2	Solve Computational Problems: Apply the theoretical foundations of computer science in modeling and developing solutions to the real-world problems.

K. S. R COLLEGE OF ENGINEERING An Autonomous Institution Approved by AICTE and Affiliated to Anna University, Chennai Accredited by NAAC ('A++' Grade)								C	Curriculum PG R - 2024				
De	epartment	Department of Computer Science	and En	ginee	ering								
Pr	ogramme	M.E. Computer Science and Engin	E. Computer Science and Engineering										
	1	SEMI	SEMESTER I										
S.	Course	Course Title	Course Title Categ Periods / Week Credit								Max. Marks		
NO.	Lode	me	ory -	L -	-	Р -	-	-	- CA	ES -	-		
THEO											<u> </u>		
1	MA24T16	Operations Research	FC	3	0	0	3	3	40	60	100		
2	CS24T16	Advanced Data Structures and Algorithms	РСС	3	0	0	3	3	40	60	100		
3	CS24T17	Database Practices	PCC	3	0	0	3	3	40	60	100		
4	CS24T18	Network Technologies	PCC	3	0	0	3	3	40	60	100		
5		Professional Elective - I	PEC	3	0	0	3	3	40	60	100		
6		Professional Elective - II	PEC	3	0	0	3	3	40	60	100		
LABO	RATORY COU	RSES											
7	CS24P16	Advanced Data Structures and Algorithms Laboratory	PCC	0	0	3	3	2	60	40	100		
8	CS24P11	Database Practices Laboratory	PCC	0	0	3	3	2	60	40	100		
			TOTAL	18	0	6	24	22		800			
		SEME	STER II		• •	/							
S. No	Course	Course Title	Categ	Ре	rioas T	/W	еек Тот	Credit		ax. Ivia	rкs Tot		
THEO	RY COURSES		ory	•	•	•	100		CA	23	100		
1	RM24T09	Research Methodology and IPR	RMC	3	0	0	3	3	40	60	100		
2	BD24T26	Big Data Mining and Analytics	PCC	3	0	0	3	3	40	60	100		
3	CS24T27	Cloud Computing	PCC	3	0	0	3	3	40	60	100		
4	BD24E08	Internet of Things	PCC	3	0	0	3	3	40	60	100		
5		Professional Elective - III	PEC	3	0	0	3	3	40	60	100		
6		Professional Elective - IV	PEC	3	0	0	3	3	40	60	100		
LABO	RATORY COU	RSES	1				1			1	1		
7	BD24P26	Laboratory	PCC	0	0	3	3	2	60	40	100		
8	CS24P26	Cloud Computing Laboratory	PCC	0	0	3	3	2	60	40	100		
9	CS24P21	Technical Presentation	EEC	0	0	3	3	2	60	40	100		
		TOTAL		18	0	9	27	24		900			

		SEME	STER III									
S.	Course		Categ	Ре	riods	; / W	eek	Credit	Ma	ax. Ma	rks	
No.	Code	Course little	ory	L	Т	Р	Tot	Credit	CA	ES	Tot	
		THEORY	COURSE	S								
1	CS24T31	Security Practices	PCC	3	0	0	3	3	40	60	100	
2	CS24T36	Soft Computing	PCC	3	0	0	3	3	40	60	100	
3		Professional Elective - V	PEC	3	0	0	3	3	40	60	100	
4		Open Elective - I	OEC	3	0	0	3	3	40	60	100	
5		Audit courses	AC	2	0	0	2	0	100	-	100	
		LABORATO	RY COU	RSES								
6	CS24P31	Project Phase – I	EEC	0	0	12	12	6	60	40	100	
		TOTAL		14	0	12	26	18		600		
		SEME	STER IV									
S.	Course	Course Title	Categ	Ре	riods	; / W	eek	Cradit	Ma	ax. Ma	rks	
No.	Code	Course Inte	ory	L	Т	Ρ	Tot	credit	CA	ES	Tot	
		LABORATO	RY COU	RSES	1	r	1		1	1	1	
1	CS24P41	Project Phase – II	EEC	0	0	24	24	12	60	40	100	
	TOTAL 0 0 24 24							12	100			
		TOTAL CREDITS							76	;		

TOTAL NUMBER OF CREDITS TO BE EARNED FOR AWARD OF THE DEGREE = 76

Note: FC - Foundation Courses, PCC - Professional Core Courses, RMC - Research Methodology Courses, PEC - Professional Elective Courses, EEC - Employability Enhancement Courses and AC - Audit Courses.

	FOUNDATION COURSES (FC)												
S.	Course	Course Title	Somostor	Pe	riods	/ W	eek	Credit	Max. Marks				
No.	Code	course fille	Semester	L	Т	Ρ	Tot	Credit	CA	ES	Tot		
1	MA24T16	Operations Research	I	3	0	0	3	3	40	60	100		
		TOTAL		3	0	0	3	3					
PROFESSIONAL CORE COURSES (PCC)													
		PROFESSIONAL	CORE COUR	SES	(PCC)							
S.	Course	PROFESSIONAL	CORE COUR	RSES Pe	(PCC) riods) / W	eek	Crodit	M	ax. Ma	rks		
S. No.	Course Code	PROFESSIONAL Course Title	CORE COUR Semester	SES Pei L	(PCC) riods T) / W P	eek Tot	Credit	Ma CA	ax. Ma ES	rks Tot		
S. No.	Course Code CS24T16	PROFESSIONAL Course Title Advanced Data Structures and Algorithms	Semester	SES Pe L 3	(PCC) riods T 0) / W P 0	eek Tot 3	Credit 3	M a CA 40	ax. Ma ES 60	rks Tot 100		
S. No. 1 2	Course Code CS24T16 CS24T17	PROFESSIONAL Course Title Advanced Data Structures and Algorithms Database Practices	Semester	SES Per L 3 3	(PCC) riods T 0) / W P 0 0	eek Tot 3 3	Credit 3 3	Ma CA 40 40	ex. Ma ES 60 60	Tot 100		

4	CS24P16	Advanced Data Structures and Algorithms Laboratory	I	0	0	3	3	2	60	40	100
5	CS24P11	Database Practices Laboratory	I	0	0	3	3	2	60	40	100
6	BD24T26	Big Data Mining and Analytics	Ш	3	0	0	3	3	40	60	100
7	CS24T27	Cloud Computing	Ш	3	0	0	3	3	40	60	100
8	BD24E08	Internet of Things	Ш	3	0	0	3	3	40	60	100
9	BD24P26	Big Data Mining and Analytics Laboratory	Ш	0	0	3	3	2	60	40	100
10	CS24P26	Cloud Computing Laboratory	Ш	0	0	3	3	2	60	40	100
11	CS24T31	Security Practices	111	3	0	0	3	3	40	60	100
12	CS24T36	Soft Computing	111	3	0	0	3	3	40	60	100
	TOTAL					12	36	32			

	EMPLOYABILITY ENHANCEMENT COURSES (EEC)													
S.	Course	Course Title	Somostor	Periods		5 / W	eek	Credit	Max. Marks					
No.	Code	course ritle	Semester	L	Т	Ρ	Tot	creuit	CA	ES	Tot			
1	CS24P21	Technical Presentation	II	0	0	3	3	2	60	40	100			
2	CS24P31	Project Phase – I	Ш	0	0	12	12	6	60	40	100			
3	CS24P41	Project Phase – II	IV	0	0	24	24	12	60	40	100			
		TOTAL		0	0	39	39	20						

	RESEARCH METHODOLOGY COURSES(REC)											
S.	S. Course	Course Title	Somostor	Pe	riods	/ W	eek	Credit	Max. Marks			
No.	Code	Course Inte	Semester	L	Т	Ρ	Tot		CA	ES	Tot	
1	RM24T09	Research Methodology and IPR	II	3	0	0	3	3	40	60	100	
		TOTAL		3	0	0	3	3				

	PROFESSIONAL ELECTIVE COURSES (PEC) PROFESSIONAL ELECTIVES – I and II (SEMESTER – I)													
S.	Course	Course Title	Somostor	Pe	riods	/ W	eek	Cradit	Max. Marks					
No.	Code	course ritle	Jemester	L	Т	Ρ	Tot	creuit	CA	ES	Tot			
1	CS24E01	Data Mining Techniques	I	3	0	0	3	3	40	60	100			
2	CS24E02	Advanced Operating System	I	3	0	0	3	3	40	60	100			
3	CS24E03	Mobile and Pervasive Computing	I	3	0	0	3	3	40	60	100			
4	BD24T16	Foundations of Data Science	I	3	0	0	3	3	40	60	100			
5	BD24E04	Agile Methodologies	I	3	0	0	3	3	40	60	100			
6	CS24E04	Object Oriented Software Engineering	I	3	0	0	3	3	40	60	100			

7	CS24E05	Wireless Sensor Networks	I	3	0	0	3	3	40	60	100
8	CS24E06	Multicore Architectures	I	3	0	0	3	3	40	60	100
9	CS24E07	Human Computer Interaction	I	3	0	0	3	3	40	60	100
10	BD24E05	Web Services and API Design	I	3	0	0	3	3	40	60	100

	PROFESSIONAL ELECTIVE COURSES (PEC)											
S.	S. Course Max. Marks											
No.	Code	Course Title	Semester L T P Tot		Credit	CA	ES	Tot				
1	BD24T27	Machine Learning Techniques	II	3	0	0	3	3	40	60	100	
2	CS24E08	Software Quality Assurance II 3 0 0 3 3 40						40	60	100		
3	CS24E09	Full Stack Web Application Development	11	3	0	0	3	3	40	60	100	
4	CS24E10	Deep Learning	II	3	0	0	3	3	40	60	100	
5	CS24E11	Natural Language Processing	Ш	3	0	0	3	3	40	60	100	
6	BD24E09	Blockchain Technologies	II	3	0	0	3	3	40	60	100	
7	BD24E10	Cyber Physical Systems	II	3	0	0	3	3	40	60	100	
8	CS24E12	GPU Computing	II	3	0	0	3	3	40	60	100	
9	CS24E13	Quantum Computing	II	3	0	0	3	3	40	60	100	
10	BD24E12	Information Retrieval Techniques	II	3	0	0	3	3	40	60	100	

PROFESSIONAL ELECTIVE COURSES (PEC) PROFESSIONAL ELECTIVES – V (SEMESTER – III)

S.	Course	Course Title	Somostor	Periods / Week		eek	Cradit	Max. Marks			
No.	Code	course rite	L T P Tot		Creuit	CA	ES	Tot			
1	BD24E14	DevOps and Microservices	Ξ	3	0	0	3	3	40	60	100
2	CS24E14	Augmented Reality and Virtual Reality	Ξ	3	0	0	3	3	40	60	100
3	CS24E15	Software Industrialization	Ξ	3	0	0	3	3	40	60	100
4	CS24E16	Digital Image Processing	III	3	0	0	3	3	40	60	100
5	BD24E17	Social Network Analysis	III	3	0	0	3	3	40	60	100

	OPEN ELECTIVE OFFERED BY OTHER DEPARTMENT											
1	BD24003	Big Data Visualization	III	3	0	0	3	3	40	60	100	
2	PE24O03	Renewable Energy Technology	111	3	0	0	3	3	40	60	100	
3	ET24O01	Embedded Systems	Ш	3	0	0	3	3	40	60	100	
4	CN24O03	Stress management	111	3	0	0	3	3	40	60	100	

Indian Knowledge System

CS24A04

4

5	ST24001	Principles of Sustainable		3	0	0	3	3	40	60	100
		development									
6	CU24O01	Principles of Multimedia	Ш	3	0	0	3	3	40	60	100
7	IS24001	Industrial Safety Engineering	Ш	3	0	0	3	3	40	60	100
8	IS24003	Food and Bio-safety	III	3	0	0	3	3	40	60	100
		OPEN ELECTIVE OFFER	ED TO OTHI	ER DI	EPAR	TME	NT				
9	CS24001	Machine learning and Deep Learning	III	3	0	0	3	3	40	60	100
10	CS24O02	Blockchain and Crypto Currency	III	3	0	0	3	3	40	60	100
11	CS24O03	Multimedia Technologies	Ш	3	0	0	3	3	40	60	100
			•								
		AUDIT COURS	SES (SEMEST	ER –	· III)						
S.	Course	Course Title	Somostor	Ре	riods	/ W	eek	Cradit	Ma	ax. Ma	rks
No.	Code	Course Inte	Semester	L	Т	Ρ	Tot	Crean	СА	ES	Tot
1	CS24A01	Disaster Management		2	0	0	2	0	100	-	100
2	CS24A02	Value Education	III	2	0	0	2	0	100	-	100
3	CS24A03	Constitution of India	III	2	0	0	2	0	100	-	100

III

2

0

0

2

0

100

-

100

	Summary									
Name of the Programme: M.E Computer science and Engineering										
CATEGORY	CATEGORY I II III III IV TOTAL CREDITS									
FC	3	-	-	-	3	3.94				
PCC	13	13	6	-	32	42.10				
REC	-	3	-	-	3	3.94				
PEC	6	6	3	-	15	19.73				
OEC	-	-	3	-	3	3.94				
EEC	-	2	6	12	20	26.31				
AC	-	-	~	-	-	-				
Total	22	24	18	12	76	100				

K.S.R College of Engineering

MA24T16	OPERATIONS RESEARCH	Category	L	Т	Р	C
		FC	3	0	0	3
	(Common to M. E CSE, M. E BDA and M.Tech	h IT)				
PREREQUISITE For Effective learn understanding of knowledge of netw	ning and applying resource management technique stud optimization technique like linear programming and ork programming, Queuing model.	lents must ha 1 integer pro	ve a ogram	foun	idatio g, ba	onal asic
 OBJECTIVES: 1. To determine loss based on 2. To analyze th way to assign 3. To determine and improve 4. To develop th 5. To facilitate b Scheduling. 	the most effective way to allocate the best value of linea decision variables. he most effective way to minimize the total transportati a set of tasks. the optimal quantity of inventory to hold the balancin optimal efficiency and reduce waste. he ability to analyze the basic components and behavior of learners about the PERT/CPM models to identify shortes	r programmin on cost and to g between ex f queuing syst st path, Netwo	g suc o finc cess tems ork de	th as the and esign	profi opti short , Pro	t or mal age ject
UNIT – I	LINEAR PROGRAMMING				(9)	
Formation of LP method.	P – Graphical method – Simplex method – Big	M Method	– D	ual	simp	lex
UNIT – II	TRANSPORTATION AND ASSIGNMENT PROB	LEMS			(9)	
Transportation M Problems – Initia approximation m (Minimizing and Problems.	Iodels (Minimizing and Maximizing Problems) - al Basic feasible solution by North West Corner I nethods – Optimum solution by MODI Meth I Maximizing Problems) – Hungarian method -	– Balanced Rule, least c od – Assi Balanced a	and ost a gnme and	unb and ent Unb	alan Voge Moc alan	ced el's lels ced
UNIT – III	INVENTORY MODELS				(9)	
Types of Inventor shortages – Produ Probabilistic inven	y – Deterministic inventory models: Purchasing problection problem with and without shortages – Purchase tory model (excluding proof).	em with no s e problem wi	shorta th pr	ige a ice t	ind v oreak	vith s –
UNIT – IV	QUEUING MODELS				(9)	
Characteristics of Single Server wi (M/M/1) : (N/FII finite capacity	E Queuing Models – Kendall's notations - Little's for th infinite capacity – $(M/M/C)$:(∞ /FIFO) Multi Se FO) Single Server with finite capacity – $(M/M/C)$	ormula – (M rver with in : (N/FIFO) M	/M/1 finite ⁄Iulti): (0 e cap serv	• /FI bacity ver w	FO) y – vith
UNIT – V	PERT/CPM				(9)	
Network Constru time, Total, free likely Pessimistic	action – Critical Path Method – Computation of e and independent float time – PERT Analysis – Cor and expected time.	arliest start nputation of	time, optii	, late misti	est s ic, m	tart Iost
		ТОТА	τ. 4	5 DE	סומי	ne

COURSE OUTCOMES: At the end of the course, the students will be able to:							
COs	Course Outcome	Cognitive Level					
CO1	Apply the concepts of linear programming approach during the uncertain situations.	Apply					
CO2	Analyze the transportation method and Assignment method to minimize costs	Analyze					
CO3	Evaluate the inventory model using EOQ and EBQ with and without shortage.	Apply					
CO4	Analyze and interpret the key features of various queuing systems	Analyze					
CO5	Apply and evaluate the concepts of network model	Analyze					

TEXT BOOKS:

- 1. Taha H.A, "Operation Research", Pearson Education, Noida, 9th Edition, 2013
- 2. Vohra N D, "Quantitative Techniques in Management", Tata Mc Graw Hill, New Delhi, 6th Edition, 2021.

- 1. P.K. Gupta and Man Mohan, "Problems in Operations Research", S. Chand and Co, New Delhi, 12th Edition, 2014
- 2. Wayne. L. Winston, "Operations research applications and algorithms", Thomson learning, United States, 4th Edition,2016.
- 3. Kalavathy S, "Operations Research", Vikas Publishing House, Ahmedabad, 6th Edition, 2019.
- 4. Hira and Gupta, "Problems in Operations Research", S. Chand and Co, New Delhi, 2nd Edition, 2012.

Mapping of COs with POs and PSOs										
COs/ POs	PO1	PO2	PO3	PSO1	PSO2					
CO1	3	-	-	2	-					
CO2	3	-	-	2	-					
CO3	3	-	-	2	-					
CO4	3	-	-	2	-					
CO5	3	-	-	2	-					
Avg. 3 2 -										
1-low, 2-medium, 3-high										

CS24T16	CS24T16 ADVANCED DATA STRUCTURES AND	Category	L	Т	Р	C				
0524110	ALGORITHMS	PCC	3	0	0	3				
	(Common to M.E CSE and M.E BDA)									
PREREQUISITE Familiarity with b understanding adva structures and algor	basic data structures like arrays, linked lists, stacks, anced topics. This foundational knowledge helps in gra rithms build upon these basics to address intricate problem	, and queues sping how m ns.	is ore c	esser comp	ntial lex c	for lata				
OBJECTIVES: 6. To introduce 7. To explore ad 8. To teach grap 9. To learn the s 10. To study the p	the fundamental concepts of algorithm efficiency and con- lvanced tree and heap data structures for efficient data ma- h algorithms for traversal, shortest paths, and minimum s kills in applying dynamic programming and greedy strate principles of NP-completeness, NP-hardness, and approx	nplexity analy anagement spanning trees egies for optin imation algori	/sis. nizati thms	on.						
UNIT – I ROLE OF ALGORITHMS IN COMPUTING (9)										
Algorithms – Algo analysis – Average Program performat Method.	Algorithms – Algorithms as a Technology – Time and Space complexity of algorithms – Asymptotic analysis – Average and Worst-case analysis – Asymptotic notation – Importance of efficient algorithms – Program performance measurement – Recurrences: The Substitution Method – The Recursion– Tree Method.									
UNIT – II	HIERARCHICAL DATA STRUCTURES				(9)					
Binary Search Tree Heap: Heap Opera Decreasing a key an	es – Red Black trees – B-Trees – B+ Trees – AVL Tre tions – Min/Max heaps – Fibonacci Heaps: Structure nd deleting a node– Bounding the maximum degree.	ee – Multi-wa – Mergeable	iy Se -heap	arch ope	Tree eratio	es – ons–				
UNIT – III	GRAPH				(9)					
Graph: Representa Minimum Spannin Shortest Paths: The Paths and Matrix N	tions of Graphs – Breadth-First Search – Depth-First g Trees: Growing a Minimum Spanning Tree – Krusk e Bellman-Ford algorithm – Dijkstra's Algorithm – Al fultiplication – The Floyd -Warshall Algorithm.	Search – To al and Prim's I-Pairs Shorte	opolo s – S st Pa	ogica ingle ths:	l Soi e-Soi Shor	rt – 1rce test				
UNIT – IV	ALGORITHM DESIGN TECHNIQUES				(9)					
Dynamic Programming: Matrix-Chain Multiplication – Optimal binary search trees – Elements of Dynamic Programming – Longest Common Subsequence – Greedy Algorithms: An Activity – Selection Problem – Elements of the Greedy Strategy – Huffman Codes and Trees.										
UNIT – V	NP COMPLETE AND NP HARD				(9)					
NP Completeness: – Proof of NP hards	Polynomial Time – Polynomial Time Verification – NP ness and NP completeness – Approximation algorithms –	Completeness - Randomized	s and Algo	Red orithr	ucibi ns.	ility				
		ТОТА	L: 4	5 PE	RIO	DS				

COURSE OUTCOMES: At the end of the course, the students will be able to:							
COs	Course Outcome	Cognitive Level					
CO1	Comprehend fundamental concepts of algorithm efficiency and apply complexity analysis methods.	Understand					
CO2	Recognize and implement advanced hierarchical data structures for effective data management.	Understand					
CO3	Apply graph algorithms to solve shortest paths and spanning trees and analyze their results.	Apply					
CO4	Identify dynamic programming and greedy strategies and synthesize these techniques for optimization.	Understand					
CO5	Analyze NP-complete problems and develop solutions using approximation and randomized algorithms.	Apply					

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", MIT Press, London, 4 th Edition, 2022.
- 2. Reema Thareja, "Data Structures Using C", Oxford University Press, England, 3rd Edition, 2023.
- 3. Weiss, "Data Structures and Algorithm Analysis in C", Pearson Education, India, 2nd Edition, 2015.
- 4. Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education, India, Reprint 2006.
- 5. S.Sridhar, "Design and Analysis of Algorithms", Oxford University Press, England, 1st Edition, 2014.

Mapping of COs with POs and PSOs										
COs/ POs	PO1	PO2	PO3	PSO1	PSO2					
CO1	3	-	3	1	3					
CO2	3	-	3	1	3					
CO3	3	-	3	1	3					
CO4	3	-	3	1	3					
CO5	3	-	3	1	3					
Avg. 3 - 3 1 3										
1-low, 2-medium, 3-high										

K.S.R College of Engineering

CS24T17		Category	L	Т	Р	С	
C824117	DATADASE I KACTICES	PCC	3	0	0	3	
	(Common to M.E CSE and M.E BDA)						
PREREQUISITE Students should have a foundation in SQL, relational algebra and basic database design principles. Knowledge of distributed databases, XML, and introductory NoSQL systems is also needed.							
OBJECTIVES: 1. To explore fu 2. To learn datal 3. To study distr 4. To know XM 5. To examine N	ndamental concepts of the relational model and SQL. base design strategies using E-R modelling and normaliz- tibuted databases, active databases, and open database co L data models and management methods within database NoSQL databases and big data storage technologies like H	ation. nnectivity. es. Hadoop and M	ap Ro	educe	e.		
UNIT – I	RELATIONAL DATA MODEL				(9)		
Introduction to the Advanced SQL.	Relational Model – Relational Algebra – Introduction	to SQL – In	terme	diate	sQ	L –	
UNIT – II	DATABASE DESIGN				(9)		
 Complex Attribut E-R Diagrams to Alternative Notation Designs – Function Dependency Present Form – Join Dependency 	tes – Mapping Cardinalities – Removing Redundant Attr Relational Schemas – Extended E-R Features – Entity ons for Modeling Data – Relational Database Design nal Dependencies – Non-loss Decomposition – First, Se rvation – Boyce/Codd Normal Form – Multi-valued De dencies and Fifth Normal Form.	ibutes in Entit y-Relationship : Features of cond and Thir pendencies an	y Set Des Goo rd No nd Fo	s – R sign 1 od Re ormal ourth	leduc Issue elatic For Norr	ring s – onal ms, mal	
UNIT – III	DISTRIBUTED DATABASES, ACTIVE DATABAS DATABASE CONNECTIVITY	SES AND OP	EN		(9)		
Distributed Database Architecture – Distributed Data Storage – Distributed Query Processing – Distributed Transaction Processing – Active Database Concepts and Triggers – Design and Implementation Issues for Active Databases – Open Database Connectivity.							
UNIT – IV	XML DATABASES				(9)		
Structured, Semi structured and Unstructured Data – XML Hierarchical Data Model – XML Documents – Document Type Definition – XML Schema – Storing and Extracting XML Documents from Databases – XML Languages – Extracting XML Documents from Relational Databases – XML/SQL: SQL Functions for Creating XML Data.							
UNIT – V NOSQL DATABASES AND BIG DATA STORAGE SYSTEMS (9)							
Introduction to NC NoSQL Key-Value Column-Based or MapReduce – Hado	Introduction to NOSQL Systems – CAP Theorem – Document-Based NoSQL Systems and MongoDB – NoSQL Key-Value Stores – Dynamo DB Overview – Voldemort Key-Value Distributed Data Store – Column-Based or Wide Column NoSQL Systems – NoSQL Graph Databases and Neo4j – Big Data – MapReduce – Hadoop – YARN.						
TOTAL: 45 PERIODS							

COURSE OUTCOMES: At the end of the course, the students will be able to:				
COs	Course Outcome	Cognitive Level		
CO1	Interpret and utilize the principles of the relational model and SQL effectively.	Understand		
CO2	Comprehend and apply E-R modeling and normalization.	Apply		
CO3	Familiarize with and analyze distributed and active databases and connectivity.	Understand		
CO4	Recognize XML data models and apply XML management methods.	Apply		
CO5	Examine NoSQL databases and evaluate big data technologies.	Apply		

- 1. Abraham Silberschatz, Henry F. Korth and S. Sudharshan, "Database System Concepts", Tata McGraw Hill, New Delhi, 7th Edition, 2019.
- 2. Ramez Elmasri and Shamkant B. Navathe, "Fundamentals of Database Systems", Pearson Education, New Delhi, 7th Edition, 2016.
- **3.** S.K.Singh, "Database Systems Concepts, Design and Applications", Pearson Education, New Delhi, 2nd Edition, 2011.
- **4.** Harrison, Guy, "Next Generation Databases, NoSQL and Big Data", Apress publishers, Pune, 1st Edition, 2015.
- **5.** Thomas Cannolly and Carolyn Begg, "Database Systems, A Practical Approach to Design, Implementation and Management", Pearson Education, New Delhi, 6th Edition, 2015.

Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	3	-	1	3	1			
CO2	3	-	1	3	1			
CO3	3	-	1	3	1			
CO4	3	-	1	3	1			
CO5	3		1	3	1			
Avg.	3	-	1	3	1			
1-low, 2-media	1-low, 2-medium, 3-high							

CS24T19	NETWORK TECHNOLOGIES	Category	L	Т	Р	С
C524118			3	0	0	3
	(Common to M.E CSE and M.E BDA)					
PREREQUISITE Students should ha devices. Familiarity knowledge of progr	we a basic understanding of networking terminology, O y with IP addressing, wireless networks, and virtualization ramming and network security.	SI model prir on concepts is	ciple also	es and neec	d net led. I	work Basic
OBJECTIVES: 1. To introduce 2. To explore di 3. To review sop 4. To learn the p 5. To study the	fundamental networking concepts, devices and terminolo fferent wireless network technologies and standards. phisticated mobile network technologies and protocols principles and architecture of Software Defined Networki design and advantages of Network Functions Virtualizati	ogy. ng (SDN). on (NFV)				
UNIT – I NETWORKING CONCEPTS					(9)	
Peer To Peer Vs C Network throughpu LAN Vs WAN Net	Client-Server Networks – Network Devices – Network T at delay – OSI Model Packets – Frames – Headers – Co work Adapter – Hub – Switch – Router – Firewall – IP a	erminology – Ilision and Buddressing.	Net oadc	work ast E	Spee Doma	eds – ins –
– UNIT – II	- UNIT – II WIRELESS NETWORKS					
Wireless access teo Protocol Stack – Se	chniques – IEEE 802.11a, 802.11g, 802.11e, 802.11n/ac ecurity – Profiles – zigbee	c/ax/ay/ba/be,	QoS	– B1	uetoo	oth –
UNIT – III	MOBILE DATA NETWORKS				(9)	
4G Networks and Composite Radio Environment – Protocol Boosters – Hybrid 4G Wireless Networks Protocols – Green Wireless Networks – Physical Layer and Multiple Access – Channel Modelling for 4G – Concepts of 5G – Channel access – Air Interface – Cognitive Radio – Spectrum Management – C-RAN Architecture – Vehicular Communications – Protocol – Network Slicing – MIMO – mmWave – Introduction to 6G.						
UNIT – IV	SOFTWARE DEFINED NETWORKS				(9)	
SDN Architecture – Characteristics of Software – Defined Networking – SDN and NFV Related Standards – SDN Data Plane – Data Plane Functions – Data Plane Protocols – OpenFlow Logical Network Device – Flow Table Structure – Flow Table Pipeline – Use of Multiple Tables – Group Table – OpenFlow Protocol – SDN Control Plane Architecture – Control Plane Functions – Southbound Interface – Northbound Interface – Routing – ITU-T Model.						
UNIT – V	NETWORK FUNCTIONS VIRTUALIZATION (9)					
Motivation – Virtu Virtualized Networ Network virtualizat	Motivation – Virtual Machines – NFV Benefits and Requirements – Architecture – NFV Infrastructure – Virtualized Network Functions – NFV Management and Orchestration – NFV Use Cases – NFV and SDN – Network virtualization – VLAN and VPN.					
		тот	AL:	45 P	ERI	ODS

COURSE At the end	OUTCOMES: of the course, the students will be able to:	
COs	Cognitive Level	
CO1	Identify and apply fundamental networking concepts and terminology.	Apply
CO2	Familiarize with and assess various wireless network technologies and standards.	Understand
CO3	Examine and critique advanced mobile network technologies and protocols.	Apply
CO4	Comprehend and implement the principles and architecture of Software Defined Networking (SDN).	Apply
CO5	Realize and appraise the design and advantages of Network Functions Virtualization (NFV).	Understand

- 1. James Bernstein, "Networking made Easy", Independently Published, 1st Edition, 2018.
- **2.** Houda Labiod, Costantino de Santis, Hossam Afifi, "Wi-Fi, Bluetooth, Zigbee and WiMax", Springer, Netherlands, 1st Edition, 2007.
- **3.** Erik Dahlman, Stefan Parkvall, Johan Skold, "4G: LTE/LTE-Advanced for Mobile Broadband", Academic Press, Cambridge, 1st Edition, 2013.
- **4.** Saad Z. Asif, "5G Mobile Communications Concepts and Technologies", CRC press, Florida, 1st Edition, 2019.
- 5. William Stallings, "Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud", Pearson Education, 1st Edition, 2016.

Mapping of COs with POs and PSOs							
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
C01	3	1	1	2	2		
CO2	3	1	1	2	2		
CO3	3	1	1	2	2		
CO4	3	1	1	2	2		
CO5	3	1	1	2	2		
Avg.	3	1	1	2	2		
1-low, 2-mediu	1-low, 2-medium, 3-high						

K.S.R College of Engineering

CS24P16

ADVANCED DATA STRUCTURES AND ALGORITHMS LABORATORY

Category	L	Т	Р	С
PCC	0	0	3	2

(Common to M.E CSE and M.E BDA)

PREREQUISITE

Students should have a basic understanding of programming, data structures and fundamental algorithms. Familiarity with mathematical concepts related to recursion and algorithm complexity, along with strong problem-solving skills

OBJECTIVES:

- 1. To gain proficiency in developing and applying recursive functions for various computational problems.
- 2. To achieve competence in implementing and evaluating different sorting algorithms for effective data management.
- 3. To acquire skills in creating and managing various tree data structures for efficient data organization and retrieval.
- 4. To become adept at applying algorithms for solving graph-related problems, such as finding shortest paths and constructing minimum spanning trees.
- 5. To develop the ability to implement and analyze algorithms for complex optimization problems and coding challenges.

List of Exercise/Experiments:

- Develop recursive methods for tree traversal (In-order, Pre-order, Post-order) and for calculating Fibonacci numbers.
- 2. Generate solutions for Merge Sort and Quick Sort algorithms.
- 3. Construct a Binary Search Tree (BST) with essential operations like insertion, deletion, and search.
- 4. Design and build a Red-Black Tree, ensuring it maintains its balancing properties.
- 5. Construct a Heap (Min-Heap or Max-Heap) and perform standard heap operations.
- 6. Assemble a Fibonacci Heap and utilize it for efficient priority queue operations.
- 7. Develop Prim's algorithm to determine the Minimum Spanning Tree of a graph.
- 8. Implementation of minimum cost spanning tree using Kruskal's algorithm.

17

- 9. Design Dijkstra's algorithm and Bellman-Ford algorithm to compute the shortest paths from a single source in a graph.
- 10. Write a program to compute the shortest path from a single source to all other vertices in a given graph.
- 11. Develop an algorithm to solve the Matrix Chain Multiplication problem, optimizing the sequence of matrix multiplications.
- 12. Design the Activity Selection problem using a greedy strategy and Huffman Coding Implementation.

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the students will be able to:				
COs	Course Outcome	Cognitive Level		
CO1	Develop and execute recursive algorithms for problem-solving tasks.	Apply		
CO2	Apply and compare sorting techniques to evaluate their performance and efficiency.	Apply		
CO3	Build and work with various tree structures to organize and access data effectively.	Apply		
CO4	Implement graph algorithms to solve problems related to shortest paths and minimum spanning trees.	Apply		
CO5	Develop and apply algorithms for complex optimization and coding challenges.	Apply		

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", MIT Press, London, 4 th Edition, 2022.
- 2. Reema Thareja, "Data Structures Using C", Oxford University Press, England, 3 rd Edition, 2023.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	3	-	3	3	2	
CO2	3	-	3	3	2	
CO3	3	-	3	3	2	
CO4	3	-	3	3	2	
CO5	3	-	3	3	2	
Avg.	3	-	3	3	2	
1-low, 2-mediu	ım, 3-high		·			

CS24P11	DATABASE PRACTICES I ABORATORY	Category	L	Т	Р	С				
0524111		DATADASE I KAUTICES LADUKATUKY	РСС	0	0	3	2			
PREREQUISI Students should	PREREQUISITE Students should have basic knowledge of SQL and relational databases, including table creation and data									
NoSQL databas	am es.	illarity with programming languages for database acces	s and unders	tandi	ng X	ML	and			
OBJECTIVES	OBJECTIVES:									
 To prace To perf To exerption To exerption 	 To practice creating, altering, and managing database tables and constraints. To perform data manipulation tasks such as selection, insertion, updating, and deletion. To execute advanced queries involving set operations, aggregate functions, string operations, and joins. 									
4. To crea 5. To inte databas	gra	te and manage XML documents in relational databas	ses and query	y var	ious	NoS	QL			
List of Exercis	e/E	xperiments:								
1. Develo applica	o a ion	nd execute SQL Data Definition Commands to perfo s:	rm the follow	ving	for 1	eal-t	ime			
		i. Create, Alter, Rename, Truncate and Drop Table								
		ii. Enforce Primary Key, Foreign Key, Check, Unique	and Not Null	Cons	strain	ıt				
2. Formul Update	ate an	and execute SQL Data Manipulation Language staten d Delete operations in the real-time database.	nents to perfo	orm S	Selec	t, Ins	sert,			
3. Constru operation	ct ms,	and execute database queries involving Set operation and Joins in the real-time database.	s, Aggregate	funo	ctions	s, St	ring			
4. Design	and	implement SQL Views for real-time applications.								
5. Create	nd	apply Triggers for real-time databases.								
6. Develo a real-t	o ar me	id implement solutions to access a Relational Database us application.	sing Java, Pyt	hon, Ì	PHP,	or R	for			
7. Genera applica	e 1 ion	XML Documents, Document Type Definitions, and s.	XML Scher	nas	for 1	eal-t	ime			
8. Execut applica	oj ion	perations to store XML documents as text in a Rel s.	ational Datab	ase	for 1	real-t	ime			
9. Extract	XN	IL Documents from Relational Databases for real-time a	oplications.							
10. Compo Key-Va	se a lue	and run queries to access databases created using Mon Distributed Data Store, HBase, and Neo4j.	goDB, Dynar	noDł	3, Vo	older	nort			
			TOTA	L: 4	5 PI	ERIC	DS			

COURSE OUTCOMES: At the end of the course, the students will be able to:				
COs	Course Outcome	Cognitive Level		
CO1	Execute SQL DDL commands to create and modify tables and enforce constraints.	Apply		
CO2	Perform data manipulation tasks using SQL DML commands for inserting, updating, and deleting records.	Apply		
CO3	Apply advanced SQL querying techniques, including set operations, aggregate functions, and joins.	Apply		
CO4	Design and implement SQL views and triggers for managing and automating database operations.	Apply		
CO5	Handle XML data within relational databases and perform queries on various NoSQL databases.	Apply		

- 1. Abraham Silberschatz, Henry F. Korth and S. Sudharshan, "Database System Concepts", Tata McGraw Hill, New Delhi, 7th Edition, 2019.
- 2. Ramez Elmasri and Shamkant B. Navathe, "Fundamentals of Database Systems", Pearson Education, New Delhi, 7th Edition, 2016.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	3	1	2	2	1	
CO2	3	1	2	2	1	
CO3	3	1	2	2	1	
CO4	3	1	2	2	1	
CO5	3	1	2	2	1	
Avg.	3	1	2	2	1	
1-low, 2-mediu	ım, 3-high					

DM24T00	DESEADOU METHODOLOOV AND IDD	Category	L	Т	Р	С	
RIV124109	KESEARCH METHODOLOGT AND IFR	RMC	3	0	0	3	
	(Common to PED, EST, CSE, BDA, CAD CAI	M, ISE)					
PREREQUISITE: A basic understanding of academic writing and critical thinking skills to analyze research literature, familiarity with fundamental statistical concepts for data analysis, and a strong grasp of core subject knowledge relevant to the student's field. Additionally, a general awareness of legal principles related to intellectual property, ethical research practices, and innovation trends will enhance the student's ability to engage with both research methodologies and IRP concepts.							
OBJECTIV	ES:						
 To equip students with the ability to design and conduct rigorous research, employing appropriate methodologies, and critically analyzing results. To foster the ability to critically evaluate academic literature, identify research gaps, and formulate research questions. To enable students to effectively communicate research findings and legal arguments both 							
in wr	itten form and through presentations, to academic and pro- still an understanding of ethical issues in research in	ofessional au	dien onsił	ces.	ondi	ıct	
data i	integrity, and the ethical use of intellectual property.	cruding resp	511510		onat	<i>i</i> ct,	
• To p paten	rovide a comprehensive understanding of intellectua ts, trademarks, copyrights, and their application in variou	l property r is industries.	ights	s, in	clud	ing	
UNIT - I	RESEARCH DESIGN			(9)			
Overview of research ques	research process and design – Use of Secondary and extion, Qualitative research, Observation studies – Experim	xploratory danents and sur	ta to veys	ans	wer	the	
UNIT - II	DATA COLLECTION AND SOURCES				(9)		
Measurement Data - Prepar	s: Measurement Scales – Questionnaires and Instrumening, Exploring, Examining and displaying.	ts – Samplir	ng ar	nd M	letho	ods.	
UNIT - III	DATA ANALYSIS AND REPORTING				(9)		
Overview of Insights and f	Multivariate analysis – Hypotheses testing and Measures findings using written reports and oral presentation.	s of Associat	ion -	– Pre	esent	ing	
UNIT - IV	INTELLECTUAL PROPERTY RIGHTS				(9)		
Intellectual Property – The concept of IPR, Evolution and development of the concept of IPR, IPR development process, Trade secrets, utility Models, IPR & Biodiversity, Role of WIPO and WTO in IPR establishments, Right of Property, Common rules of IPR practices, Types and Features of IPR Agreement, Trademark, Functions of UNESCO in IPR maintenance.							
UNIT - V	PATENTS				(9)		
Patents – ol Specification patent, Revoo – Registration	Patents – objectives and benefits of patent – Concept, features of patent, Inventive step, Specification – Types of patent application, process E-filling – Examination of patent – Grant of patent, Revocation, Equitable Assignments. Licenses – Licensing of related patents – patent agents, – Registration of patent agents.						
TOTAL: 45 PERIODS							

COURSE OUTCOMES:							
At the	end of the course,	the students will	be able to:				
COs		Course	Outcome		Cognitive Level		
CO1:	Develop a suitabl	e research process	to solve real-time	problems.	Apply		
CO2:	Apply appropriat for analysis.	e methods to colle	ect qualitative and	l quantitative data	Apply		
CO3:	Apply appropriat problems.	e statistical tools	to analyze data a	nd solve research	Apply		
CO4:	Describe the type IPR establishmen	es and features of t.	intellectual proper	rty and its role in	Apply		
CO5:	Illustrate the pa licensing of pater	tent procedures, its.	E-filling, register	of patents, and	Apply		
TEXT	BOOKS:						
1	Cooper Donald, Methods", Tata N	R., Schindler P IcGraw Hill Educa	amela, S., and S ation, Eleventh Edit	Sharma, J.K., "Bution, 2012.	usiness Research		
2	Catherine J. Ho Secrets, Entrepret	lland, Intellectual neur Press, 2007.	property: Patent	s, Trademarks, C	opyrights, Trade		
REFE	RENCES:						
1	David Hunt, Lor Wiley, 2007.	ng Nguyen, Matth	ew Rodgers, Pater	nt Searching: Tool	ls & Techniques,		
2	The Institute of C Professional Prog	Company Secretarie ramme Intellectual	es of India, Statuto l Property Rights, I	ry body under an A Law and Practice, S	Act of Parliament, September 2013.		
		Mapping of C	COs with POs and	PSOs			
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	3	3	-	1	1		
CO2	3	3	-	1	1		
CO3	3	3	-	1	1		
CO4	3	3	-	1	1		
CO5	3	3	-	1	1		
Avg.	3	3	-	1	1		
1 - Lov	v, 2 - Medium, 3 - 1	High					

DD24T2(Catego		L	Т	Р	С		
BD24120	BIG DATA MINING AND ANALY HCS	PCC	3	0	0	3		
	(Common to M.E CSE and M.E BDA)							
PREREQUISITE								
Basic knowledge of with clustering algo tools will aid in cor	of data processing, statistical modeling, and machine le prithms and Hadoop is also helpful. Understanding data nprehension.	earning is req stream proces	luired sing a	l. Fai and a	nilia naly	rity tics		
OBJECTIVES								
1. To explore sta	atistical modeling, machine learning, and MapReduce for	large-scale d	ata.					
2. To learn data	stream processing techniques such as sampling and filter	ing.						
3. To study and	apply various clustering techniques like partitioning and	hierarchical n	netho	ds.				
4. To gain pract	ical knowledge of Hadoop's file system and ecosystem for	or big data ma	nagei	nent				
5. To master big	data analytics and integrate unstructured with structured	data.						
UNIT – I	LARGE SCALE FILES AND MAPREDUCE				(9)			
Statistical Modelin Feature Extraction Algorithms Using I	g – Machine Learning – Computational Approaches to – Statistical Limits on Data Mining – Distributed MapReduce – Extensions to MapReduce.) Modeling – File Systems	Sum – M	mari IapR	zatio	n – e –		
UNIT – II	MINING DATA STREAMS				(9)			
Stream Data Mode Stream – Estimatin	el – Sampling Data in a Stream – Filtering Streams – C g Moments – Counting Ones in a Window – Decaying W	Counting Disti Vindows.	nct E	leme	ents i	n a		
UNIT – III	CLUSTER ANALYSIS AND METHODS				(9)			
Cluster Analysis – Methods – Evaluati	Partitioning Methods – Hierarchical Methods – Densition of Clustering.	y-Based Meth	ods -	- Gri	d-Ba	sed		
UNIT – IV	HADOOP AND ITS ECOSYSTEM				(9)			
Explaining Hadoo Ecosystem – Mana Mining Big Data w	p – Hadoop Distributed File System – Hadoop Ma ging Resources and Applications with Hadoop YARN – ith Hive.	apReduce – Storing Big D	Build Data v	ling vith l	Hado HBas	oop e –		
UNIT – V	ANALYTICS AND BIG DATA				(9)			
Defining Big Data Analytics – Exploring Unstructured data – Understanding Text Analytics – Analysis and Extraction Techniques – Putting results together with structured data – Putting Big data to use – Text Analytics tools for Big Data.								
TOTAL: 45 PERIODS								

COURSE At the end	OUTCOMES: of the course, the students will be able to:	
COs	Course Outcome	Cognitive Level
CO1	Apply statistical modeling, machine learning and MapReduce for large-scale data processing.	Apply
CO2	Evaluate stream processing techniques and assess their real-time effectiveness.	Understand
CO3	Compare various clustering methods and develop effective models using partitioning, hierarchical, and density-based techniques.	Analyze
CO4	Utilize Hadoop's file system and tools, and manage big data with Hadoop YARN.	Apply
CO5	Analyze and integrate unstructured and structured data, and apply text analytics tools for insights.	Analyze

- 1. Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, UK, 3rd Edition, 2020.
- 2. Jiawei Han, Micheline Kamber, Jian Pei, "Data Mining Concepts and Techniques", Morgan Kaufman Publications, USA, 3rd Edition, 2012.
- 3. Judith Hurwitz, Alan Nugent, Dr. Fern Halper, and Marcia Kaufman, "Big Data for Dummies", John Wiley and Sons, Inc. New Jersey, 2013.
- 4. Ian H.Witten, Eibe Frank, "Data Mining Practical Machine Learning Tools and Techniques", Morgan Kaufman Publications, San Francisco, 3rd Edition, 2011.
- 5. Seema Acharya, Subhashini Chellappan, "Big Data and analytics", Wiley Publications, India, 1st edition, 2015.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	2	-	3	3	2	
CO2	2	-	3	3	2	
CO3	2	-	3	3	2	
CO4	2	-	3	3	2	
CO5	2	-	3	3	2	
Avg.	2	-	3	3	2	
1-low 2-medium	n 3-high			•		

CS24T27	CI OUD COMDUTINC	Category	L	Т	Р	C
C524127	CLOUD COMPUTING	PCC	3	0	0	3
	(Common to M.E CSE and M.E BDA)					-
PREREQUISITE						
A basic understand security principles their applications w	ling of cloud computing concepts and deployment mode and privacy concerns in IT is also required. Knowledge vill be beneficial.	els is needed. e of major clo	Fam ud pl	iliari atfor	ty w ms a	vith and
OBJECTIVES:						
 To Know the To discover c To examine p To learn about To study clout 	cloud computing concepts, deployment models, and arch loud deployment models and address security issues. rivacy concerns and regulatory implications in cloud con at major industrial cloud platforms and their applications ad security measures, including infrastructure protection a	nitectural design puting. and privacy iss	gn. sues.			
UNIT – I	CLOUD PLATFORM ARCHITECTURE				(9)	
Cloud Computing: community – Categ – A Generic Clou Design Challenges.	Definition, Characteristics – Cloud deployment mo gories of cloud computing – Everything as a service: Inf d Architecture Design – Layered cloud Architectural	odels: public, frastructure, p Development	priv latfor z – A	ate, m, so Archit	hybi oftw tectu	rid, are ıral
UNIT – II	CLOUD DEPLOYMENT MODELS AND SECURI	TY ISSUES			(9)	
Key Drivers to Ad Cloud – Barriers to – Host Level – App Mitigation Provider	lopting the Cloud – The Impact of Cloud Computing of Cloud Computing Adoption in the Enterprise. Infrastruction Level – Data Security and Storage – Aspects of r Data and Security.	on Users – G cture Security Data Security	overr : Ne y – D	nance tworl Pata S	in CLe Cur	the vel rity
UNIT – III	PRIVACY ISSUES				(9)	
Privacy Issues – Da Privacy Risk Man Implications – U.S.	ata Life Cycle – Key Privacy Concerns in the Cloud – Pa agement and Compliance in Relation to Cloud Comp Laws and Regulations – International Laws and Regulat	rotecting Priva uting – Legal tions.	acy – and	Cha Reg	nges ulate	s to ory
UNIT – IV	INDUSTRIAL PLATFORMS AND APPLICATION	NS			(9)	
Amazon web servi consumer application	ces – Google App Engine – Microsoft Azure – Scientif ons.	ic application	s – B	Busine	ess a	and
UNIT – V	CLOUD SECURITY				(9)	
Cloud Infrastructure security: network, host and application level – Aspects of data security, provider data and its security, Identity and access management architecture, IAM practices in the cloud, SaaS, PaaS, IaaS availability in the cloud – Key privacy issues in the cloud – Cloud Security and Trust Management						
		TOTAI	.: 45	5 PEI	RIO	DS

COURSE OUTCOMES: At the end of the course, the students will be able to:						
COs	Course Outcome	Cognitive Level				
CO1 Recognize cloud architectur	e and design solutions	Understand				
CO2 Examine cloud models and a	evaluate security issues.	Understand				
CO3 Identify privacy concerns an	d apply regulations.	Understand				
CO4 Compare cloud platforms an	d implement applications.	Apply				
CO5 Make use of cloud security a	nd implement protection measures.	Apply				

- 1. Rajkumar Buyya, Christian Vacchiola, S.Thamarai Selvi, "Mastering Cloud Computing", MCGraw Hill Education, India, 1st Edition, 2013.
- 2. John W.Ritting house and James F.Ransome, "Cloud Computing: Implementation, Management, and Security", CRC Press, Florida, 2010.
- 3. Tim Mather, "Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance (Theory in Practice)", O'Reilly Media, California, 2nd Edition, 2009.
- 4. John Rhoton, "Cloud Computing Explained: Implementation Handbook for Enterprises", Saint Louis, New York, 1st, 2009.
- 5. Tom White, "Hadoop: The Definitive Guide", Yahoo Press, New York, 3rd Edition, 2012.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	3	-	2	3	2	
CO2	3	-	2	3	2	
CO3	3	-	2	3	2	
CO4	3	-	2	3	2	
CO5	3	-	2	3	2	
Avg.	3	-	2	3	2	
		•				

BD24F08	INTERNET OF THINGS	Category	L	Т	Р	С	
DD24E00	INTERNET OF THINGS	PCC	3	0	0	3	
	(Common to M.E CSE and M.E BDA)						
PREREQUISITE							
Basic knowledge of microcontroller pla computing fundame	of computer networking, familiarity with Python prog atforms like Arduino or Raspberry Pi. Understanding of entals.	ramming, and of web techno	ł exp ologie	erier es ar	ice v id cl	with oud	
OBJECTIVES:							
 To introduce the basics of IoT and its underlying technologies. To review the development of IoT systems using popular hardware and software tools. To explore various IoT communication protocols. To study cloud services for IoT applications. To learn Industrial IoT (IIoT) and its applications. 							
UNIT – I	INTRODUCTION TO INTERNET OF THINGS				(9)		
Basic computer net TCP/IP transport L IoT – IoT Enabling	working to Internet of things: Network Types – Layered ayer. Definition and Characteristics of IoT – Physical De Technologies – IoT Levels and Deployment Templates -	network mode sign of IoT – - IoT and M21	els – Logi M.	Addr cal D	ressir Design	ng – n of	
UNIT – II	BUILDING IOT SYSTEMS				(9)		
IoT Physical devic Raspberry Pi – Inte XML – HTTPLib Galileo and Beagle	ees and Endpoints: Basic building blocks of IoT Devi- erfaces – Programming Raspberry Pi with Python – Pyt – URLLib – SMTPLib – XMPP – Contiki OS – Other bone boards.	ce – Raspber thon packages · IoT Platforn	ry Pi for 1 n: Ar	– L IOT: duine	inux JSO > – I	on N – Intel	
UNIT – III	IOT PROTOCOLS			(9)			
Introduction to IoT – CoAP.	Protocols – 6LoWPAN – IEEE 802.11 – WiFi – 802.15	Bluetooth –	802.1	5.4 -	– Zig	gbee	
UNIT – IV	CLOUD OFFERINGS AND IOT CASE STUDIES				(9)		
Cloud Storage Mo Application framew studies for IoT Des	Cloud Storage Models and Communication APIs for IoT– WAMP – Xively Cloud – Python Web Application framework – Designing a RESTful Web API – Amazon Web Services for IoT – MQTT – Case studies for IoT Design: Home automation – Smart Agriculture.						
UNIT – V	INDUSTRIAL INTERNET OF THINGS (IIOT)				(9)		
Introduction – Industrial Process – The Computer Integrated Manufacturing Pyramid (CIM) – IIoT data flow – Understanding the IIoT edge: Features of the edge – Architecture and implementations. Implementing IOT industrial solution with cloud services.						data ons.	
TOTAL: 45 PERIODS							

COURSE At the end	OUTCOMES: l of the course, the students will be able to:	
COs	Course Outcome	Cognitive Level
CO1	Comprehend the fundamental concepts of IoT.	Understand
CO2	Build simple IoT systems using devices like Raspberry Pi.	Apply
CO3	Familiarize with key IoT communication protocols.	Understand
CO4	Develop cloud-integrated IoT applications.	Apply
C05	Apply IIoT concepts in industrial scenarios.	Apply
1		

- 1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things: A hands-on Approach", University Press, UK, 1st Edition, 2015.
- 2. Giacomo Veneri, Antonio Capasso, "Hands-On Industrial Internet of Things Create a Powerful Industrial IoT Infrastructure Using Industry 4.0", Packt Publishing Ltd, UK, 1st Edition, 2018.
- 3. Adrian McEwen Hakim Cassimally, "Designing the Internet of Things", Wiley, India, 1st Edition, 2013.
- 4. Olivier Hersent, David Boswarthick, Omar Elloum, "The Internet of Things Key applications and Protocols", Wiley, India, 1st Edition, 2012.
- Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand, David Boyle, "From Machine - to-Machine to the Internet of Things - Introduction to a New Age of Intelligence", Academic Press, Elsevier Science, 1st Edition, 2014.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	2	1	2	3	2	
CO2	2	1	2	3	2	
CO3	2	1	2	3	2	
CO4	2	1	2	3	2	
CO5	2	1	2	3	2	
Avg.	2	1	2	3	2	
		·		•		

BD24P2	BIG DATA MIN	ING AND ANALYTICS	Category	L	ГР	С		
		SORATORY	PCC	0) 3	2		
	(Common to N	M.E CSE and M.E BDA)						
PREREQUI	SITE							
Students should have a basic understanding of big data concepts, programming skills (Java or Python), familiarity with data analysis tools (R) and knowledge of NoSQL databases (HBase, MongoDB). Additionally, they should be acquainted with distributed computing frameworks, particularly Apache Spark.								
OBJECTIV	CS:							
1. To	nstall, configure, and run Hado	oop and HDFS for big data proc	essing.					
2. To	evelop and implement MapRe	educe programs for data process	ing tasks such a	s word	l coun	t and		
wea	her dataset analysis.							
3. To	pply SVM and clustering tech	niques using R for data analysis	and visualization	on.				
4. To:	nplement applications that sto	re and manage big data in HBas	se or MongoDB	using	Hado	op or		
R.			. 1		G			
5. 101	istall, deploy, and configure a	n Apache Spark cluster and exec	cute application	s using	g Spar	K.		
List of Exer	ise/Experiments:							
1. Insta	l, configure and run Hadoop a	nd HDFS.						
2. Deve	op and execute MapReduce p	rograms to count word frequenc	vies.					
3. Crea	e a MapReduce program to pro	ocess weather data.						
4. Impl	ment SVM and clustering tech	hniques using R.						
5. Visu	lize data using any plotting fra	amework.						
6. Buile	an application that stores big	data in HBase or MongoDB usin	ng Hadoop or R	•				
7. Set u	o and configure an Apache Spa	ark cluster, and run an application	on using Apache	Spar	ς.			
	TOTAL: 45 PERIODS							
COURSE O At the end o	JTCOMES: the course, the students will	be able to:						
COs	(Course Outcome		C	ogniti Level	ve		
CO1	Demonstrate the ability to inst nd HDFS for big data environ	all, configure, and effectively numents.	nanage Hadoop		Apply	1		
I I_				1				

CO2	Develop and execute MapReduce programs for efficient data processing.	Apply
CO3	Apply SVM and clustering techniques in R and visualize data effectively.	Apply
CO4	Implement and manage storage solutions for large datasets using HBase or MongoDB, integrating them with Hadoop or R.	Apply
CO5	Deploy and use Apache Spark for distributed data processing applications.	Apply

- 1. Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, UK, 3rd Edition, 2020.
- 2. Seema Acharya, Subhashini Chellappan, "Big Data and analytics", Wiley Publications, India, 1st edition, 2015.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	2	-	3	3	2	
CO2	2	-	3	3	2	
CO3	2	-	3	3	2	
CO4	2	-	3	3	2	
CO5	2	-	3	3	2	
Avg.	2	-	3	3	2	
1-low, 2-medium, 3-high						

CS24	CS24P26 CLOUD COMPUTING LABORATORY	Category	L	Т	Р	С		
C52-	1 20		PCC	0	0	3	2	
(Common to M.E CSE and M.E BDA)								
PREREC	PREREQUISITE							
A basic understanding of virtualization, network protocols, and client-server architecture is required. Familiarity with network design tools and cloud computing concepts is also necessary.								
OBJECT	TVES:							
 To install and configure hypervisors; instantiate VMs. To facilitate client-server communication between virtual machines by developing and executing a chat application. To design and implement simple network topologies using network virtualization tools. To provide students with hands-on experience in implementing network protocols using network controllers. To develop students' ability to analyze and optimize scheduling mechanisms in cloud 							ıg a ′ork oud	
List of Ex	xercise/H	Experiments:						
1. a	a) Install	ation of various hypervisors and instantiation of VMs with	image file us	ing o	pen s	sourc	e	
1	hyperviso	ors such as Virtual Box, VMWare Player, Xen and KVM.						
1	b) Client applicatio	server communication between two virtual machine insta-	nces, executio	n of d	chat			
2. 0	Creation	of simple network topology using open source network vi	rtualization to	ols (l	ike n	nini 1	net	
ä	and other	rs).						
3. 1	Impleme	ntation of simple network protocols using open source net	work controll	ers (li	ike C	pen		
	Daylight			1				
4. 1	Impleme	ntation of various scheduling mechanisms using open sour		llator	. (1:1,			
3. 1	Fucolunt	zation and usage of the following cloud services with oper	i source cloud	1 1001	s (IIK	e		
	a So	sheduling mechanisms						
	b L	bad balancing mechanisms						
	с. Н	ashing and encryption mechanisms						
6. 1	Familiari	zation and usage of collaborative applications (SaaS).						
7. 1	Impleme	nting applications using Google App Engine (PaaS).						
	a. D	evelop MapReduce application (example-URL Pattern c uster set up (Single node and multi node).	ount and othe	ers) u	sing	Had	oop	
			TOTA	<u>L:</u> 4	<u>5 PE</u>	RIO	DDS	

COURSE OUTCOMES: At the end of the course, the students will be able to:					
COs	Course Outcome	Cognitive Level			
CO1	Apply hypervisor installation and VM creation techniques.	Apply			
CO2	Construct and manage VM client-server communication.	Apply			
CO3	Design and implement basic network topologies.	Apply			
CO4	Implement and manage network protocols with controllers.	Apply			
CO5	Examine scheduling mechanisms in cloud environments to optimize resource allocation using simulation tools.	Apply			

- 1. Rajkumar Buyya, Christian Vacchiola, S.Thamarai Selvi, "Mastering Cloud Computing", MCGraw Hill Education, India, 1st Edition, 2013.
- 2. John W.Rittinghouse and James F.Ransome, "Cloud Computing: Implementation, Management, and Security", CRC Press, Florida, 2010.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	3	1	3	3	2	
CO2	3	1	3	3	2	
CO3	3	1	3	3	2	
CO4	3	1	3	3	2	
CO5	3	1	3	3	2	
Avg.	3	1	3	3	2	
1-low, 2-medium, 3-high						

CS24P21	TECHNICAL DRESENTATION	Category	L	Т	Р	С
	TECHNICAL I RESERVATION	EEC	0	0	3	2

PREREQUISITE

Students should start by conducting thorough research on their chosen topic, reviewing recent journals and conference papers. They must select their topic with guidance from faculty to ensure relevance. Additionally, students need to develop strong presentation skills to clearly and effectively communicate their findings, using appropriate visual aids.

OBJECTIVES:

- 1. To show expertise in the chosen topic with recent research.
- 2. To provide original insights based on critical analysis.
- 3. To communicate complex ideas clearly to the audience.
- 4. To align the topic with relevant program outcomes.
- 5. To encourage feedback and discussion to refine ideas.

Guidelines:

- 1. The students have to refer the journals, conference proceedings which are published recently.
- 2. By mutual discussions with the faculty, the student can choose a topic in specific area.
- 3. The student has to submit a technical report having 30 50 pages to the corresponding faculty

one week before the final presentation.

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the students will be able to: **Course Outcome** Cognitive COs Level **CO1** Deepen understanding of the topic and its relevance to recent research. Understand **CO2** Understand Present technical information clearly and confidently. **CO3** Conduct independent research and produce a coherent report. Understand **CO4** Assess current research and identify future opportunities. Understand **CO5** Receive feedback to refine research and presentation skills. Understand

33

K.S.R College of Engineering

Mapping of COs with POs and PSOs							
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	3	1	3	3	2		
CO2	3	1	3	3	2		
CO3	3	1	3	3	2		
CO4	3	1	3	3	2		
CO5	3	1	3	3	2		
Avg.	3	1	3	3	2		
1-low, 2-medium, 3-high							

CS24F01	DATA MINING TECHNIQUES	Category	L	Т	Р	С	
C524E01	(PROFESSIONAL ELECTIVES – I and II)	PEC	3	0	0	3	
PREREQUISITE Basic knowledge understanding of da and machine learn programming skills	of statistics, programming, and databases is needed atabases and data modeling. Classification methods need ing. Clustering and association rule mining require st	l. Data ware l basics of sta atistics, mach	hous itistic	ing s, da learn	requi tabas ing a	ires ses, and	
1. To prese 2. To study 3. To inves support 4. To study 5. To learn	ent data mining concepts and preprocessing techniques. / data warehouse fundamentals and design. stigate various classification methods, including decisio vector machines. / different clustering methods and techniques. about association rule mining and data visualization	n trees, Baye	sian	meth	ods :	and	
UNIT – I	DATA MINING AND DATA PREPROCESSING				(9)		
Introduction to Dat Major Issues in Da Data Reduction – D	a Mining – Kinds of Data – Kinds of Patterns – Technolo ata Mining – Data Preprocessing: An Overview – Data Data Transformation and Data Discretization.	ogies – Kinds Cleaning – I	of A Data	pplic Integ	atior ratio	1s — n —	
UNIT – II BASICS OF DATA WAREHOUSE				(9)			
Basic Concepts – Implementation – I	Data Warehouse Modeling – Data Warehouse Design Data Generalization by Attribute Oriented Induction.	and Usage –	Data	a Wa	reho	use	
UNIT – III	CLASSIFICATIONS				(9)		
Classifications – B Classification – M Classification: Adv Support Vector Ma	asic Concepts – Decision Tree induction – Bayes Classi lodel Evaluation and Selection – Techniques to Improvanced concepts – Bayesian Belief Networks – Classification using frequent patterns.	fication Meth ove Classification by Ba	ods - ation ck P	- Rul Acc ropaş	e Ba uracy gatio	.sed y – n –	
UNIT – IV	CLUSTER ANALYSIS				(9)		
Cluster Analysis: Basic concepts and Methods – Cluster Analysis – Partitioning methods – Hierarchical methods – Density Based Methods – Grid Based Methods – Evaluation of Clustering – Advanced Cluster Analysis: Probabilistic model-based clustering – Clustering High – Dimensional Data – Clustering Graph and Network Data – Clustering with Constraints.							
UNIT – V	ASSOCIATION RULE MINING AND VISUALIZA	TION			(9)		
Basic Concepts – Frequent Itemset Mining Methods – Pattern Evaluation Methods – Pattern Mining – Pattern Mining in Multilevel, Multidimensional Space – Constraint-Based Frequent Pattern Mining – C Mining High-Dimensional Data and Colossal Patterns – Mining Compressed or Approximate Patterns – Pattern Exploration and Application – Data Visualization – Case Study: WEKA.							
TOTAL: 45 PERIODS							
COURSE At the end	OUTCOMES: I of the course, the students will be able to:						
----------------------	---	--------------------					
COs	Course Outcome	Cognitive Level					
CO1	Comprehend data mining methods and apply preprocessing techniques.	Understand					
CO2	Recognize data warehousing principles and implement design practices.	Understand					
CO3	Identify classification algorithms, apply them to datasets, and assess their performance.	Apply					
CO4	Discover clustering methods and evaluate their effectiveness.	Apply					
CO5	Realize mining and visualization techniques and review their effectiveness.	Understand					
1							

- 1. Jaiwei Han, Micheline Kamber and Jian Pei, "Data Mining Concepts and Techniques", Morgan Kauffman, 3rd Edition, 2012.
- 2. K.P. Soman, Shyam Diwakar and V. Ajay, "Insight into Data mining Theory and Practice", PHI/Eastern Economy, 5th Edition, 2014.
- 3. Alex Berson and Stephen J.Smith, "Data Warehousing, Data Mining & OLAP", Tata McGraw Hill, 5th Edition, 2016.
- 4. G. K. Gupta, "Introduction to Data Mining with Case Studies", Prentice Hall of India, 3 rd Edition, 2014.
- 5. Ian H.Witten and Eibe Frank, Mark A. Hall, "Data Mining: Practical Machine Learning Tools and Techniques", Elsevier, 3 rd Edition, 2011.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	3	-	2	3	1	
CO2	3	-	2	3	1	
CO3	3	-	2	3	1	
CO4	3	-	2	3	1	
CO5	3	-	2	3	1	
Avg.	3	-	2	3	1	
1-low, 2-medium, 3-high						

CS24E02

ADVANCED OPERATING SYSTEM (PROFESSIONAL ELECTIVES – I and II)

Category	L	Т	Р	С
PEC	3	0	0	3

PREREQUISITE

Students should have a solid understanding of basic operating system concepts, proficiency in programming languages like C or C++, and familiarity with computer architecture. Experience with data structures, algorithms and system-level programming is also essential.

OBJECTIVES:

- 1. To gain insight into the design and management of multiprocessor systems.
- 2. To explore the frameworks and challenges of distributed operating systems.
- 3. To investigate the strategies for managing resources in distributed systems.
- 4. To study database OS models and focus on transaction processing and concurrency control.
- 5. To learn about real-time systems and mobile OS architectures.

UNIT – I N	MULTIPROCESSOR SYSTEM ARCHITECTURES	(9)
------------	-------------------------------------	-----

Multiprocessor Operating Systems: Motivation for multiprocessor Systems – Multiprocessor System Architectures – Operating system Design Issues – Threads – Process Synchronization – Processor Scheduling and Allocation – memory management.

Architectures of Distributed Systems: System Architecture – Issues in Distributed Operating Systems – Communication Primitives. Theoretical Foundations: Inherent Limitations of a Distributed System – Lamport's Logical Clocks – Vector Clocks – Causal Ordering of Messages – Distributed Deadlock Detection: Centralized, Distributed and Hierarchical Deadlock Detection Algorithms.

UNIT – III	DISTRIBUTED RESOURCE MANAGEMENT	(9)
	DISTRIBUTED RESOURCE MANAGEMENT	(\mathcal{I})

Distributed File Systems: Architecture – Mechanisms for Building Distributed File Systems – Design Issues. Distributed Shared Memory: Architecture and Motivation – Algorithms for Implementing DSM – Memory Coherence – Coherence Protocols. Distributed Scheduling: Issues in Load Distributing – Components of a Load Distributed Algorithm – Stability – Load Distributing Algorithms – Requirements for Load Distributing – Task Migration – Issues in task Migration.

UNIT – IV	DATABASE OPERATING SYSTEMS

(9)

Database Operating Systems: Requirements of Database OS – Transaction process model – Synchronization primitives – Concurrency control algorithms.

UNIT – V WIODILE AND REAL TIME OF ERATING STSTEMS	UNIT – V	MOBILE AND REAL TIME OPERATING SYSTEMS
---	----------	--

(9)

Basic Model of Real Time Systems – Characteristics – Applications of Real Time Systems – Real Time Task Scheduling – Handling Resource Sharing – Mobile Operating Systems – Architecture – Layers – Microkernel Design – Kernel Extensions – Processes and Threads – Memory Management – File system – Android – iOS.

TOTAL: 45 PERIODS

COs	Course Outcome	Cognitive Level
CO1	Describe the principles and administration of multiprocessor systems.	Understand
CO2	Examine distributed OS frameworks and their challenges.	Understand
CO3	Develop and evaluate resource management strategies for distributed systems.	Understand
CO4	Outline database OS models and implement transaction processing and concurrency control.	Understand
CO5	Identify and demonstrate real-time and mobile OS architectures.	Apply

 Mukesh Singhal, Niranjan Shivaratri, "Advanced Concepts in Operating Systems – Distributed, Database and Multiprocessor Operating Systems", Tata McGraw-Hill, 1st Edition, 2011.

- Andrew S. Tanenbaum and Herbert Bos, "Modern Operating Systems", Prentice Hall, 4th Edition, 2014
- 3. A S Tanenbaum, "Distributed Operating Systems", Pearson Education, India, 5th Edition, 2008.
- 4. Rajib Mall, "Real-Time Systems: Theory and Practice", Prentice Hall, 2nd Edition, 2006.
- 5. Neil Smyth, "iPhone iOS 4 Development Essentials Xcode", Payload Media, 4th Edition, 2011.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	3	2	3	3	2	
CO2	3	2	3	3	2	
CO3	3	2	3	3	2	
CO4	3	2	3	3	2	
CO5	3	2	3	3	2	
Avg.	3	2	3	3	2	
1-low, 2-media	um, 3-high	•			•	

CS24E03

MOBILE AND PERVASIVE COMPUTING (PROFESSIONAL ELECTIVES – I and II)

Category	L	Т	Р	С
PEC	3	0	0	3

PREREQUISITE

It requires programming skills, knowledge of networking and operating systems, and familiarity with mobile app development. Understanding distributed systems is also important for grasping pervasive computing concepts.

OBJECTIVES:

- 1. To study wireless communication and the evolution from 2G to 5G.
- 2. To explore mobile communication technologies and network support.
- 3. To learn pervasive communication and application architectures.
- 4. To assess the principles and implementations of context-aware computing systems.
- 5. To review context-aware sensor networks and future innovations.

UNIT – I	INTRODUCTION TO WIRELESS ENVIRONMENT	(9)

Introduction to wireless communication – Wireless Transmission – Medium Access Control – Wireless MAC protocols – Comparison of 2G, 3G, 4G looking ahead 5G systems.

UNIT – II	MOBILE COMMUNICATION	(9)
UNIT – II	MOBILE COMMUNICATION	(9)

GSM – Bluetooth – Mobile network layer – Mobile transport layer – File system support for mobility support – Mobile execution environments and applications.

UNIT – III	PERVASIVE COMMUNICATION	(9)
		1

Past, Present, Future – Application Examples – Device Technology – WAP and Beyond – Pervasive Web Application Architecture: Example Application.

UNIT – IV	CONTEXT AWARE COMPUTING	(9)

Structure and Elements of Context-aware Pervasive Systems: Abstract architecture – Infrastructures – Middleware and toolkits. Context-aware mobile services: Context for mobile device users – Location-based services – Ambient service – Enhancing Context – Aware mobile services and Context aware artifacts.

UNIT – V	CONTEXT AWARE PERVASIVE SYSTEM	(9)
----------	--------------------------------	-----

Context-aware sensor networks – A framework for Context aware sensors – Context-aware security systems – Constructing Context-aware pervasive system – Future of Content aware systems.

TOTAL: 45 PERIODS

COs	Cognitive Level	
CO1	Summarize wireless communication and compare wireless generations.	Understand
CO2	Describe mobile technologies and evaluate network support.	Understand
CO3	Explore pervasive communication and design web applications.	Apply
CO4	Analyze context-aware systems and implement mobile services.	Apply
CO5	Investigate sensor networks and predict future trends.	Understand

- 1. Schiller Jochen, "Mobile Communication", PHI/Pearson Education, India, 2nd Edition, 2009.
- 2. Burkhardt Jochen, Henn Horst and Hepper Stefan, Schaec Thomas and Rindtorff Klaus, "Pervasive Computing Technology and Architecture of Mobile Internet Applications", Addison Wesley Reading, India, 2007.
- 3. Seng Loke, "Context-Aware Pervasive Systems: Architectures for a New Breed of Applications", Auerbach Publications, New York, 1st Edition, 2006.
- 4. Natalia Silvis, "Pervasive Computing Engineering Smart Systems", Springer, Netherland, 1st Edition, 2017.
- 5. Frank Adelstein, "Fundamentals of Mobile and Pervasive Computing", TMH, India, 1st Edition, 2005.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	3	-	3	3	1	
CO2	3	-	3	3	1	
CO3	3	-	3	3	1	
CO4	3	-	3	3	1	
CO5	3	-	3	3	1	
Avg.	3	-	3	3	1	
1-low, 2-media	um, 3-high	•	•	•	•	

BD3/T12	FOUNDATIONS OF DATA SCIENCE	Category	L	Т	Р	С
DD24110	(PROFESSIONAL ELECTIVES – I and II)	PEC	3	0	0	3
	(Common to M.E CSE and M.E BDA)		-			
PREREQUISITE To succeed in a F languages like Pyti algebra and calculu	oundations of Data Science course, students should ha hon or R, a foundational understanding of statistics and us), and familiarity with data manipulation and databases.	ve basic prog 1 mathematics	ramn s (inc	ning ludin	skills Ig lin	s in lear
OBJECTIVES: 1. To introd	uce data science fundamentals and processes.					
2. To study	methods for statistical description and analysis of data.					
3. To explor	re correlation and regression techniques.					
4. To learn	data manipulation using Python libraries.					
5. To develo	op skills in creating and customizing data visualizations u	using Python to	ools.			
UNIT – I	BASICS OF DATA SCIENCE				(9)	
Data. UNIT – II Types of Data – T	DESCRIBING DATA Sypes of Variables – Describing Data with Tables and	Graphs – Des	cribin	(9)		
Averages Variabil	lity – Normal Distributions and Standard (z) Scores. DESCRIBING RELATIONSHIP				(9)	
Correlation – Scat correlation coeffici estimate – Interpret	ter plots – Correlation coefficient for quantitative data ent – Regression – Regression line – Least squares reg tation of r2 – Multiple regression equations – Regression	a – Computat ression line – towards the n	ional Stan nean.	forr dard	nula erroi	for of
UNIT – IV	PYTHON LIBRARIES FOR DATA WRANGLING	ŕ			(9)	
Basics of Numpy a Fancy indexing – Operating on data Grouping – Pivot ta	rrays – Aggregations – Computations on arrays – Comp Structured arrays – Data manipulation with Pandas – – Missing data – Hierarchical indexing – Combinir ables.	arisons, Mask Data indexin ng datasets –	s, Bo g and Agg	olear 1 sel regat	n logi ectio ion	ic – n – and
UNIT – V	DATA VISUALIZATION				(9)	
Importing Matplot	lik Line plote Cootton plote Viewelining emerge	– Density an	d cor		1.	
Histograms – Lege plotting – Geograph	ends – Colors – Subplots – Text and Annotation – Cust hic Data with Basemap – Visualization with Seaborn.	omization – T	'hree-	Dim ¹	plot ensic	s – mal

COURSE OUTCOMES: At the end of the course, the students will be able to:					
COs	Course Outcome	Cognitive Level			
CO1	Enlighten data science fundamentals and processes.	Understand			
CO2	Summarize data using statistical methods.	Understand			
CO3	Apply and interpret correlation3 and regression techniques.	Apply			
CO4	Manipulate data using Python libraries.	Apply			
CO5	Analyze and customize data visualizations in Python.	Analyze			

1. David Cielen, Arno D. B. Meysman, and Mohamed Ali, "Introducing Data Science", Manning Publications, New Yark, 1st Edition, 2016.

- 2. Robert S. Witte and John S. Witte, "Statistics", Wiley Publications, India, 11th Edition, 2021.
- 3. Jake VanderPlas, "Python Data Science Handbook", O'Reilly, US, 1st Edition, 2016.
- 4. Allen B. Downey, "Think Stats: Exploratory Data Analysis in Python", Green Tea Press, India, 2nd Edition, 2016.
- 5. Sinan Ozdemir, "Principles of Data Science", Packt Publication, UK, 3rd Edition, 2024.

Mapping of COs with POs and PSOs							
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	1	1	3	3	2		
CO2	1	1	3	3	2		
CO3	1	1	3	3	2		
CO4	1	1	3	3	2		
CO5	1	1	3	3	2		
Avg.	1	1	3	3	2		
1-low, 2-medium, 3-high							

						1	
BD24E04	AGILE METHODOLOGIES	Category	L	Т	P	C	
	(PROFESSIONAL ELECTIVES – I and II)	PEC	3	0	0	3	
	(Common to M.E CSE and M.E BDA)						
PREREQUISITE							
Success in this cou concepts, including contrasting with Ag important.	requires a basic understanding of software develop requirements and testing. Familiarity with traditional progile. Experience in team collaboration and an interest in	ment and soft oject manager i iterative dev	tware nent elopr	e eng is he nent	ineer lpful are a	ing for ilso	
OBJECTIVES:	le the core theories and principles of Agile methodologie	9					
2 To learn :	about various Agile processes like SCRUM and Extreme	s. Programming					
2. To learn a	about various Agne processes like SCKOW and Extreme	in Agile team	,• •				
J. To develo	sportise in handling requirements engineering in an A gil	ni Agile team	5.				
4. To gain e	A cile approaches to quality assurance including Test Dri	von Dovelonn	nont				
5. TO learn A	Agne approaches to quanty assurance, including Test Dri	ven Developh	nent.				
UNIT – I	BASICS OF AGILE METHODOLOGY				(9)		
Theories for Agile Classification of A Team Interactions Drivers, Capabilitie	Management – Agile Software Development – Traditi gile Methods – Agile Manifesto and Principles – Agil – Ethics in Agile Teams – Agility in Design, Testing – es and Values.	onal Model v e Project Mar Agile Docum	rs. Ag nager nentar	gile 1 nent tions	Mode – Ag – Ag	el – gile gile	
UNIT – II	AGILE PROCESSES				(9)		
Lean Production – Extreme Programm	SCRUM, Crystal, Feature Driven Development – Ada ning: Method Overview – Lifecycle – Work Products, Ro	ptive Softwar les and Praction	e De ces.	velo	pmer	nt –	
UNIT– III	AGILITY AND KNOWLEDGE MANAGEMENT				(9)		
Agile Information Systems – Agile Decision Making – Earl's Schools of KM – Institutional Knowledge Evolution Cycle – Development, Acquisition, Refinement, Distribution, Deployment, leveraging – KM in Software Engineering – Managing Software Knowledge – Challenges of Migrating to Agile Methodologies – Agile Knowledge Sharing – Role of Story-Cards – Story-Card Maturity Model (SMM).							
UNIT – IV	AGILITY AND REQUIREMENTS ENGINEERING	J J			(9)		
Impact of Agile Processes in RE – Current Agile Practices – Variance – Overview of RE Using Agile – Managing Unstable Requirements – Requirements Elicitation – Agile Requirements Abstraction Model – Requirements Management in Agile Environment – Agile Requirements Prioritization – Agile Requirements Modeling and Generation – Concurrency in Agile Requirements Generation.							
UNIT – V	AGILITY AND QUALITY ASSURANCE				(9)		
Agile Product Development – Agile Metrics – Feature Driven Development (FDD) – Financial and Production Metrics in FDD – Agile Approach to Quality Assurance – Test Driven Development – Agile Approach in Global Software Development.							
		ТОТА	L: 4	5 PE	RIO	DS	

COURSE OUTCOMES: At the end of the course, the students will be able to:						
COs	Course Outcome	Cognitive Level				
CO1	Apply Agile methodologies in real-world projects.	Apply				
CO2	Use Agile tools like SCRUM and FDD effectively.	Understand				
CO3	Effectively manage and distribute knowledge in Agile environments.	Understand				
CO4	Handle Agile requirements engineering with proficiency.	Understand				
CO5	Implement Agile quality assurance to ensure high-quality software.	Apply				

- 1. Dingsoyr, Torgeir, Dyba, Tore, Moe, Nils Brede (Eds.), "Agile Software Development, Current Research and Future Directions", Springer-Verlag Berlin Heidelberg, UK, 1st Edition, 2010.
- 2. David J. Anderson; Eli Schragenheim, "Agile Management for Software Engineering: Applying the Theory of Constraints for Business Results", Prentice Hall, India, 1st Edition, 2003
- 3. Hazza & Dubinsky, "Agile Software Engineering, Series: Undergraduate Topics in Computer Science", Springer, UK, 8th Edition, 2009
- 4. Craig Larman, "Agile and Iterative Development: A managers Guide", Addison-Wesley, New York, 2nd Edition, 2004
- 5. Kevin C. Desouza, "Agile information systems: conceptualization, construction, and management, Butterworth-Heinemann", Penguin Books Ltd, UK, 1st Edition, 2007.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	3	1	2	2	3	
CO2	3	1	2	2	3	
CO3	3	1	2	2	3	
CO4	3	1	2	2	3	
CO5	3	1	2	2	3	
Avg.	3	1	2	2	3	
1-low, 2-medium, 3-high						

CS24E04	OBJECT ORIENTED SOFTWARE ENGINEERING	Category	L	Т	Р	C
	(PROFESSIONAL ELECTIVES – I and II)	PEC	3	0	0	3
	(Common to M.E CSE and M.E BDA)					
PREREQUISITE Students should ha understanding of s essential, along wit	ve basic programming skills in an object-oriented langu oftware engineering principles. Familiarity with core d h experience using UML for modeling designs.	age like Java ata structures	or C+ and	-+ an algo:	d a s rithm	olid s is
OBJECTIVES: 1. To introd	uce core software engineering concepts and Agile metho	dologies.				
2. To teach	skill for gathering, analyzing, and specifying software re	quirements.				
3. To cover	software design principles, patterns, and architectural sty	vles.				
4. To provid	le knowledge of testing methods and debugging techniqu	les.				
5. To learn s	skills in software project management and DevOps pract	ices.				
UNIT – I	SOFTWARE PROCESS AND AGILE DEVELOPM	IENT			(9)	
Introduction to Sof Introduction to Agi	Tware Engineering – Software Process – Perspective an lity – Agile process – Extreme programming – XP Proce	d Specialized	Proc	ess I	Mode	ls –
UNIT – II	REQUIREMENTS ANALYSIS AND SPECIFICAT	ION			(9)	
Requirement analy Specification – For UML – Use case M – Functional model	rsis and specification – Requirements gathering and ar rmal system specification – Finite State Machines – Per Iodel – Class diagrams – Interaction diagrams – Activity ling – Data Flow Diagram – Case Tools.	nalysis – Soft trinets – Obje diagrams – St	ware et me tate c	Req odelli hart	uiren ng u diagr	nent sing ams
UNIT – III	SOFTWARE DESIGN				(9)	
Software design – Design patterns – N – Proxy – Facade – design.	Design process – Design concepts – Coupling – Cohesi Model-view-controller – Publish-subscribe – Adapter – Cohesi - Architectural styles – Layered – Client Server – Tierec	on – Functior Command – S l Pipe and filt	al in trateg er – 1	depe: gy – 0 User	nden Obse inter	ce – rver face
UNIT – IV	SOFTWARE TESTING AND MAINTENANCE				(9)	
Testing – Unit testi testing – Debugging	ng – Black box testing – White box testing – Integration g – Program analysis – Symbolic execution – Model Che	and System te ecking.	sting	– Re	egres	sion
UNIT – V	PROJECT MANAGEMENT				(9)	
Software Project M Motivation – Cloud Testing – Deploym	Management – Software Configuration Management – d as a platform – Operations – Deployment Pipeline: O ent – Tools – Case Study.	Project Sche verall Archite	dulin cture	g – Buil	Dev(ding	Dps: and
		TOTA	L: 4	45 PI	ERIC	DDS

COs	Course Outcome	Cognitive Level
CO1	Apply fundamental software engineering concepts and Agile methodologies to projects.	Apply
CO2	Develop and analyze software requirements.	Analyze
CO3	Design software systems using appropriate design patterns and architectural styles.	Apply
CO4	Perform various testing and maintenance activities to ensure software quality.	Understand
CO5	Manage software projects, including scheduling, configuration, and applying DevOps practices.	Apply

COUDSE OUTCOMES

REFERENCES:

1. Bernd Bruegge and Allen H. Dutoit, "Object-Oriented Software Engineering: Using UML, Patterns and Java", Pearson Education, India, 3rd Edition, 2013.

- 2. Roger S. Pressman, "Object-Oriented Software Engineering: An Agile Unified Methodology", Mc Graw-Hill, 1st Edition, 2014
- 3. Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli, "Fundamentals of Software Engineering", PHI Learning Pvt. Ltd, 2nd Edition, 2010.
- 4. Len Bass, Ingo Weber and Liming Zhu, "DevOps: A Software Architect's Perspective", Pearson Education, 2016.
- 5. Stephen Schach, "Object-Oriented and Classical Software Engineering", McGraw-Hill, 8th Edition, 2010

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	3	1	3	2	3	
CO2	3	1	3	2	3	
CO3	3	1	3	2	3	
CO4	3	1	3	2	3	
CO5	3	1	3	2	3	
Avg.	3	1	3	2	3	
1-low, 2-medium, 3-high						

CS24F05	WIRELESS SENSOR NETWORKS	Category	L	Т	Р	С
C524E05	(PROFESSIONAL ELECTIVES – I and II)	PEC 3	3	0	0	3

PREREQUISITE

Basic understanding of wireless communication principles and networking concepts. Familiarity with programming and design in embedded systems is essential. Prior knowledge of network protocols and security fundamentals is also beneficial.

OBJECTIVES:

- 1. To learn the fundamentals of wireless sensor network design and communication standards.
- 2. To study MAC and routing protocols, including their applications and performance.
- 3. To explore transport protocols and Quality of Service (QoS) in sensor networks, focusing on congestion control, in-network processing, and related operating systems.
- 4. To examine security issues, including attacks, key management, and security protocols.
- 5. To learn to use and apply tools and programming environments for developing and simulating sensor networks.

UNIT – I	WIRELESS SENSOR NETWORK ARCHITECTURE	(9)
----------	--------------------------------------	-----

Introduction to wireless sensor networks – Challenges – Comparison with ad hoc network – Node architecture and Network architecture – Design principles – Service interfaces – Gateway – Short range radio communication standards – Physical layer and transceiver design considerations.

UNIT – II MAC AND ROUTING IN WIRELESS SENSOR NETWORKS

(9)

Introduction – Applications – Challenges – Sensor network architecture – MAC Protocols for wireless sensor networks – Low duty cycle protocols and wakeup concepts – Contention-Based protocols – Schedule-Based protocols – IEEE 802.15.4 Zig bee – Topology Control – Routing Protocols.

UNIT – III	TRANSPORT AND QOS IN WIRELESS SENSOR NETWORKS	(9)
------------	---	-----

Data-Centric and Contention-Based Networking – Transport Layer and QoS in Wireless Sensor Networks – Congestion Control – In-network processing – Operating systems for wireless sensor networks.

UNIT – IV	SECURITY IN AD HOC AND SENSOR NETWORKS	(9)
-----------	--	-----

Security Attacks – Key Distribution and Management – Intrusion Detection – Software based Antitamper techniques – Watermarking techniques – Defense against routing attacks – Secure Ad hoc routing protocols – Broadcast authentication WSN protocols – TESLA – Sensor Network Security Protocols – SPINS.

UNIT – V	TOOLS FOR WSN	(9)

TinyOS – Introduction, NesC, Interfaces, modules, configuration, Programming in TinyOS using NesC, TOSSIM, Contiki – Structure, Communication Stack, Simulation environment – Cooja Simulator, Programming.

TOTAL: 45 PERIODS

COURSE (At the end	OUTCOMES: of the course, the students will be able to:	
COs	Course Outcome	Cognitive Level
CO1	Describe the fundamentals of wireless sensor network design and communication standards	Understand
CO2	Analyze MAC and routing protocols, assessing their applications and performance	Analyze
CO3	Apply knowledge of transport protocols and Quality of Service (QoS) mechanisms to manage congestion control and in-network processing	Apply
CO4	Assess security challenges, including attacks and key management, to address vulnerabilities	Understand
CO5	Apply tools and programming environments to develop and simulate sensor networks effectively	Apply

- 1. Anna Hac, "Wireless Sensor Network Design", John Wiley & Sons, 2003.
- 2. Holger Karl, Andreas Willig, "Protocols and Architectures for Wireless Sensor Networks", John Wiley & Sons, Inc., 2007.
- 3. Erdal Çayırcı, Chunming Rong, "Security in Wireless Ad Hoc and Sensor Networks", John Wiley and Sons, 2009.
- 4. C.Siva Ram Murthy and B.S.Manoj, "Ad Hoc Wireless Networks Architectures and Protocols", Pearson Education, 1 st 2006.
- 5. Carlos De Morais Cordeiro, Dharma Prakash Agrawal, "Ad Hoc and Sensor Networks: Theory and Application", World Scientific Publishing, 2nd Edition, 2011.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	2	1	3	2	3	
CO2	2	1	3	2	3	
CO3	2	1	3	2	3	
CO4	2	1	3	2	3	
CO5	2	1	3	2	3	
Avg.	2	1	3	2	3	
1-low, 2-medium, 3-high						

K.S.R College of Engineering

CS24EA2	MULTI CORE ARCHITECTURES	Category	L	Т	Р	C	
C524E00	(PROFESSIONAL ELECTIVES – I and II)	PEC	3	0	0	3	
	(Common to M.E CSE and M.E BDA)	·					
PREREQUISITE							
Students should ha with programming parallel computing	ve a basic understanding of computer architecture and concepts and performance measurement techniques is al and memory systems is beneficial.	digital logic d so required. P	esigr rior k	ı. Faı mow	nilia ledge	rity e of	
OBJECTIVES: 1. To learn t 2. To study 3. To exami 4. To explor 5. To assess	the basics of computer design, performance measurement cache performance, virtual memory, and memory hierarc ne shared memory architectures, cache coherence, and sy re homogeneous and heterogeneous multicore designs an vector architectures, SIMD extensions, and GPU compu	t, and ILP. hy design. nchronizatior d their applica ting.	ı. tions				
UNIT – I	FUNDAMENTALS OF COMPUTER DESIGN AND	D ILP			(9)		
Fundamentals of Parallelism and its and CMP Architect	Computer Design – Measuring and Reporting Per- Exploitation – Concepts and Challenges – Limitations of ures – The Multicore era.	formance – of ILP – Mult	Instru ithrea	uction ading	n Le 5 – Sl	evel MT	
UNIT – II	MEMORY HIERARCHY DESIGN				(9)		
Introduction – O _I Protection: Virtual	otimizations of Cache Performance – Memory Tec Memory and Virtual Machines – Design of Memory Hie	hnology and rarchies – Cas	Opti e Stu	imiza dies.	ations	5 —	
UNIT – III	MULTIPROCESSOR ISSUES				(9)		
Symmetric and Dis – Synchronization and Multi-Stage Int	tributed Shared Memory Architectures – Cache Coheren Issues – Models of Memory Consistency – Interconnecti rerconnection Networks.	nce Issues – P on Networks	erfor – Bu	manc ses, (e Iss Cross	ues bar	
UNIT – IV	MULTICORE ARCHITECTURES				(9)		
Homogeneous and Heterogeneous Multicore Architectures – Intel Multicore Architectures – SUN CMP Architecture – IBM Cell Architecture – Introduction to Warehouse – Scale Computers, Cloud Computing – Architectures and Issues – Case Studies.							
UNIT – V	VECTOR AND GPU ARCHITECTURES				(9)		
Vector Architectur GPGPU Computing	e – SIMD Extensions for Multimedia – Graphics Proc g – Detecting and Enhancing Loop Level Parallelism.	cessing Units	– Ca	ise S	tudie		

K.S.R College of Engineering

49

COURSE OUTCOMES: At the end of the course, the students will be able to:				
COs	Course Outcome	Cognitive Level		
CO1	Describe fundamental concepts of computer design, performance metrics, and instruction-level parallelism	Understand		
CO2	Apply principles to optimize cache performance and design efficient memory hierarchies	Apply		
CO3	Analyze issues related to cache coherence, synchronization, and memory consistency in multiprocessor systems	Analyze		
CO4	Compare different multicore architectures and their effectiveness in various computing environments	Understand		
CO5	Use knowledge of vector and GPU architectures to improve performance in parallel computing tasks	Understand		

- 1. John L. Hennessey and David A. Patterson, "Computer Architecture A Quantitative Approach", Morgan Kaufmann, Elsevier, Netherlands, 5th Edition, 2012.
- 2. Darryl Gove, "Multicore Application Programming: For Windows, Linux, and Oracle Solaris", Pearson, New Delhi, 2nd Edition, 2011.
- 3. David B. Kirk, Wen-mei W. Hwu, "Programming Massively Parallel Processors", Elsevier Inc, 1st Edition, 2010.
- 4. Wen-mei W. Hwu, "GPU Computing Gems", Morgan Kaufmann / Elsevier, 2nd Edition, 2011.
- 5. KaiHwang, "Advanced Computer Architecture", Tata McGraw-Hill Education, 3rd Edition, 2003.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	2	1	3	3	2	
CO2	2	1	3	3	2	
CO3	2	1	3	3	2	
CO4	2	1	3	3	2	
CO5	2	1	3	3	2	
Avg.	2	1	3	3	2	
1-low, 2-media	ım. 3-high	•				

CS24E07

HUMAN COMPUTER INTERACTION (PROFESSIONAL ELECTIVES – I and II)

Category	L	Т	Р	С
PEC	3	0	0	3

PREREQUISITE

Students should have a foundational understanding of basic design principles and user experience concepts. Familiarity with web development technologies and mobile app design.

OBJECTIVES:

- 1. To learn the basics of HCI, ergonomics, and user-centered design.
- 2. To study interaction styles like GUIs and direct manipulation.
- 3. To examine techniques for usability testing and user experience assessment.
- 4. To explore task analysis and interaction models in computing.
- 5. To gain insights into the principles of designing user-friendly and effective web and mobile interfaces.

UNIT – I FOUNDATIONS OF HCI

(9)

Context of Interaction – Ergonomics – Designing Interactive systems – Understanding Users cognition and cognitive frameworks, User Centered Approaches Usability, Universal Usability, Understanding and conceptualizing interaction, Guidelines, Principles and Theories. Importance of User Interface: Definition – Importance of good design – Benefits of good design.

UNIT – II	INTERACTION STYLES	(9)
UNII - II	INTERACTION STILES	(9)

GUI: Popularity of graphics – Concept of direct manipulation – Graphical system – Characteristics – Web user – Interface Popularity – Characteristics and Principles of User Interface. Understanding interaction styles – Direct Navigation and Immersive environments – Fluid navigation – Expressive Human and Command Languages.

UNIT – III	EVALUATION OF INTERACTION	(9)
------------	---------------------------	-----

Evaluation Techniques – Assessing user experience – Usability testing – Heuristic evaluation and walkthroughs – Analytics predictive models. Cognitive models – Socio-organizational issues and stakeholder requirements – Communication and collaboration models.

UNIT – IV MODELS AND THEORIES

(9)

Task analysis – Dialog notations and design – Models of the system – Modeling rich interaction – Ubiquitous computing.

TOTAL: 45 PERIODS

COURSE At the end	COURSE OUTCOMES: At the end of the course, the students will be able to:				
COs	Course Outcome	Cognitive Level			
CO1	Describe fundamental HCI concepts and user-centered design.	Understand			
CO2	Recognize and explain various interaction styles	Understand			
CO3	Use techniques to assess user experience and interactions.	Apply			
CO4	Infer task analysis and interaction models	Understand			
CO5	Design effective web and mobile interfaces with usability in mind	Apply			

- Ben Shneiderman, Catherine Plaisant, Maxine Cohen, Niklas Elmqvist, "Designing the User Interface: Strategies for Effective Human-Computer Interaction", Pearson Education, India, 6th Edition, 2016.
- 2. Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, "Human Computer Interaction", Pearson Education, New Delhi, 3rd Edition, 2004.
- 3. Helen Sharp Jennifer Preece Yvonne Rogers, "Interaction Design: Beyond Human Computer Interaction", Wiley, India, 5th Edition, 2019.
- 4. Alan Cooper, Robert Reimann, David Cronin, Christopher Noessel, "About Face: The Essentials of Interaction Design", Wiley, India, 4th Edition, 2014.
- 5. Wilbert O Galitz, "The Essential Guide to User Interface Design", Wiley India Pvt., Ltd, 3rd Edition, 2007.

		Mapping of COs	with POs and PS	Os	
COs/ POs	PO1	PO2	PO3	PSO1	PSO2
CO1	2	1	3	3	1
CO2	2	1	3	3	1
CO3	2	1	3	3	1
CO4	2	1	3	3	1
CO5	2	1	3	3	1
Avg.	2	1	3	3	1
1-low, 2-mediu	m, 3-high			1	1

	WER SERVICES AND ADI DESIGN	Category	L	Т	Р	С
BD24E05	(PROFESSIONAL ELECTIVES – I and II)	PEC	3	0	0	3
	(Common to M.E CSE and M.E BDA)	I	1	<u> </u>		
PREREQUISITE						
Students should kn with programming principles.	ow web development basics, HTTP protocols, and XM and object-oriented design is recommended and g	IL/JSON form general softw	nats. are	Fam engir	iliari neerii	ty ng
OBJECTIVES: 1. To learn Architect 2. To study 3. To discov interactio 4. To gain h Spring an 5. To learn	the architecture and design principles of web seure the building blocks of web services, including SOAP, WS wer the fundamentals of RESTful web services, includi ns. hands-on experience with implementing RESTful web se d S3. to design and implement resource-oriented services for	rvices and SDL, and UDI ng HTTP me rvices using t	Servi DI. thods echn	ce-O s and ologi atele	riento clie es lil	ed nt ke
and resou	rce representation.		15, 50		551100	,5,
UNIT – I	BASICS OF WEB SERVICE				(9)	
Overview – Web Services: Web Ser View and Process A	Service Architecture – Service-Oriented Architecture vices Technology Stack – Logical Architectural View Architectural View.	(SOA) – A – Deployme	rchite ent A	ecting rchit	g We ectur	eb :al
UNIT – II	WEB SERVICE BUILDING BLOCKS				(9)	
Introduction to SOA to WSDL: WSDI UDDI API – Imple	AP: SOAP Syntax – Sending SOAP Messages – SOAP In Syntax – SOAP Binding – WSDL Implementations – mentations – The Future of UDDI.	nplementation – Introduction	ns – I n to	ntroc UDD	luctio I: Tl	on he
UNIT – III	RESTFUL WEB SERVICES				(9)	
Programmable Web – HTTP: Documents in Envelopes – Method Information – Scoping Information – The Competing Architectures – Technologies on the Programmable Web – Leftover Terminology – Writing Web Service Clients: The Sample Application – Making the Request: HTTP Libraries – Processing the Response: XML Parsers.						
UNIT – IV	IMPLEMENTATION OF RESTFUL WEB SERVIC	CES			(9)	
Introducing the Simple Storage Service – Object-Oriented Design of S3 – Resources – HTTP Response Codes Resource – URIs – Addressability – Statelessness – Representations – Links and Connectedness – The Uniform Interface – Spring Web Services – Spring MVC Components – Spring Web Flow – A Service Implementation using Spring Data REST.						
UNIT – V	RESOURCE ORIENTED ARCHITECTURE				(9)	
Resource – URIs – Addressability – Statelessness – Representations – Links and Connectedness – The Uniform Interface – Designing Read-Only Resource-Oriented Services: Resource Design – Turning Requirements into Read-Only Resources – Figure Out the Data Set – Split the Data Set into Resources – Name the Resources – Design Representation – Link the Resources to Each Other – The HTTP Response.						
		TOTAL	: 45	PEF	RIOE)S

COURSE OUTCOMES: At the end of the course, the students will be able to:				
COs	Course Outcome	Cognitive Level		
CO1	Describe web service architecture and SOA principles.	Understand		
CO2	Identify and explain SOAP, WSDL, and UDDI components.	Understand		
CO3	Apply RESTful principles to create and manage web services.	Apply		
CO4	Implement RESTful services using frameworks like Spring and S3.	Apply		
CO5	Develop and structure web services based on resource-oriented architecture principles.	Apply		
CO5	Develop and structure web services based on resource-oriented architecture principles.	Apply		

- 1. Leonard Richardson and Sam Ruby, "RESTful Web Services", O'Reilly Media, 1st Edition, 2007
- McGovern, et al., "Java Web Services Architecture", Morgan Kaufmann Publishers, 2nd Edition, 2005.
- 3. Lindsay Bassett, "Introduction to JavaScript Object Notation", O'Reilly Media, 2nd Edition, 2015
- 4. Craig Walls, "Spring in Action", Manning Publications, Shelter Island, 5th Edition, 2018
- 5. Raja CSP Raman, Ludovic Dewailly, "Building A RESTful Web Service with Spring 5", Packt Publishing, 2nd Edition, 2018.
- 6. Bogunuva Mohanram Balachandar, "Restful Java Web Services: A pragmatic guide to designing and building RESTful APIs using Java", Ingram short title, 3rd Edition, 2017.
- 7. Mario-Leander Reimer, "Building RESTful Web Services with Java EE 8: Create modern RESTful web services with the Java EE 8 API", Packt publishing, 2nd Edition, 2018.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	3	1	2	3	1	
CO2	3	1	2	3	1	
CO3	3	1	2	3	1	
CO4	3	1	2	3	1	
CO5	3	1	2	3	1	
Avg.	3	1	2	3	1	
1-low, 2-media	1-low, 2-medium, 3-high					

DD34T37	MACHINE LEARNING TECHNIQUES	Category	L	Т	Р	С
BD24127	(PROFESSIONAL ELECTIVES – III and IV)	PCC	3	0	0	3
	(Common to M.E CSE and M.E BDA)					
PREREQUISITE						
A fundamental un programming skills concepts and data a	derstanding of mathematics, including probability and s, particularly in Python, are required. Familiarity with nalysis techniques.	d statistics, i fundamental	s ess comj	entia puter	l. Ba scie	asic nce
 OBJECTIVES: 1. To provid learning. 2. To explor networks. 3. To learn of 4. To study Fields. 5. To gain the field of the field of	de a solid foundation in the core principles and mather re various supervised learning methods, including regre clustering and dimensionality reduction techniques in uns the applications of graphical models like Bayesian N ne concepts of reinforcement learning and sampling meth	natical found ssion, classifi upervised lear letworks and ods.	ation catio rning Mar	s of : n, an kov :	mach d ne Rand	ine ural lom
UNIT-I	BASICS OF MACHINE LEARNING				(9)	
Machine Learning – Machine learning – Probabilities – Prob – Information Theo	 Machine Learning Foundations – Overview – Design of Applications Mathematical foundations of Machine Lea Dability Theory – Probability Distributions – Decision Tropy. 	of a Learning S arning – Rand heory – Bayes	Syste lom V s Dec	m – 7 Varia cision	Гуре bles i The	s of and ory
UNIT – II	SUPERVISED LEARNING				(9)	
Linear Models for I Probabilistic Gener Decision Trees – C Network Functions Boosting.	Regression – Linear Models for Classification – Naive Ba rative Models – Probabilistic Discriminative Models – E Classification Trees – Regression Trees – Pruning – Ne s – Back-Propagation – Support vector machines – En	ayes – Discrin Bayesian Log ural Network nsemble meth	ninan istic s – F iods	t Fur Regr Feed – Ba	essio Forw ggin	ns – on – vard g –
UNIT – III	UNSUPERVISED LEARNING				(9)	
Clustering – K n Dimensionality Rec	neans – EM Algorithm – Mixtures of Gaussians – luction – Factor Analysis – Principal Component Analys	– Curse of is – Probabilis	Dime stic P	ensio CA.	nality	y —
UNIT – IV	PROBABILISTIC GRAPHICAL MODELS				(9)	
Graphical Models – Undirected Graphical Models – Markov Random Fields – Directed Graphical Models – Bayesian Networks – Conditional Independence Properties – Inference – Generalization – Hidden Markov Models.						
UNIT – V	ADVANCED LEARNING		_		(9)	
Sampling – Basic Sampling methods – Monte Carlo. Reinforcement Learning – K-Armed Bandit – Elements – Model-Based Learning – Value Iteration – Policy Iteration – Temporal Difference Learning – Exploration Strategies.					it – 1g –	
		ТОТА	L: 4	5 PE	RIO	DS

COURSE At the end	COURSE OUTCOMES: At the end of the course, the students will be able to:				
COs	Course Outcome	Cognitive Level			
CO1	Describe the fundamental concepts and mathematical foundations of machine learning.	Understand			
CO2	Implement and apply various supervised learning models in real-world scenarios.	Apply			
CO3	Recognize and apply unsupervised learning techniques like clustering and PCA.	Understand			
CO4	Model and infer data using probabilistic graphical models.	Understand			
CO5	Construct and implement advanced techniques like reinforcement learning.	Apply			

- 1. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, London, 3rd Edition, 2014.
- 2. Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, London, 3rd Edition, 2012
- 3. Trevor Hastie, Robert Tibshirani and Jerome Friedman, "The Elements of Statistical Learning", Springer, United States, 2nd Edition, 2011.
- 4. Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, United States, 1st Edition, 2007.
- 5. Tom M Mitchell, "Machine Learning", McGraw Hill Education, India, 1st Edition, 2013.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
C01	3	1	3	2	1	
CO2	3	1	3	2	1	
CO3	3	1	3	2	1	
CO4	3	1	2	2	1	
CO5	3	1	3	2	1	
Avg.	3	1	3	2	1	
1-low, 2-media	um, 3-high	•	•			

CS24E08

SOFTWARE QUALITY ASSURANCE (PROFESSIONAL ELECTIVES – III and IV)

Category	L	Т	Р	С
PCC	3	0	0	3

PREREQUISITE

Students should have a foundational understanding of software development processes and basic principles of software engineering. Familiarity with quality management concepts and practices is essential, as is an awareness of project management fundamentals. Previous experience with software testing and project lifecycle management will also be beneficial for grasping the integration of quality activities and the application of various quality assurance methodologies.

OBJECTIVES:

- 1. To learn the importance and factors of software quality and the components of software quality assurance
- 2. To Explore how to integrate quality activities throughout the software project lifecycle.
- 3. To Establish procedures and infrastructure for maintaining software quality, including training and configuration management.
- 4. To gain knowledge of various software quality metrics and cost models for effective quality management.
- 5. To study of quality management standards, certifications, and assessment methodologies.

UNIT – I INTRODUCTION TO SOFTWARE QUALITY AND ARCHITECTURE (9)	
---	--

Need for Software quality – Software quality assurance (SQA) – Software quality factors- McCall's quality model – SQA system components – Pre project quality components – Development and quality plans

Integrating quality activities in the project life cycle – Reviews – Software Testing – Quality of software maintenance components – Quality assurance for external participant's contribution – CASE tools for software quality Management.

UNIT – III	SOFTWARE QUALITY INFRASTRUCTURE	(9)

UNIT – IV SOFTWARE QUALITY MANAGEMENT AND METRICS

(9)

Project process control – Software quality metrics – Cost of software quality – Classical quality cost model – Extended model – Application and Problems in application of Cost model

UNIT – V STANDARDS, CERTIFICATIONS AND ASSESSMENTS (9)

Quality management standards – ISO 9001 and ISO 9000-3 – Capability Maturity Models – CMM and CMMI assessment methodologies – Bootstrap methodology – SPICE Project – SQA project process standards – Organization of Quality Assurance – Role of management in SQA – SQA units and other actors in SQA systems.

TOTAL: 45 PERIODS

COURSE OUTCOMES: At the end of the course, the students will be able to:					
COs	Course Outcome	Cognitive Level			
CO1	Comprehend key software quality factors and SQA components.	Understand			
CO2	Illustrate quality activities and reviews within the project lifecycle.	Understand			
CO3	Develop and manage quality infrastructure, including training and documentation.	Understand			
CO4	Apply software quality metrics and cost models to evaluate and control project quality.	Apply			
CO5	Assess and apply relevant quality standards and certification models, such as ISO 9001 and CMMI.	Apply			

- 1. Daniel Galin, "Software Quality Assurance", Pearson Publication, India, 1st Edition, 2009.
- 2. Alan C. Gillies, "Software Quality: Theory and Management", International Thomson Computer Press, India, 2nd Edition, 2011.
- 3. Kshirasagar Naim and Priyadarshi Tripathy, "Software Testing and Quality Assurance Theory and Practice", John Wiley & Sons Inc., USA, 1st Edition, 2008
- 4. Mordechai Ben-Menachem, "Software Quality: Producing Practical Consistent Software", International Thompson Computer Press, India, 1st Edition, 2014.
- 5. Solis Tech, "Quality Assurance: Software Quality Assurance Made Easy", Create Space Independent Publishing, South Carolina, 1st Edition, 2016.

Mapping of COs with POs and PSOs							
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	3	2	2	3	3		
CO2	3	2	2	3	3		
CO3	3	2	2	3	3		
CO4	3	2	2	3	3		
CO5	3	2	2	3	3		
Avg.	3	2	2	3	3		
1-low, 2-media	um, 3-high						

	FULL STACK WEB APPLICATION	Category	L	Т	Р	С	
CS24E09	DEVELOPMENT (PROFESSIONAL ELECTIVES – III and IV)	PEC	3	0	0	3	
	(Common to M.E CSE and M.E BDA)						
PREREQUISITE Students should have a fundamental understanding of web development concepts and programming basics. Familiarity with core programming languages such as JavaScript is essential, as well as a basic grasp of HTML and CSS.							
OBJECTIVES: 1. To gain p 2. To build a 3. To learn 1 4. To config 5. To manag	 OBJECTIVES: 1. To gain proficiency in JavaScript and Type Script for developing dynamic web applications. 2. To build and manage Angular components and data binding effectively. 3. To learn Node.js for building scalable and efficient server-side applications. 4. To configure and use Express.js for streamlined web application development. 5. To manage and integrate MongoDB with Node.js for effective data handling and storage. 						
UNIT – I	JAVASCRIPT AND TYPESCRIPT LANGUAGE				(9)		
Server-Side Web Applications – Client-Side Web Applications – Understanding JavaScript: Types – Working with Arrays – Working with Objects – Understanding JavaScript Object Inheritance – Adding Type Declarations for the JavaScript Package – Adding Commands – Persistently Storing. Typescript: Data Types – Classes – Interfaces – Modules – Enumerations and Generics – Constructors – Functions – Getters and Setters.						s — ing Pata ters	
UNIT – II	ANGULAR				(9)		
Angular CLI – Ana – Event Handling Events in Directive	tomy of a Component – Data Binding: One Way Data Bi – Angular Module System – Directives – Types of Dir s Accessing the DOM Properties in Directives – Compor	inding –Two V rectives – Acc nent Class Life	Vay I cessii cycle	Data ng th e.	Bind e DC	ing DM	
UNIT – III	NODE.js				(9)		
Basics of Node JS – Installation – Working with Node packages – Using Node package manager – Creating a simple Node.js application – Using Events – Listeners – Timers – Callbacks – Handling Data I/O – Implementing HTTP services in Node.js – Implementing Socket Services in Node.js.							
UNIT – IV	EXPRESS.Js				(9)		
Express.js: How Express.js Works. Configuration, Settings and Environment Middleware – Body Parser – Cookie –Parser – Express-session – Response time – Template Engine – Parameters and Routing – Router Class – Request Object – Response Object – Error Handling.							
UNIT – V	MONGODB				(9)		
Understanding NoSQL and MongoDB – Building MongoDB Environment – Administering User Accounts – Configuring Access control – Administering databases – Managing collections – Connecting to MongoDB from Node.js – Understanding the Objects Used in the MongoDB Node.js Driver – Accessing and Manipulating Databases – Manipulating MongoDB Documents from Node.js.							
TOTAL: 45 PERIODS							

OUTCOMES: I of the course, the students will be able to:	
Course Outcome	Cognitive Level
Infer in-depth knowledge of key features and data types for efficient web development.	Understand
Develop and manage Angular applications with skill.	Understand
Utilize Node.js for server-side development and handling various server-side tasks and services.	Apply
Construct and set up web applications with Express.js.	Apply
Integrate MongoDB with Node.js to manage data effectively in real-world applications.	Apply
	OUTCOMES: of the course, the students will be able to: Course Outcome Infer in-depth knowledge of key features and data types for efficient web development. Develop and manage Angular applications with skill. Utilize Node.js for server-side development and handling various server-side tasks and services. Construct and set up web applications with Express.js. Integrate MongoDB with Node.js to manage data effectively in real-world applications.

- 1. Brad Dayley, Brendan Dayley, Caleb Dayley, "Node.js, MongoDB and Angular Web Development", Addison-Wesley, United States, 2nd Edition, 2018.
- 2. Adam Freeman, "Essential Typescript, Apress, United States, 1st Edition, 2019.
- 3. Mark Clow, "Angular Projects", Apress, United States, 1st Edition, 2018.
- 4. Azat Mardan, "Pro Express.js", Apress, United States, 1st Edition, 2015.
- 5. Chris Northwood, "The Full Stack Developer: Your Essential Guide to the Everyday Skills Expected of a Modern Full Stack Web Developer", Apress, 1st Edition, 2018.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	2	3	3	3	2	
CO2	2	3	3	3	2	
CO3	2	3	3	3	2	
CO4	2	3	3	3	2	
CO5	2	3	3	3	2	
Avg.	2	3	3	3	2	
1-low, 2-mediu	ım, 3-high			•	•	

		Catagony	т	Т	р	C	
CS24E10	DEEP LEARNING (PROFESSIONAL ELECTIVES – III and IV)	PEC	L 3	1 0	г 0	C 3	
	(Common to M.E CSE and M.E BDA)		<u> </u>				
PREREQUISITE Students should have a strong foundation in programming, preferably in Python, which is widely used in the field. A solid understanding of mathematics, including linear algebra, calculus and probability is essential for grasping deep learning algorithms and techniques.							
OBJECTIVES: 1. To gain fo 2. To acquir 3. To develor learning. 4. To learn to 5. To study	oundational knowledge of deep learning concepts, algorit e skills in building and optimizing neural networks. op expertise in designing and implementing CNNs for echniques for NLP using Recurrent Neural Networks (RI the techniques like Q-Learning, GANs, and autoencoders	hms, and data image proces NNs) and LST	type ssing M ar	s. and nd GI	trans RU.	fer	
UNIT– I	BASICS OF DEEP LEARNING				(9)		
Fundamentals abou Neural Networks – Higher Dimensiona Video Data.	t Deep Learning – Perception Learning Algorithms – I Different from Deep Learning and Machine Learning – al Tensors – Manipulating Tensors – Vector Data – Tin	Probabilistic r Scalars – Veo ne Series Dat	nodel ctors a – Ii	lling – Ma mage	– Ea atrixe 2 Dat	urly s – a –	
UNIT – II	NEURAL NETWORKS				(9)		
Fundamentals of N – Loss Functions Underfitting – Hype	eural Network – Building Blocks of Neural Network – O – Data Pre-processing for neural networks – Feature er parameters.	ptimizers. Ac Engineering -	tivati – Ov	on Fu erfitt	uncti ing a	ons and	
UNIT – III	CONVOLUTIONAL NEURAL NETWORK				(9)		
Introduction of CNN – Linear Time Invariant – Image Processing Filtering – Building a convolutional neural network – Input Layers – Convolution Layers – Pooling Layers – Dense Layers – Backpropagation Through the Convolutional Layer – Filters and Feature Maps – Backpropagation Through the Pooling Layers –Transfer Learning with Image Data – Transfer Learning using Inception Oxford VGG Model – Google Inception Model.							
UNIT – IV	NATURAL LANGUAGE PROCESSING USING R	NN			(9)		
NLP and its Toolkits – Language Modeling – Vector Space Model (VSM) – Continuous Bag of Words (CBOW) –Skip-Gram Model for Word Embedding – Global Vectors for Word Representation GloVe – Backpropagation Through Time – Bidirectional RNNs (BRNN) – Long Short-Term Memory (LSTM) – Bidirectional LSTM – Sequence-to-Sequence Models – Gated recurrent unit GRU.							
UNIT – V DEEP REINFORCEMENT AND UNSUPERVISED LEARNING					(9)		
Deep Reinforcement Learning – Q-Learning – Deep Q-Network (DQN) – Policy Gradient Methods – Actor-Critic Algorithm – Autoencoding – Convolutional Auto Encoding – Variational Auto Encoding – Generative Adversarial Networks – Autoencoders for Feature Extraction – Auto Encoders for Classification – Denoising Autoencoders – Sparse Autoencoders.							
TOTAL: 45 PERIODS							

61

COURSE OUTCOMES: At the end of the course, the students will be able to:					
COs	Course Outcome	Cognitive Level			
CO1	Demonstrate proficiency in deep learning principles and the ability to manage various data types.	Understand			
CO2	Build and fine-tune neural networks using various activation and loss functions.	Understand			
CO3	Develop and use convolutional neural networks for image-related tasks and transfer learning.	Apply			
CO4	Apply RNNs, LSTM, and GRU models for processing and modeling language data.	Apply			
CO5	Implement reinforcement learning methods and unsupervised techniques for data analysis and generation.	Apply			

- 1. Brad Dayley, Josh Patterson and Adam Gibson, "Deep Learning A Practitioner's Approach", O'Reilly Media, USA, 1st Edition, 2017.
- 2. Jojo Moolayil, "Learn Keras for Deep Neural Networks", Apress, Canada, 1st Edition, 2018.
- 3. Vinita Silaparasetty, "Deep Learning Projects Using TensorFlow 2", Apress, Canada, 1st Edition, 2020.
- 4. Francois Chollet, "Deep Learning with Python", Manning Shelter Island, 2nd Edition, 2017.
- 5. Santanu Pattanayak, "Pro Deep Learning with TensorFlow", Apress, Canada, 1st Edition, 2017.

Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	3	2	2	3	3			
CO2	3	2	2	3	3			
CO3	3	2	2	3	3			
CO4	3	2	2	3	3			
CO5	3	2	2	3	3			
Avg.	3	2	2	3	3			
1-low, 2-medium	1-low, 2-medium, 3-high							

K.S.R College of Engineering

CS24E11 NATURAL LANGUAGE PROCESSING	Category	L	Т	Р	С				
0524111	(PROFESSIONAL ELECTIVES – III and IV)		3	0	0	3			
	(Common to M.E CSE and M.E BDA)								
PREREQUISITE									
Knowledge of fundamental linguistic concepts such as syntax, semantics, and morphology. Proficiency in Python or another programming language used in NLP and Basic understanding of machine learning principles and algorithms.									
 OBJECTIVES: To gain foundational knowledge of natural language processing (NLP) and its components. To study statistical methods for text classification and sequence labeling. To develop skills in parsing and dependency parsing using contextual embeddings. To learn semantic role labeling, word sense disambiguation, and information extraction techniques. To review methods for discourse analysis, question answering, and dialogue system development. 									
UNIT – I	BASICS OF NLP				(9)				
Natural Language F –Tokenization – Mo	Processing – Components – Basics of Linguistics and Pr orphology – Finite State Automata	obability and	Stati	stics	– Wo	ords			
UNIT – II	STATISTICAL NLP AND SEQUENCE LABELING	J			(9)				
N-grams and Langu Vector Semantics - Speech – Part of Sp	uage models – Smoothing –Text classification – Naïve – TF – IDF – Word2Vec- Evaluating Vector Models eech Tagging – Named Entities – Named Entity Tagging	Bayes classif – Sequence I g.	ier – .abel	Eval ing –	uatic - Par	n – t of			
UNIT – III	CONTEXTUAL EMBEDDING				(9)				
Constituency – Con Evaluating Parsers Graph Based.	ntext Free Grammar – Lexicalized Grammars – CKY – Partial Parsing – Dependency Relations – Dependency	Parsing – Ear cy Parsing – T	'ley's Trans	Alg ition	orith Base	m – ed –			
UNIT – IV	COMPUTATIONAL SEMANTICS				(9)				
Word Senses and WordNet – Word Sense Disambiguation – Semantic Role Labeling – Proposition Bank – FrameNet – Selectional Restrictions – Information Extraction – Template Filling.									
UNIT - VDISCOURSE ANALYSIS AND SPEECH PROCESSING(9)									
Discourse Coherence – Discourse Structure Parsing – Centering and Entity Based Coherence – Question Answering –Factoid Question Answering – Classical QA Models – Chatbots and Dialogue systems – Frame-based Dialogue Systems – Dialogue – State Architecture.									
TOTAL: 45 PERIODS									

63

COURSE OUTCOMES: At the end of the course, the students will be able to:						
COs	Course Outcome	Cognitive Level				
CO1	Demonstrate comprehension of NLP basics, linguistics, and tokenization techniques.	Understand				
CO2	Implement statistical models for text classification, sequence labeling and vector semantics evaluation.	Apply				
CO3	Develop and apply parsing techniques and contextual embeddings for sentence structure analysis.	Apply				
CO4	Analyze and apply techniques for word sense disambiguation and semantic role labeling.	Apply				
CO5	Determine and develop discourse analysis models and dialogue systems, including question answering and chatbots.	Understand				

- 1. Daniel Jurafsky and James H.Martin, "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition", Prentice Hall, India, 2nd Edition, 2020
- 2. Jacob Eisenstein, "Natural Language Processing", MIT Press, USA, 1st Edition, 2019
- 3. Samuel Burns, "Natural Language Processing: A Quick Introduction to NLP with Python and NLTK", 1st Edition, 2019
- 4. Nitin Indurkhya,Fred J. Damerau, "Handbook of Natural Language Processing", Chapman & Hall/CRC: Machine Learning & Pattern Recognition, Hardcover, 2nd Edition, 2010
- 5. Deepti Chopra, Nisheeth Joshi, "Mastering Natural Language Processing with Python", Packt Publishing Limited, Mumbai, 1st Edition, 2016

Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	3	3	2	3	2			
CO2	3	3	2	3	2			
CO3	3	3	2	3	2			
CO4	3	3	2	3	2			
CO5	3	3	2	3	2			
Avg.	3	3	2	3	2			
1-low, 2-mediu	um, 3-high	•	-	•	•			

BD74F00	BLOCKCHAIN TECHNOLOGIES	Category	L	Т	Р	С		
BD24E09	(PROFESSIONAL ELECTIVES – III and IV)		3	0	0	3		
PREREQUISITE A foundational kn concepts in distribu currencies and finat	owledge of cryptography and hashing algorithms is outed systems and databases will also be beneficial. Under ncial transactions will further aid in grasping blockchain	essential. Fan rstanding the applications.	niliar princ	ity v iples	vith di	basic igital		
OBJECTIVES: 1.To learn to2.To study3.To explore4.To gain in5.To acquire	the basics of blockchain technology and its applications. the architecture and types of cryptocurrencies. re mechanisms to prevent double spending. nsights into Bitcoin's key concepts and practical use. re about Ethereum, smart contracts, and blockchain applic	cations.						
UNIT – I	BASICS OF BLOCKCHAIN				(9)			
Introduction to Blo Public and Private	ockchain – How Blockchain works – Blockchain vs B key basics – Pros and Cons of Blockchain – Myths about	itcoin – Prac Bitcoin.	tical	appl	icatic	ns –		
UNIT – II	BLOCKCHAIN AND CRYPTOCURRENCIES			(9)				
Architecture – Ver Database – Introduc	rsions – Variants – Use cases – Life use cases of bloc ction to cryptocurrencies – Types – Applications.	ekchain – Blo	ckch	ain V	/s Sł	nared		
UNIT – III	CONCEPT OF DOUBLE SPENDING			(9)				
Concept of Double Payment verification	Spending – Hashing – Mining – Proof of work. Introdu on –Resolving Conflicts – Creation of Blocks.	action to Merl	kel tr	ee –	Priva	ncy –		
UNIT-IV	BITCOIN				(9)			
Introduction to Bitcoin – key concepts of Bitcoin – Merits and De Merits Fork and Segwits – Sending and Receiving bitcoins – Choosing bitcoin wallet – Converting Bitcoins to Fiat Currency.								
UNIT – V	ETHEREUM AND BLOCKCHAIN APPLICATION	N			(9)			
Introduction to Eth contracts – usage – Management Syste	ereum – Advantages and Disadvantages – Ethereum vs - Application – Working principle – Law and Regulatio m, Domain Name Service and Future of Blockchain.	Bitcoin – Intons. Applicatio	trodu on: N	ction Iedic	to S al Re	mart		
		ТОТ	AL:	45 P	ERI	ODS		
COURSE OUTCO At the end of the c	OMES: course, the students will be able to:							
KS P Collage of	Engineering 65 Applicable for the students of	mitted from 202	1 - 20	25 om	wards			

COs	Course Outcome	Cognitive Level
CO1	Comprehend blockchain fundamentals and its practical uses.	Understand
CO2	Apply knowledge of cryptocurrency architecture and types in real-world scenarios.	Apply
CO3	Identify methods for preventing double spending and their effectiveness.	Understand
CO4	Elucidate Bitcoin's advantages, disadvantages, and transaction processes.	Apply
CO5	Build applications using Ethereum and smart contracts, considering legal and regulatory aspects.	Understand

- 1. Bikramaditya Signal, Gautam Dhameja, Priyansu Sekhar Panda, "Beginning Blockchain: A Beginner's Guide to Building Blockchain Solutions", APress, USA, 1st Edition, 2018,
- 2. Bahga, Vijay Madisetti, "Blockchain Applications: A Hands-On Approach", Arshdeep Bahga, USA, 1st Edition, 2018,
- 3. Alan Wright, "Blockchain Hardcover Version: Uncovering Blockchain Technology, Cryptocurrencies, Bitcoin and the Future of Money", House of Books, Manchester, 1st Edition, 2021.
- 4. Arvind Narayanan & Joseph Bonneau & Edward Felten & Andrew Miller & Steven Goldfeder, "Bitcoin and Cryptocurrency Technologies", Princeton University Press, USA,1st Edition, 2016.
- 5. Andreas M. Antonopoulos, "Mastering Bitcoin Unlocking Digital Cryptocurrencies", Oreilly, USA, 1st Edition, 2014.

Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	3	1	3	3	1			
CO2	3	1	3	3	1			
CO3	3	1	3	3	1			
CO4	3	1	3	3	1			
CO5	3	1	3	3	1			
Avg.	3	1	3	3	1			
1-low, 2-mediu	ım, 3-high	-	•		-			

BD24E10 CYBER PHYSICAL SYSTEMS		Category	L	Т	Р	С				
	BD24E10 (PROFESSIONAL ELECTIVES – III and IV)		3	0	0	3				
	(Common to M.E CSE and M.E BDA)									
PREREQUISITE Basic understanding of embedded systems and control theory, as well as knowledge of computer networking and communication protocols. Awareness with real-time operating systems and scheduling algorithms and system design is essential, along with a foundation in verification techniques and security concepts.										
 OBJECTIVES: 1. To introduce the emergence and significance of CPS. 2. To learn methods for ensuring safety and liveness in CPS. 3. To investigate different models and protocols for designing CPS. 4. To study foundational aspects like security and synchronization in CPS. 5. To explore practical CPS applications using tools like CyberSim, Matlab, and Simulink. 										
UNIT – I	BASICS OF CYBER-PHYSICAL SYSTEMS				(9)					
Cyber-Physical Sy Drivers –Synchron – Designs – Asyncl	Cyber-Physical Systems (CPS) – Emergence of CPS – Key Features of Cyber-Physical Systems – CPS Drivers –Synchronous Model: Reactive Components – Properties of Components – Composing Components – Designs – Asynchronous Model of CPS: Processes – Design Primitives – Coordination Protocols.									
UNIT – II	CPS REQUIREMENTS				(9)					
Safety Specificatio Liveness Requirem	ns: Specifications – Verifying Invariants – Enumerati ents: Temporal Logic – Model Checking – Proving Live	ve Search – aness.	Symł	olic	Sear	rch –				
UNIT – III	CPS MODELS				(9)					
Dynamical Systems: Continuous – Linear Systems – Time Models – Linear Systems – Designing Controllers – Analysis Techniques – Timed Model: Processes – Protocols – Automata – Hybrid Dynamical Models.										
UNIT – IV	CPS FOUNDATIONS				(9)					
Symbolic Synthesis for CPS – Security in CPS – Synchronization of CPS – Real-Time Scheduling for CPS.										
UNIT – V APPLICATIONS AND PLATFORMS										
Medical CPS – CPS Built on Wireless Sensor Networks – CyberSim User Interface – iClebo Kobuki – iRobot Create –myRIO – Cybersim – Matlab toolboxes – Simulink.										
TOTAL: 45 PERIODS										
COURSE OUTCOMES: At the end of the course, the students will be able to:										

COs	Course Outcome	Cognitive Level
CO1	Comprehend the key features and drivers of Cyber-Physical Systems (CPS).	Understand
CO2	Examine synchronous and asynchronous models in CPS design.	Understand
CO3	Apply safety and liveness requirements to verify CPS behavior.	Apply
CO4	Design and apply continuous, linear, and hybrid dynamical systems for CPS.	Apply
CO5	Explore real-time scheduling, security and synchronization in CPS.	Understand

- 1. Raj Rajkumar, Dionisio De Niz, and Mark Klein, "Cyber-Physical Systems", Addison Wesley Professional, USA, 2016
- 2. Rajeev Alur, "Principles of Cyber-Physical Systems", MIT Press, USA, 1st Edition, 2015.
- 3. Lee, Edward Ashford, and Sanjit Arunkumar Seshia, "Introduction to embedded systems: A cyber physical systems approach", 2nd Edition, 2017
- 4. André Platzer, "Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics", Springer, USA, 1st Edition, 2010.
- 5. Jean J. Labrosse, "Embedded Systems Building Blocks: Complete and Ready-To-Use Modules in C", The publisher, Paul Temme, 1st Edition, 2011.

Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	3	1	3	2	1			
CO2	3	1	3	2	1			
CO3	3	1	3	2	1			
CO4	3	1	3	2	1			
CO5	3	1	3	2	1			
Avg.	3	1	3	2	1			
1-low 2-mediu	m. 3-high	•	•	•	•			

CS24E12	GPU COMPUTING	Category	L	Т	P	(
	(PROFESSIONAL ELECTIVES – III and IV)	PEC	3	0	0	
PREREQUISITE A strong foundation C/C++ programm management and understanding of c	on in parallel computing and an understanding of computing is essential for writing CUDA and OpenCL or resource handling is important for optimizing applioncurrency and synchronization concepts is needed for ef	er architecture code. Knowle cations. Add ficient paralle	e. Fai edge itiona l prog	milia of ally, gram	rity v mem a b ming	vit lor asi
OBJECTIVES: 1. To study 2. To learn 3. To devel 4. To provi 5. To study	the history and evolution of GPU-based supercomputing. the fundamentals of CUDA hardware and memory manag op problem-solving skills in CUDA programming and op de a comprehensive understanding of OpenCL basics and concurrency and memory models in OpenCL for heterog	gement. timization. programming eneous system	moc	lels.		
UNIT – I	GPU ARCHITECTURE				(9)	
History of Supero Threads, Blocks, (and Texture Memo	computing – Understanding Parallelism with GPU – Grids, Warps, Scheduling – Memory Handling with CU ory.	CUDA Hard DA: Shared,	ware Glot	Ove oal, C	erviev Const	v an
UNIT – II	CUDA PROGRAMMING				(9)	
UNIT – II Using CUDA – Decomposition – N	CUDA PROGRAMMING Multi GPU – Multi GPU Solutions – Optimizing Memory Considerations – Transfers, Thread Usage – Reso	CUDA Applurce Contention	icatio	ons:	(9) Prob	leı
UNIT – II Using CUDA – Decomposition – N UNIT – III	CUDA PROGRAMMING Multi GPU – Multi GPU Solutions – Optimizing Memory Considerations – Transfers, Thread Usage – Reso CUDA PROGRAMMING ISSUES	CUDA Applurce Contention	icatio	ons:	(9) Prob	leı
UNIT – II Using CUDA – Decomposition – N UNIT – III Common Problem Issues – Finding a	CUDA PROGRAMMING Multi GPU – Multi GPU Solutions – Optimizing Memory Considerations – Transfers, Thread Usage – Reso CUDA PROGRAMMING ISSUES s: CUDA Error Handling – Parallel Programming Issues, nd Avoiding Errors.	CUDA Appl urce Contentio	ications.	ons: - Alg	(9) Prob (9) orith	le: m
UNIT – II Using CUDA – Decomposition – N UNIT – III Common Problem Issues – Finding a UNIT – IV	CUDA PROGRAMMING Multi GPU – Multi GPU Solutions – Optimizing Memory Considerations – Transfers, Thread Usage – Reso CUDA PROGRAMMING ISSUES s: CUDA Error Handling – Parallel Programming Issues, nd Avoiding Errors. OPENCL BASICS	CUDA Appl urce Contentio	icatic ons.	ons: - Alg	(9) Prob (9) orith (9)	m
UNIT – II Using CUDA – Decomposition – ! UNIT – III Common Problem Issues – Finding a UNIT – IV OpenCL Standard Basic OpenCL Exa	CUDA PROGRAMMING Multi GPU – Multi GPU Solutions – Optimizing Memory Considerations – Transfers, Thread Usage – Reso CUDA PROGRAMMING ISSUES s: CUDA Error Handling – Parallel Programming Issues, nd Avoiding Errors. OPENCL BASICS - Platform Model – Execution Model – Programmir amples.	CUDA Appl urce Contentio Synchronizat	icatio ons. ion -	ons: - Alg	(9) Prob (9) orith (9) Mode	m
UNIT – II Using CUDA – Decomposition – ! UNIT – III Common Problem Issues – Finding a UNIT – IV OpenCL Standard Basic OpenCL Exa UNIT – V	CUDA PROGRAMMING Multi GPU – Multi GPU Solutions – Optimizing Memory Considerations – Transfers, Thread Usage – Reso CUDA PROGRAMMING ISSUES s: CUDA Error Handling – Parallel Programming Issues, nd Avoiding Errors. OPENCL BASICS - Platform Model – Execution Model – Programmir amples. CONCURRENCY MODEL	CUDA Appl urce Contentio Synchronizat	icatio ons. ion -	ons: - Alg	(9) Prob (9) orith (9) Mode	mi
UNIT – II Using CUDA – Decomposition – I UNIT – III Common Problem Issues – Finding a UNIT – IV OpenCL Standard Basic OpenCL Exa UNIT – V Commands and C Memory Model – I	CUDA PROGRAMMING Multi GPU – Multi GPU Solutions – Optimizing Memory Considerations – Transfers, Thread Usage – Reso CUDA PROGRAMMING ISSUES s: CUDA Error Handling – Parallel Programming Issues, nd Avoiding Errors. OPENCL BASICS - Platform Model – Execution Model – Programmir amples. CONCURRENCY MODEL Queuing Model – Native and Built-in Kernels – Dev Device side Memory Model – Dissecting OpenCL on Hete	CUDA Appl urce Contention Synchronizat ag Model – 1 rice side Que rrogeneous Sy	icatio	ons: - Alg ory I	(9) Prob (9) orith (9) Mode (9)	

COURSE OUTCOMES: At the end of the course, the students will be able to:					
COs	Course Outcome	Cognitive Level			
CO1	Infer the architecture and parallelism of GPUs.	Understand			
CO2	Develop CUDA programs and optimize applications.	Apply			
CO3	Identify and resolve common issues in CUDA programming.	Understand			
CO4	Explore the fundamentals of the OpenCL standard and its models.	Apply			
CO5	Examine concurrency models in heterogeneous systems through the use of OpenCL.	Understand			

- 1. Shane Cook, "CUDA Programming: A Developer's Guide to Parallel Computing with GPUs (Applications of GPU Computing)", Morgan Kaufmann, USA, 1st Edition, 2012
- 2. David R. Kaeli, Perhaad Mistry, Dana Schaa, Dong Ping Zhang, "Heterogeneous computing with OpenCL", Morgan Kauffman, USA, 3rd Edition, 2015.
- 3. Nicholas Wilt, "CUDA Handbook: A Comprehensive Guide to GPU Programming", Addison Wesley, Delhi, 1st Edition, 2013.
- 4. Jason Sanders, Edward Kandrot, "CUDA by Example: An Introduction to General Purpose GPU Programming", Addison Wesley, Delhi, 1st Edition, 2010.
- 5. https://opencl.org/

Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	1	3	3	2	1			
CO2	1	3	3	2	1			
CO3	1	3	3	2	1			
CO4	1	3	3	2	1			
CO5	1	3	3	2	1			
Avg.	1	3	3	2	1			
1-low, 2-media	um, 3-high	÷	•	•				

CS24E13	QUANTUM COMPUTING (PROFESSIONAL ELECTIVES – III and IV)	Category	L	Т	Р	С
		PEC	3	0	0	3
(Common to M.E CSE and M.E BDA)						
PREREQUISITE A strong foundation quantum mechanic computing framew	on in linear algebra, probability theory, and complex news and classical computing concepts is essential. Progra orks like qiskit or cirq.	numbers. Fami numning know	liarit ledge	y wi e in d	th ba quant	asic tum
OBJECTIVES: 1. To study 2. To learn of 3. To explore 4. To study 5. To invest	basic quantum mechanics and qubit systems. quantum state transformations and quantum gates. re key quantum algorithms and their generalizations. quantum error correction and fault-tolerant computation tigate quantum cryptography, teleportation, and quantum	techniques.	rotoc	ols.		
UNIT – I	QUANTUM BUILDING BLOCKS				(9)	
The Quantum Mec – Entangled States Bell's Theorem – F	hanics of Photon Polarization – Single-Qubit Quantum S – Multiple-Qubit Systems – Measurement of Multiple-C Bloch sphere.	ystems – Qua Qubit States –	ntum EPR	State Para	e Spa dox	aces and
UNIT – II	QUANTUM STATE TRANSFORMATIONS				(9)	
Unitary Transform Classical Computa	ations – Quantum Gates – Unitary Transformations as tions to Quantum Computations – Language for Quantun	Quantum Circ n Implementat	cuits ions.	– Re	evers	ible
UNIT – III	QUANTUM ALGORITHMS				(9)	
Computing with S Algorithm and Ger	Superpositions – Quantum Subroutines – Quantum For neralizations – Grover's Algorithm and Generalizations.	urier Transfor	matio	ons -	- Sh	or's
UNIT – IV	ENTANGLED SUBSYSTEMS AND ROBUST QUA COMPUTATION	NTUM			(9)	
Quantum Subsyste codes – CSS Codes	ems – Properties of Entangled States – Quantum Error s – Stabilizer Codes – Fault Tolerance and Robust Quantu	Correction – um Computing	Graj g.	oh st	ates	and
UNIT – V	QUANTUM INFORMATION PROCESSING				(9)	
Limitations of Qu Quantum Protocols teleportation – Qua	aantum Computing – Alternatives to the Circuit Modes s – Building Quantum – Computers, Simulating Quantum antum Cryptography – No cloning theorem.	el of Quantur 1 Systems, Be	n Co ll stat	ompu tes. (tatio Juant	n – tum
TOTAL: 45 PERIODS						
COURSE OUTCO	OMES:					

At the end of the course, the students will be able to:
COs	Course Outcome	Cognitive Level
CO1	Infer the fundamental concepts of quantum mechanics and qubit systems.	Understand
CO2	Apply quantum gates and unitary transformations to quantum circuits.	Apply
CO3	Implement quantum algorithms such as Shor's and Grover's algorithms.	Apply
CO4	Make use of quantum error correction methods and fault-tolerant quantum computing.	Apply
CO5	Discover quantum protocols, cryptography, and the no-cloning theorem in quantum information processing.	Understand

REFERENCES:

- 1. John Gribbin, "Computing with Quantum Cats: From Colossus to Qubits", Bantam Press, New York, 3rd Edition, 2021.
- 2. William (Chuck) Easttom, "Quantum Computing Fundamentals", Addison-Wesley Professional, USA, 1st Edition, 2021.
- 3. Parag Lala, "Quantum Computing", McGraw-Hill Education, India, 1st Edition, 2019
- 4. Eleanor Rieffel and Wolfgang Polak, "Quantum Computing A Gentle Introduction", MIT Press, USA, 1st Edition, 2011.
- 5. Nielsen M. A., "Quantum Computation and Quantum Information", Cambridge University Press, England, 1st Edition, 2002.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	1	2	3	2	1	
CO2	1	2	3	2	1	
CO3	1	2	3	2	1	
CO4	1	2	3	2	1	
CO5	1	2	3	2	1	
Avg.	1	2	3	2	1	
1-low, 2-medium, 3-high						

DD34E13	INFORMATION RETRIEVAL TECHNIQUES	Category	L	Т	Р	C		
BD24E12	OD24E12 (PROFESSIONAL ELECTIVES – III and IV) PEC 3				0	3		
	(Common to M.E CSE and M.E BDA)							
PREREQUISITE A foundational knowledge of data structures and algorithms, especially related to search and sorting techniques. Familiarity with basic probability, statistics, and machine learning concepts is essential for understanding classification, clustering, and retrieval models. Knowledge of web technologies and experience in programming languages like Python or Java will be beneficial for implementing IR systems.						ing for and s.		
 OBJECTIVES: 1. To learn the foundational concepts and practical challenges in Information Retrieval (IR). 2. To study and analyze different IR models and their practical applications. 3. To learn various indexing methods and strategies for efficient query processing. 4. To gain the principles of text classification and clustering using advanced algorithms. 5. To explore the web search process, link analysis, and multimedia IR methods for enhanced retrieval. 						ced		
UNIT – I	MOTIVATION				(9)			
Basic Concepts – Practical Issues – Retrieval Process – Architecture – Boolean Retrieval – Retrieval Evaluation – Open-Source IR Systems – History of Web Search – Web Characteristics – Impact of the web on IR – IR Versus Web Search – Components of a Search Engine.								
UNIT – II	MODELING				(9)			
Taxonomy and Characterization of IR Models – Boolean Model – Vector Model – Term Weighting – Scoring and Ranking – Language Models – Set Theoretic Models – Probabilistic Models – Algebraic Models – Structured Text Retrieval Models – Models for Browsing.								
UNIT – III	INDEXING				(9)			
Static and Dynamic Inverted Indices – Index Construction and Index Compression. Searching – Sequential Searching and Pattern Matching – Query Operations – Query Languages – Query Processing – Relevance Feedback and Query Expansion – Automatic Local and Global Analysis – Measuring Effectiveness and Efficiency.								
UNIT – IV	CLASSIFICATION AND CLUSTERING				(9)			
Text Classification and Naive Bayes – Vector Space Classification – Support Vector Machines and Machine Learning on Documents. Flat Clustering – Hierarchical Clustering – Matrix Decompositions and Latent Semantic Indexing – Fusion and Meta Learning.								
UNIT – V	SEARCHING THE WEB				(9)			
Searching the Web – Structure of the Web – IR and web search – Static and Dynamic Ranking – Web Crawling and Indexing – Link Analysis – XML Retrieval Multimedia IR: Models and Languages – Indexing and Searching Parallel and Distributed IR – Digital Libraries.								
		ТОТА	L: 4	5 PE	RIO	DS		

73

COURSE OUTCOMES: At the end of the course, the students will be able to:					
COs	Course Outcome	Cognitive Level			
CO1	Comprehend the architecture and process of Information Retrieval (IR) systems.	Understand			
CO2	Apply different IR models like Boolean, Vector, and Probabilistic models.	Apply			
CO3	Implement indexing techniques, including static and dynamic inverted indices.	Apply			
CO4	Perform text classification and clustering using machine learning methods.	Understand			
CO5	Discover web search processes, web crawling, and multimedia IR techniques.	Understand			

REFERENCES:

- 1. Ricardo Baeza, Yates, Berthier Ribeiro and Neto, "Modern Information Retrieval: The concepts and Technology behind Search", ACM Press Books, New York, 2nd Edition, 2011.
- 2. Stefan Buttcher, Charles L. A. Clarke and Gordon V. Cormack, "Information Retrieval Implementing and Evaluating Search Engines", The MIT Press, Cambridge, Massachusetts London, England, 3rd Edition, 2010.
- 3. Christopher D. Manning, Prabhakar Raghavan and Hinrich Schutze, "Introduction to Information Retrieval", Cambridge University Press, US, 1st Edition, 2008.
- 4. Gerald J. Kowalski, Mark T. Maybury, "Information Storage and Retrieval Systems: Theory and Implementation", Springer, US, 6th Edition, 2013.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	1	1	1	3	2	
CO2	1	1	1	3	2	
CO3	1	1	1	3	2	
CO4	1	1	1	3	2	
CO5	1	1	1	3	2	
Avg.	1	1	1	3	2	
1-low, 2-medium, 3-high						