

M.E. - COMMUNICATION SYSTEMS Curriculum & Syllabus for Semester I and II

REGULATIONS 2024 (Academic Year 2024-25 Onwards)

K.S.R. COLLEGE OF ENGINEERING: TIRUCHENGODE - 637 215 (Autonomous) <u>DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING</u> M.E. – Communication Systems (REGULATIONS 2024)

Vision of the Institution

 We envision to achieve status as an excellent educational institution in the global knowledge hub, making self-learners, experts, ethical and responsible engineers, technologists, scientists, managers, administrators and entrepreneurs who will significantly contribute to research and environment friendly sustainable growth of the nation and the world.

Mission of the Institution

IM 1	To inculcate in the students self-learning abilities that enable them to become competitive and
	considerate engineers, technologists, scientists, managers, administrators and entrepreneurs
	by diligently imparting the best of education, nurturing environmental and social needs.
IM 2	To foster and maintain a mutually beneficial partnership with global industries and institutions
	through knowledge sharing, collaborative research and innovation.

Vision of the Department / Programme: (ME - COMMUNICATION SYSTEMS)

DV We envision as a center of excellence in the field of Electronics and Communications Engineering to produce technically competent graduates with diverse teaching and research environments.

Mission of the Department / Programme: (ME - COMMUNICATION SYSTEMS)

DM 1	To educate the students with the state of art technologies to meet the growing challenges of
	the industries.
DM 2	To develop an innovate, competent and ethical Electronics and Communication Engineer with
	strong foundations to enable them for continuing education.

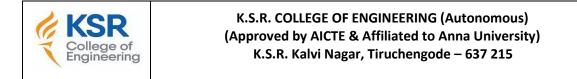
Programme Educational Objectives (PEOs) : (ME - COMMUNICATION SYSTEMS)

The grad	luates of the programme will be able to
PEO 1	Professional Skill Development: Apply concepts of Statistics, Linear Algebra and Residue Calculus in Communication, Signal processing and Electromagnetics domain.
PEO 2	Core Competence: Solve issues in real world communication sectors, and develop feasible and viable communication systems.
PEO 3	Interpersonal Skill and teamwork: Inculcate effective communication skills, produce effective teamwork, professional ethics and pursue research.

Programme Outcomes (POs) of ME - COMMUNICATION SYSTEMS

Progra	m Outcomes (POs)
M.E. Co	ommunication Systems graduates will be able to:
PO1	Conduct Investigations of complex Problems: An ability to independently carry out research
	/investigation and development work to solve practical problems.
PO2	Presentation Skill: An ability to write and present a substantial technical report/document.
PO3	Scholarship of Knowledge: Students should be able to demonstrate a degree of mastery over the
	area as per the specialization of the program. The mastery should be at a level higher than the
	requirements in the appropriate bachelor program.
Progra	m Specific Outcomes (PSOs)
PSO1	Research Culture: Use the knowledge of signal processing, communications, networks and
	Electromagnetics to simulate algorithms in virtual environments and to perform research to
	implement embedded and VLSI platforms.
PSO2	Core Values: Contribute core Universal values and social good in the community.

K.S.R. COLLEGE OF ENGINEERING (Autonomous) (Approved by AICTE & Affiliated to Anna University) K.S.R. Kalvi Nagar, Tiruchengode - 637 215


Regulations 2024

CURRICULUM PG R - 2024

	Enginēering	K.S.R. Kaivi Nagar,		R - 2024									
De	epartment	Department of Electronics	and Comm	nuni	cati	on E	Ingir	neering					
Pr	ogramme	M.E – Communication Syste	ems										
	SEMESTER I												
LOUISE										ix. Ma	rks		
5.NO	Code	Course Thie	Category	L	т	Ρ	Tot	Credit	CA	ES	Tot		
THEC	ORY COURSE	S											
1	CU24T11	Advanced Radiation Systems	PCC	3	0	0	3	3	40	60	100		
2	CU24T12	Advanced Wireless Communication	PCC	3	0	0	3	3	40	60	100		
3	CU24T13	Advanced Communication Network	PCC	3	0	0	3	3	40	60	100		
4	MA24T17	Applied Mathematics	FC	3	1	0	4	4	40	60	100		
5		Professional Elective – I	PEC	3	0	0	3	3	40	60	100		
6		Professional Elective – II	PEC	3	0	0	3	3	40	60	100		
LABC	ORATORY CO	URSES											
7	CU24P11	Antennas and Radiating Systems Laboratory	PCC	0	0	4	4	2	60	40	100		
8	CU24P12	Advanced Communication Networks Laboratory	PCC	0	0	4	4	2	60	40	100		
			TOTAL	18	1	8	27	23		800			

		SEN	IESTER II								
S.No	Course	Course Title	Category	Ре	riods	s/ We	ek	Credit	Max. Marks		
5.140	Code	course ritie	category	L	Т	Ρ	Tot	creat	CA	ES	Tot
THEO	THEORY COURSES										
1	CU24T21	Research Methodology and IPR	PCC	3	0	0	3	3	40	60	100
2	CU24T22	Modern Digital Communication Techniques	PCC	3	0	0	3	3	40	60	100
3	CU24T23	Advanced Digital Signal Processing	PCC	3	1	0	4	4	40	60	100
4	CU24T24	Digital Communication Receivers	PCC	3	0	0	3	3	40	60	100
5		Professional Elective – III	PEC	3	0	0	3	3	40	60	100
6		Professional Elective – IV	PEC	3	0	0	3	3	40	60	100
LABO	RATORY CO	URSES									
7	CU24P21	Advanced Digital Signal Processing Lab	PCC	0	0	4	4	2	60	40	100
8	CU24P22	Technical Presentation	PCC	0	0	2	2	1	60	40	100
			TOTAL	18	1	6	25	22		800	

K.S.R. College of Engineering

CURRICULUM PG R – 2024

Department Department of Electronics and Communication Engineering

Programme M.E – Communication Systems

		S	EMESTER III								
S.No	Course Code	Course Title		Peri	ods/ \	Week		Cre	Max. Marks		
5.100			Category	L	Т	Р	Tot	dit	СА	ES	Tot
THEO		5									
1	CU24T31	mm Wave Communication	PCC	3	0	0	3	3	40	60	100
2	CU24T32	Ultra-Wide Band Communications	РСС	3	0	0	3	3	40	60	100
3		Professional Elective – V	PEC	3	0	0	3	3	40	60	100
4		Open Elective	OEC	3	0	0	3	3	40	60	100
LABO	RATORY CO	URSES									
5	CU24P31	Project Work Phase - I	EEC	0	0	12	12	6	60	40	100
AUDI	COURSE										
6		Audit Course	AC	2	0	0	2	0	100	-	-
			TOTAL	14	0	12	26	18		500	

		SEM	IESTER IV									
S.No	Course Code	Course Title (Catagory	Periods/ Week					Max. Marks			
			Category	L	Т	Ρ	Tot	- Credit	СА	ES	Tot	
LABO	RATORY CO	URSE										
1	CU24P41	Project Work Phase II	EEC	0	0	24	24	12	60	40	100	
	TOTAL 0 0 24 24 12 100											
		TOTAL NO.	OF CREDIT	S = 7	75							
		TOTAL NUMBER OF C	REDITS TO	BE E	ARN	ED FC	OR					
	AWARD OF THE DEGREE = 75											
Note:	Note: FC – Foundation Courses, AC – Audit Courses, PCC – Professional Core Courses, and PEC – Professional Elective											
	Courses, EEC – Employability Enhancement Courses.											

College of Engineering	K.S.R. COLLEGE OF ENGINEERING (Autonomous) (Approved by AICTE & Affiliated to Anna University) K.S.R. Kalvi Nagar, Tiruchengode - 637 215	CURRICULUM PG R - 2024
Department	Department of Electronics and Communication Engineering	
Programme	M.E – Communication Systems	

	PROFESSIONAL ELECTIVE COURSE (I & II)													
C N .					riods	5/ W	eek	Crucalit	Max. Marks					
5.NO	Course Code	Course Title	Category	L	т	Ρ	Tot	Credit	CA	ES	Tot			
1	CU24E01	DSP Processor Architecture and Programming	PEC	3	0	0	3	3	40	60	100			
2	CU24E02	Cognitive Radio Network	PEC	3	0	0	3	3	40	60	100			
3	CU24E03	Optical Communication Networks	PEC	3	0	0	3	3	40	60	100			
4	CU24E04	Wireless Sensor Networks	PEC	3	0	0	3	3	40	60	100			
5	CU24E05	Microstrip Patch Antenna Design	PEC	3	0	0	3	3	40	60	100			
6	CU24E06	Communication Protocol Engineering	PEC	3	0	0	3	3	40	60	100			
7	CU24E07	Signal Integrity for High Speed Design	PEC	3	0	0	3	3	40	60	100			
8	CU24E08	Pattern Recognition and Machine Learning	PEC	3	0	0	3	3	40	60	100			
9	CU24E09	MIMO Systems	PEC	3	0	0	3	3	40	60	100			
10	CU24E10	Advanced Satellite Communication and Navigation Systems	PEC	3	0	0	3	3	40	60	100			
			Total	30	0	0	30	30		1000				

	PROFESSIONAL ELECTIVE COURSE (III & IV)													
	Course Code	ode Course Title	C -1	Pe	riods	/We	eek	Cure ditt	Max. Marks					
5.110			Category	L	Т	Ρ	Tot	Credit	СА	ES	Tot			
1	CU24E11	Machine Learning	PEC	3	0	0	3	3	40	60	100			
2	CU24E12	Communication Network Security	PEC	3	0	0	3	3	40	60	100			
3	CU24E13	RF MEMS for Wireless Communication	PEC	3	0	0	3	3	40	60	100			
4	CU24E14	Multimedia Compression Techniques	PEC	3	0	0	3	3	40	60	100			
5	CU24E15	High Performance Computer Networks	PEC	3	0	0	3	3	40	60	100			
6	CU24E16	Voice and Data Networks	PEC	3	0	0	3	3	40	60	100			

<i>M.I</i>	M.E. – Communication Systems Regulations 2024										
7	CU24E17	Spread Spectrum Communication	PEC	3	0	0	3	3	40	60	100
8	CU24E18	High Speed Switching Architecture	PEC	3	0	0	3	3	40	60	100
9	CU24E19	Speech and Audio Processing	PEC	3	0	0	3	3	40	60	100
10	PE24T21	Soft Computing Techniques	PEC	3	0	0	3	3	40	60	100
		Total	30	0	0	30	30		1000		

	PROFESSIONAL ELECTIVE COURSE (V)											
C No		Course Title	Catagon	Ре	riod	s/ W	eek	Cuedit	Max. Marks			
5.NO	Course Code		L	т	Ρ	Tot	Credit	CA	ES	Tot		
1	CU24E20	Signal Detection and Estimation	PEC	3	0	0	3	3	40	60	100	
2	CU24E21	VLSI for Wireless Communication	PEC	3	0	0	3	3	40	60	100	
3	CU24E22	Wavelets and Subband Coding	PEC	3	0	0	3	3	40	60	100	
4	CU24E23	Microwave Integrated Circuits	PEC	3	0	0	3	3	40	60	100	
5	CU24E24	RF System Design PEC 3 0 0 3		3	40	60	100					
			Total	15	0	0	15	15		500		

	AUDIT COURSES (SEMESTER – III)											
SI.	SI. Course No. Code	Course Name	Category		Hours/ Week				Maximum Marks			
No.	Code				Т	Ρ	Tot	С	CA	ES	Tot	
THEO	RY COURSE	S										
1.	AX24A01	Disaster Management	AC	2	0	0	2	100	-	-	-	
2.	AX24A02	Value Education	AC	2	0	0	2	100	-	-	-	
3.	AX24A03	Constitution of India	AC	2	0	0	2	100	-	-	-	

	FOUNDATION COURSES (FC)											
sı.		Course Name	Category		Hours/We			Credit	dit Maximum Marks			
No.	Code			L	т	Ρ	Tot	с	СА	ES	rks	
1.	MA24T17	Applied Mathematics	FC	3	1	0	4	4	40	60	100	
			Total	al 3 1 0 4 4 100				כ				

PROFESSIONAL CORE COURSES (PCC)													
SI.	Course	Course Name	Category	ŀ	lour	s/We	ek	Credit	N	Maximum Marks			
No.	Code			L	Т	Ρ	Tot	С	CA	ES	Total		
1.	CU24T11	Advanced Radiation Systems	PCC	3	0	0	3	3	40	60	100		
2.	CU24T12	Advanced Wireless Communication	nced Wireless Communication PCC 3 0 0 3							60	100		
3.	CU24T13	Advanced Communication Network	PCC	3	0	0	3	3	40	60	100		
4.	CU24P11	Antennas and Radiating Systems Laboratory	PCC	0	0	4	4	2	60	40	100		
5.	CU24P12	Advanced Communication Networks Laboratory	PCC	0	0	4	4	2	60	40	100		
6.	CU24T21	Research Methodology and IPR	PCC	3	0	0	3	3	40	60	100		
7.	CU24T22	Modern Digital Communication Techniques	PCC	3	0	0	3	3	40	60	100		
8.	CU24T23	Advanced Digital Signal Processing	PCC	3	1	0	4	4	40	60	100		
9.	CU24T24	Digital Communication Receivers	PCC	3	0	0	3	3	40	60	100		
10.	CU24P21	Advanced Digital Signal Processing Lab	PCC	0	0	4	4	2	60	40	100		
11.	CU24P22	Technical Presentation	PCC	0	0	2	2	1	60	40	100		
12.	CU24T31	mm Wave Communication	PCC	3	0	0	3	3	40	60	100		
13.	CU24T32	Ultra-Wide Band Communications	PCC	3	0	0	3	3	40	60	100		
Total 27 1 14 42 35 1300													

Г

PROFESSIONAL ELECTIVE COURSES (PEC)											
SI.	Course	Course Name	Category	Но	ours/	/We	ek	Credit		laxim Mark	-
No.	Code		87	L	Т	Ρ	Tot	C	CA	ES	Total
1.	CU24E01	DSP Processor Architecture and Programming	PEC	3	0	0	3	3	40	60	100
2.	CU24E02	Cognitive Radio Network	PEC	3	0	0	3	3	40	60	100
3.	CU24E03	Optical Communication Networks	PEC	3	0	0	3	3	40	60	100
4.	CU24E04	Wireless Sensor Networks	PEC	3	0	0	3	3	40	60	100
5.	CU24E05	Microstrip Patch Antenna Design	PEC	3	0	0	3	3	40	60	100
6.	CU24E06	Communication Protocol Engineering	PEC	3	0	0	3	3	40	60	100
7.	CU24E07	Signal Integrity for High Speed Design	High Speed Design PEC 3 0 0 3 3	3	40	60	100				
8.	CU24E08	Pattern Recognition and Machine Learning	PEC	3	0	0	3	3	40	60	100
9.	CU24E09	MIMO Systems	PEC	3	0	0	3	3	40	60	100
10.	CU24E10	Advanced Satellite Communication and Navigation Systems	PEC	3	0	0	3	3	40	60	100
11.	CU24E11		PEC	3	0	0	3	3	40	60	100
12.	CU24E12	Communication Network Security	PEC	3	0	0	3	3	40	60	100
13.	CU24E13	RF MEMS for Wireless Communication	PEC	3	0	0	3	3	40	60	100
14.	CU24E14	Multimedia Compression Techniques	PEC	3	0	0	3	3	40	60	100
15.	CU24E15	High Performance Computer Networks	PEC	3	0	0	3	3	40	60	100
16.	CU24E16	Voice and Data Networks	PEC	3	0	0	3	3	40	60	100
17.	CU24E17	Spread Spectrum Communication	PEC 3 0 0 3	3	40	60	100				
18.	CU24E18	High Speed Switching Architecture	PEC	3	0	0	3	3	40	60	100
19.	CU24E19	Speech and Audio Processing	PEC	3	0	0	3	3	40	60	100
20.	PE24T21	Soft Computing Techniques	PEC	3	0	0	3	3	40	60	100
21.	CU24E20	Signal Detection and Estimation	PEC	3	0	0	3	3	40	60	100
22.	CU24E21	VLSI for Wireless Communication	PEC	3	0	0	3	3	40	60	100
23.	CU24E22	Wavelets and Subband Coding	PEC	3	0	0	3	3	40	60	100
24.	CU24E23	Microwave Integrated Circuits	PEC	3	0	0	3	3	40	60	100
25.	CU24E24	RF System Design	PEC	3	0	0	3	3	40	60	100
	t	1	l	I	l		l	i	1	I	

	EMPLOYABILITY ENHANCEMENT COURSES (EEC)										
SI.		Course Name	Category	Hours/Week			ek	Credit	Maximum Marks		
No.	Code		87	L	Т	Ρ	Tot	С	CA	Marks CA ES Total 60 40 100	
1.	CU24P31	Project Work Phase - I	EEC	0	0	12	12	6	60	40	100
2.	CU24P41	roject Work Phase II EEC 0 0 24 24		24	12	60	40	100			
			Total 0 0 36 3					18		20	0

		OPEN ELECTIVE COURSES OF	FERED BY C	THE	R DE	PAR	MEN	ITS			
SI.	Course	Course Nome	Catagony	Н	ours	/ We	ek	Credit	Maxi	mum N	Marks
No.	Code	Course Name	Category	L	Т	Ρ	Tot.	С	СА	ES	Total
		THEOR	Y COURSES								
1.	CS24O01	Machine learning and Deep Learning	OEC	3	0	0	3	3	40	60	100
2.	CS24O02	Blockchain and Crypto Currency	OEC	3	0	0	3	3	40	60	100
3.	CS24O03	Multimedia Technologies	OEC	3	0	0	3	3	40	60	100
4.	BD24001	Big Data Analytics	OEC	3	0	0	3	3	40	60	100
5.	BD24002	Internet of Things and Cloud	3	3	40	60	100				
6.	BD24003	Big Data Visualization	OEC	3	0	0	3	3	40	60	100
7.	ET24001	Embedded Systems	OEC	3	0	0	3	3	40	60	100
8.	ET24O02	Embedded Control	OEC	3	0	0	3	3	40	60	100
9.	ET24O03	Embedded Automation	OEC	3	0	0	3	3	40	60	100
10.	IT24001	IoT for Smart System	OEC	3	0	0	3	3	40	60	100
11.	IT24002	Machine Learning for Intelligent Multimedia Analytics	OEC	3	0	0	3	3	40	60	100
12.	IT24003	DevOps and Microservices	OEC	3	0	0	3	3	40	60	100
13.	IT24004	Cyber security and Digital Awareness	OEC	З	0	0	3	3	40	60	100
14.	CN24001	Energy Efficient Building	OEC	3	0	0	3	3	40	60	100
15.	CN24002	Economics and Finance Management in Construction	OEC	3	0	0	3	3	40	60	100
16.	CN24O03	Stress management	OEC	3	0	0	3	3	40	60	100
17.	ST24001	Principles of Sustainable Development	OEC	3	0	0	3	3	40	60	100
18.	ST24002	Failure Analysis of Structures	OEC	3	0	0	3	3	40	60	100
19.	ST24O03	Smart materials and Smart Structures	OEC	3	0	0	3	3	40	60	100
20.	PE24001	Switching Concepts and Power Semiconductor Devices	OEC	3	0	0	3	3	40	60	100
21.	PE24002	Smart Grid Technology	OEC	3	0	0	3	3	40	60	100
22.	PE24003	Renewable Energy Technology	OEC	3	0	0	3	3	40	60	100

<i>M.I</i>	E. – Communice	ation Systems				1			Reg	ulations	2024	
23.	PE24O04	Energy Management and Conservation	OEC	3	0	0)	3	3	40	60	100
24.	CC24O01	Digital Manufacturing	OEC	3	0	0		3	3	40	60	100
25.	CC24O02	Design for Manufacturing and Assembly	OEC	3	0	0)	3	3	40	60	100
26.	CC24O03	Smart Materials and Structures	OEC	3	0	0)	3	3	40	60	100
27.	IS24001	Industrial Safety Engineering	OEC	3	0	0)	3	3	40	60	100
28.	IS24002	Fire Engineering and Protection	OEC	3	0	0		3	3	40	60	100
29.	IS24O03	Food and Bio-safety	OEC	3	0	0)	3	3	40	60	100
		OPEN ELECTIVE COURSES OFFE	RED TO OT	HER	DEP	ART	ME	NT (O	DEC)			
sı.	Course					ARTI urs/\		•	OEC) Credit	N	laxim Mark	
SI. No.	Course Code	OPEN ELECTIVE COURSES OFFE Course Name	RED TO OT					•	Credit	CA		
_		Course Name		ry		urs/\	We	ek	Credit		Mark	s
No.	Code	Course Name Principles of Multimedia	Catego	ry _	Ho	urs/' T	Wee P	ek Tot	Credit C	СА	Mark ES	s Total
No. 1.	Code CU24001	Course Name Principles of Multimedia IoT for Smart Systems	Catego	ry	Hor L 3	urs/ T 0	Wee P 0	ek Tot 3	Credit C 3	CA 40	Mark ES 60	s Total 100

COURSE COMPONENT SUMMARY

C No	Category		Credits Pe	r Semester	•	Credits	Percentage
S.No.	Category	I	Ш	Ш	IV	Total	Credits
1.	FC	4	-	-	-	4	5.3
2.	PCC	13	16	6	-	35	46.6
3.	PEC	6	6	3	-	15	20
4.	EEC	-	-	6	12	18	24
5.	OEC	-	-	3	-	3	4
Т	OTAL	23	22	18	12	75	100

CU24T11	ADVANCED RADIATION SYSTEMS	Category	L	Т	Р	С
		PCC	3	0	0	3

PREREQUISITE:

Students should have a basic knowledge in Electromagnetics, including Maxwell's equations, wave propagation, radiation and the interaction of electromagnetic waves with different media. Knowledge of different types of radiation and their effects on matter. Familiarity with the principles of antenna design, radiation patterns, polarization, impedance matching, and gain.

OBJECTIVES:

- To explore the design and analysis of antenna with its parameters.
- To study the spatial distribution of radiation from an antenna, including concepts like beam width, main lobe, and side lobes.
- To understand the basic principles of how apertures in a conductor or dielectric material emit or scatter electromagnetic waves.
- To explore antennas designed with metamaterials to achieve unique properties and measuring antenna impedance.
- To make the students to comprehend the cutting-edge developments in antenna design.

LINIT - I	ANTENN
UINLL - L	

ITENNA FUNDAMENTALS

(9)

(9)

Antenna fundamental parameters, Radiation integrals, Radiation from surface and line current distributions –dipole, monopole, loop antenna; Mobile phone antenna – base station, handset antenna: Image; Induction, reciprocity theorem, Broadband antennas and Matching techniques, Balance to unbalance transformer, Introduction to numerical techniques.

UNIT - II ARRAY ANTENNA

Linear array – uniform array, end fire and broad side array, gain, beam width, side lobe level, Two dimensional uniform array, Phased array, beam scanning, grating lobe, feed network. Three dimensional characteristics, binomial array and Dolph - Tchebycheff arrays, Circular array.

UNIT - III	RADIATION FROM APERTURES	(9)	I
------------	--------------------------	-----	---

Field equivalence principle, Radiation from Rectangular and Circular apertures, Uniform aperture distribution on an infinite ground plane, Slot antenna, Horn antenna, Reflector antenna, aperture blockage and design consideration.

UNIT - IV MODERN ANTENNAS & MEASUREMENT TECHNIQUES

(9)

Base station antennas, PIFA, Antennas for WBAN, RFID Antennas, Automotive antennas, MIMO Antennas, Diversity techniques, Antenna impedance and radiation pattern measurements.

UNIT - V RECENT TRENDS IN ANTENNA DESIGN ⁽⁹⁾

UWB antenna arrays, Vivaldi antenna arrays, Artificial magnetic conductors/High impedance surfaces, Antennas in medicine – Plasma antennas, Antennas for millimeter wave communication, optimization techniques, Numerical methods.

Total = 45 PERIODS

At the end of the course, the students will be able to:

Course Outcome	Description		
CO1	Analyze various antenna parameters for a given antenna.	Analyze	
CO2	Design different types of antenna arrays.	Apply	
CO3	Design an aperture antenna for a given specifications	Apply	
CO4	Measure and analyze the various antennas and its measurement techniques.	Analyze	
CO5	Describe the cutting-edge developments in antenna design.	Understand	

REFERENCES:

- 1. K.Balanis.A, "Antenna Theory Analysis and Design", John Wiley and Sons, Third Edition, 2011
- 2. Krauss.J.D, "Antennas and wave propagation", John Wiley and sons, Fifth Edition, 2017.
- 3. Frank B. Gross, "Frontiers in Antennas", Mc Graw Hill, First Edition, 2011.

- 4. W.L.Stutzman and G.A.Thiele, "Antenna Theory and Design", John Wiley & Sons Inc, Third Edition, 2012.
- 5. S. Drabowitch, A. Papiernik, H.D.Griffiths, J.Encinas, B.L.Smith, "Modern Antennas", Springer Publications, Second Edition, 2007.

Mapping of COs with POs and PSOs							
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	3	-	3	3	-		
CO2	3	-	3	3	-		
CO3	3	-	3	3	-		
CO4	3	-	3	3	-		
CO5	3	-	3	3	-		
Avg.	3	-	3	3	-		
1 - Low, 2 - Medi	um, 3 - High						

CU24T12	ADVANCED WIRELESS COMMUNICATION	Category	L	Т	Р	С
0024112	ADVANCED WINELESS COMMONICATION	PCC	3	0	0	3
	TE: have familiar in communication systems fundamentals of w , Network protocols, Electromagnetics, Software defined rac		nunic	atior	ı, Dig	jita
OBJECTIVES	:					
 To explo fading, a To under diversity To delve models, o To learn 	cnowledge about the propagation of electromagnetic signals is re the concept of channel capacity in various wireless enviro nd frequency-selective fading channels. rstand the importance of diversity in combating fading in wir techniques at the receiver and transmitter. e into Multiple Input Multiple Output (MIMO) systems, fo channel capacity, and diversity gain. about Multi-User Detection (MUD) techniques, including lin tive MUD.	nments, incl reless channe cusing on n	uding els. S arrov	g AW tudy vbanc	diffe 1 MI	ren MC
UNIT - I	WIRELESS CHANNEL PROPAGATION AND MOD	EL			(9)	
	EM signals in wireless channel – Reflection, diffraction and	-	-			-
Fading Models	 ing- channel classification- channel models – COST -231 Rayleigh, Rician, Nakagami, 5G Channel model requinarios, METIS channel models, Map-based model, stochastic CAPACITY OF WIRELESS CHANNELS 	Hata model airements an	, NL	OS N	Iultip	atł
Fading Models propagation sce UNIT - II Capacity in AV	ing- channel classification- channel models – COST -231 Rayleigh, Rician, Nakagami, 5G Channel model requinarios, METIS channel models, Map-based model, stochastic	Hata model nirements an c model.	, NLO	OS N Ieasu	Iultij reme (9)	nts
Fading Models propagation sce UNIT - II Capacity in AV	ing- channel classification- channel models – COST -231 :: Rayleigh, Rician, Nakagami, 5G Channel model requinarios, METIS channel models, Map-based model, stochastic CAPACITY OF WIRELESS CHANNELS WGN, capacity of flat fading channel, capacity of frequent	Hata model nirements an c model.	, NLO	OS N Ieasu	Iultij reme (9)	oath nts
Fading Models propagation sce UNIT - II Capacity in AV Capacity of MIS UNIT - III Realization of i Maximum-ratio	 ing- channel classification- channel models – COST -231 :: Rayleigh, Rician, Nakagami, 5G Channel model requarter narios, METIS channel models, Map-based model, stochastic CAPACITY OF WIRELESS CHANNELS WGN, capacity of flat fading channel, capacity of frequents SIMO systems. 	Hata model uirements and c model. ncy selective	, NLo nd M e fad	OS N Ieasu ing c	fultij reme (9) chanr (9) mbin	els
Fading Models propagation sce UNIT - II Capacity in AV Capacity of MIS UNIT - III Realization of i Maximum-ratio	 ing- channel classification- channel models – COST -231 :: Rayleigh, Rician, Nakagami, 5G Channel model requarteries, METIS channel models, Map-based model, stochastic CAPACITY OF WIRELESS CHANNELS WGN, capacity of flat fading channel, capacity of frequents SIMO systems. DIVERSITY Independent fading paths, Receiver Diversity: Selection components 	Hata model uirements and c model. ncy selective	, NLo nd M e fad	OS N Ieasu ing c	fultij reme (9) chanr (9) mbin	els
Fading Models propagation sce UNIT - II Capacity in AV Capacity of MIS UNIT - III Realization of i Maximum-ratio Channel unknow UNIT - IV Narrowband MI Diversity Gain:	 ing- channel classification- channel models – COST -231 :: Rayleigh, Rician, Nakagami, 5G Channel model requarteries, METIS channel models, Map-based model, stochastic CAPACITY OF WIRELESS CHANNELS WGN, capacity of flat fading channel, capacity of frequents SIMO systems. DIVERSITY Independent fading paths, Receiver Diversity: Selection combining, Equal gain Combining. Transmitter Diversity: wn at the transmitter. 	Hata model airements and c model. hcy selective abining, Three Channel known	, NLO nd M e fad esholo own a el cap	OS N Ieasu ing c d Con at tra	(9) (9) (9) (9) (9) (9) (9) (9)	els
Fading Models propagation sce UNIT - II Capacity in AV Capacity of MIS UNIT - III Realization of i Maximum-ratio Channel unknow UNIT - IV Narrowband MI Diversity Gain:	 ing- channel classification- channel models – COST -231 :: Rayleigh, Rician, Nakagami, 5G Channel model requarations, METIS channel models, Map-based model, stochastic CAPACITY OF WIRELESS CHANNELS WGN, capacity of flat fading channel, capacity of frequen SO, SIMO systems. DIVERSITY Independent fading paths, Receiver Diversity: Selection come Combining, Equal gain Combining. Transmitter Diversity: wn at the transmitter. MIMO COMMUNICATIONS IMO model, Parallel decomposition of the MIMO channel, Magama forming, Diversity-Multiplexing trade-offs, Space 	Hata model airements and c model. hcy selective abining, Three Channel known	, NLO nd M e fad esholo own a el cap	OS N Ieasu ing c d Con at tra	(9) (9) (9) (9) (9) (9) (9) (9)	els
Fading Models propagation sce UNIT - II Capacity in AV Capacity of MIS UNIT - III Realization of i Maximum-ratio Channel unknow UNIT - IV Narrowband MI Diversity Gain: STBC, STTC, S UNIT - V Introduction to	 ing- channel classification- channel models – COST -231 :: Rayleigh, Rician, Nakagami, 5G Channel model requarteries, METIS channel models, Map-based model, stochastic CAPACITY OF WIRELESS CHANNELS WGN, capacity of flat fading channel, capacity of frequents of systems. DIVERSITY Independent fading paths, Receiver Diversity: Selection come Combining, Equal gain Combining. Transmitter Diversity: wn at the transmitter. MIMO COMMUNICATIONS IMO model, Parallel decomposition of the MIMO channel, Markanel, Space Spatial Multiplexing and BLAST Architectures. 	Hata model airements and c model. ncy selective abining, Three Channel known fIIMO channet time Modul	, NLO nd M e fad esholo own a el cap lation	OS N Ieasu ing c d Con at tra	(9) (9) (9) (9) (9) (9) (9) (9) (9)	els ing MC

At the end of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Describe the wireless channel characteristics and identify appropriate channel models.	Understand
CO2	Explain the mathematics behind the capacity calculation under different channel conditions	Analyze
CO3	Describe the implication of diversity combining methods and the knowledge of channel	Apply
CO4	Apply the concepts in MIMO Communications	Understand
CO5	Describe multiple access techniques and their use in different multi-user scenarios.	Understand

- 1. David Tse and Pramod Viswanath, Fundamentals of wireless communications, Cambridge University Press, UK, First Edition, 2012.
- 2. Andrea Goldsmith, Wireless Communications, Cambridge University Press, UK, First Edition, 2007.
- 3. Harry R. Anderson, Fixed Broadband Wireless System Design, John Wiley, India, First Edition, 2003.
- 4. Simon Haykin & Michael Moher, Modern Wireless Communications, Pearson Education, New Delhi, First Edition, 2007.

Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PSO1	PSO2			
C01	3	-	3	3	-			
CO2	3	-	3	3	-			
CO3	3	-	3	3	-			
CO4	3	-	3	3	-			
CO5	3	-	3	3	-			
Avg.	3	-	3	3	-			
1 - Low, 2 - Med	lium, 3 - High							

CU24T13	Α ΣΥΑΝΟΈΣ ΟΟΜΜΙΝΙΟ ΑΤΙΟΝ ΝΕΤΨΟΣΥ	Category	L	Т	Р	C
	ADVANCED COMMUNICATION NETWORK	PCC	3	0	0	3
Communication	have familiar in communication systems fundamentals of w , Network protocols, Electromagnetics and Software defined		nunic	atior	, Dig	gita
OBJECTIVES						
 challenge To delve fairness i To provio underpina To dissen identifica To explo 	de the students to gain the concepts of Internet communic es, and advanced topics like congestion control, flow control into the complexities of TCP in high-bandwidth and hig ssues and real-time communication challenges. de design of packet scheduling algorithms, active queue me nings of latency. minate the challenges and solutions in packet classification tion, with a focus on efficient algorithms. ore the concepts of admission control, effective bandw iated Services.	gh-latency ne anagement, <i>a</i> n, IP address	etwor and th look	ks, i ne th up, a	ncluc eoret and f	ling ica lov
UNIT - I	TCP AND RSVP				(9)	
UNIT - II	gorithm and its properties.					
	TRAFFIC SCHEDULING AND QUEUE MANAGEM	ENT			(9)	
Rate proportion Bounded Arriva networks for LB	TRAFFIC SCHEDULING AND QUEUE MANAGEM ng Algorithms - Requirement - Scheduling guaranteed servic al algorithms - High speed scheduler design - Character l Processes (LBAP) - Theory of Latency Rate servers and d AP traffic - Active Queue Management - RED, WRED and V e queue management.	e connection ization of Tr elay bounds i	raffic in pa	by cket	VFQ Line switc	arly heo
Rate proportion Bounded Arriva networks for LB	ng Algorithms - Requirement - Scheduling guaranteed servic al algorithms - High speed scheduler design - Character l Processes (LBAP) - Theory of Latency Rate servers and de AP traffic - Active Queue Management - RED, WRED and V	e connection ization of Tr elay bounds i	raffic in pa	by cket	VFQ Line switc	arly heo
Rate proportion Bounded Arriva networks for LB analysis of activ UNIT - III IP address look	ng Algorithms - Requirement - Scheduling guaranteed servic al algorithms - High speed scheduler design - Character l Processes (LBAP) - Theory of Latency Rate servers and d AP traffic - Active Queue Management - RED, WRED and V e queue management.	e connection ization of Tr elay bounds i Virtual clock	raffic in pao - Cor	by cket ntrol	VFQ Lines switc theor (9)	arly heo retio
Rate proportion Bounded Arriva networks for LB analysis of activ UNIT - III IP address look	ng Algorithms - Requirement - Scheduling guaranteed servic al algorithms - High speed scheduler design - Character l Processes (LBAP) - Theory of Latency Rate servers and de AP traffic - Active Queue Management - RED, WRED and V e queue management. PACKET CLASSIFICATION ALGORITHM up - challenges - Packet classification algorithms and Flow	e connection ization of Tr elay bounds i Virtual clock	raffic in pao - Cor	by cket ntrol	VFQ Lines switc theor (9)	arly heo retio
Rate proportion Bounded Arriva networks for LB analysis of activ UNIT - III IP address look Cross producing UNIT - IV Admission cont	ng Algorithms - Requirement - Scheduling guaranteed servic al algorithms - High speed scheduler design - Character l Processes (LBAP) - Theory of Latency Rate servers and de AP traffic - Active Queue Management - RED, WRED and V e queue management. PACKET CLASSIFICATION ALGORITHM up - challenges - Packet classification algorithms and Flow g and controlled prefix expansion algorithms.	e connection ization of Tr elay bounds i Virtual clock Identification	n - G	by cket ntrol	VFQ Lines switc theor (9) f Tri (9)	arly heo retio
Rate proportion Bounded Arriva networks for LB analysis of activ UNIT - III IP address look Cross producing UNIT - IV Admission cont	ng Algorithms - Requirement - Scheduling guaranteed servic al algorithms - High speed scheduler design - Character l Processes (LBAP) - Theory of Latency Rate servers and de AP traffic - Active Queue Management - RED, WRED and V e queue management. PACKET CLASSIFICATION ALGORITHM up - challenges - Packet classification algorithms and Flow g and controlled prefix expansion algorithms. DIFFERENTIATED SERVICES rol in Internet - Concept of Effective bandwidth - Measurer	e connection ization of Tr elay bounds i Virtual clock Identification	n - G	by cket ntrol	VFQ Lines switc theor (9) f Tri (9)	arly hec etic es

Total = 45 PERIODS

At the end of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Describe the fundamentals of TCP/IP, including its challenges and advanced topics such as congestion control and flow control.	Understand
CO2	Apply TCP performance issues in high-bandwidth and high-latency networks, including fairness and real-time communication challenges.	Apply
CO3	Design packet scheduling algorithms and active queue management strategies, and understand the theoretical aspects of latency.	Apply
CO4	Describe the challenges and solutions in packet classification, IP address lookup, and flow identification, with a focus on efficient algorithms.	Understand
CO5	Discuss admission control, effective bandwidth, and the architecture of Differentiated Services.	Understand

REFERENCES:

1. David Tse and Pramod Viswanath, Fundamentals of wireless communications, Cambridge University Press, UK, First Edition, 2012.

- 2. Andrea Goldsmith, Wireless Communications, Cambridge University Press, UK, First Edition, 2007.
- 3. Harry R. Anderson, Fixed Broadband Wireless System Design, John Wiley, India, First Edition, 2003.
- 4. Simon Haykin& Michael Moher, Modern Wireless Communications, Pearson Education, New Delhi, First Edition, 2007.

Mapping of COs with POs and PSOs							
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	3	-	3	3	-		
CO2	3	-	3	3	-		
CO3	3	-	3	3	-		
CO4	3	-	3	3	-		
CO5	3	-	3	3	-		
Avg.	3	-	3	3	-		
1 - Low, 2 - Medi	um, 3 - High						

				Č,		
MA24T17	APPLIED MATHEMATICS			Т	Р	С
		FC	3	1	0	4
	(Common to CS, EST and PED)					
PREREQUISIT	Е:					
	ave the strong foundation in mathematical concepts in ics, familiarity with Mathematical modeling and Num	•				bability
OBJECTIVES:						
 To ena implem To prov To deve To acq 	p students to apply matrix decomposition methods. ble students to translate real-world problems into l ent solutions effectively. vide insights into methods to analyze discrete and cont elop the ability to analyze the basic components and be uire the skills to apply and formulate to solve bou	inuous rando ehavior of qu	m va euing	riabl g sys	es. tems	
differer UNIT - I	differential equations.					
	ons – The Cholesky decomposition – QR factorization ion – Toeplitz matrices and some applications.	– Least squa	ires r	netho	od – S	Singula
UNIT - II	LINEAR PROGRAMMING PROBLEMS			(9 + 3)		
Formulation of Ll – Dual Simplex n	PP – Graphical Method – Simplex Method – Big M Method.	ethod – Two I	Phase	Sin	ples	Method
UNIT - III	ONE-DIMENSIONAL RANDOM VARIABLE				(9 -	+ 3)
and probability d	Random Variable – Discrete and continuous random V lensity function – Expectations – Moments – Mom mial, Poisson, Uniform, Exponential and Normal distr	ent generatin				
UNIT - IV	QUEUING MODELS				(9 -	+ 3)
Server with infin	Queuing Models – Kendall's notations – Little's form the capacity – $(M/M/C)$: $(\infty/FIFO)$ Multi Server Server with finite capacity – $(M/M/C)$: $(N/FIFO)$ Mu	with infinite	capa	acity	- (1	M/M/1)
UNIT - V	COMPUTATIONAL METHODS IN ENGINEE	RING			(9 -	+ 3)
Liebmann's Iterat	problems for ODE – Classification of PDE – Solution of on Process – Solution of Heat Conduction Equation by on Implicit Scheme – Solution of Wave Equation.	-			-	
	LECTURE: 45, TUTO	RIAL: 15, TO	OTA	L: 6	0 PE	RIODS

COs		Course Outcome				nitive Level			
CO1:		Apply and decompose	e matrices effective	ely.		Apply			
CO2: CO3: CO4:		Create models and fo	rmulate linear prog	ramming problems.		Analyze			
		Analyze and work wi	th a single random	variable.		Analyze			
		Analyze and interpr	et the key featur	res of various queu	ing	Analyze			
С	05:	Set up and solve bour	ndary value probler	ns for ODEs.		Apply			
ГЕЗ	XT BOO	KS							
1.		n R. A. and Gupta C. B., 'Miller & Freund's Probability and Statistics for Engineers', Pearson ion, Eighth Edition, 2015.							
2.	Grewal	, B.S., 'Higher Engin	eering Mathematic	s', Khanna Publishers	, Forty-Fourth	Edition, 2017.			
RE	FERENC	CES:							
1.	Bronson Edition		tline Series of M	atrix Operations', M	cGraw-Hill E	ducation, Secor			
2.	Hamdy	A Taha., 'Operations	research. An intro	duction', Pearson Edi	tion, Tenth Edi	tion, 2017.			
3.		Gross and Carl M. Edition, 2013.	Harris, 'Fundame	entals of Queuing T	heory', John	Wiley and Son			
4.	Kandas		y and Gunavathy, 1	K., 'Numerical Metho	ods', S. Chand	& Company Lto			
			Manning of COs y	vith POs and PSOs					
	COs/ POs		PO2	PO3	PSO1	PSO2			
0		3	_	-	3	-			
C	CO1	-			-				
C	CO1 CO2	3	-	-	3	-			
C			-		3				
C	CO2	3		- - -		-			
	CO2 CO3	3	- - - -	- - -	3	- - - -			

CU24P11

ANTENNAS AND RADIATING SYSTEMS LABORATORY

PREREQUISITE:

Students should have a fundamental knowledge in antennas, about different types of antennas, radiation patterns, impedance matching, and antenna arrays. Understanding of Maxwell's equations, wave propagation, and basic electromagnetic concepts is essential.

OBJECTIVE:

- To make the students to develop and analyse AM and FM antennas with targeted performance specs.
- To provide knowledge in design and simulate a broadband Yagi-Uda antenna for wide frequency coverage.
- To provide insight in to Design micro strip patch and dipole antennas optimized for mobile applications.
- To explore the design reflector antennas for satellite and TV reception.
- To build design skills in various dipole array configurations to meet specific needs.

List of Experiments:

- 1. Design and Simulate an antenna to receive AM and FM radio
- 2. Design and simulate Yagi-Uda Antenna at very high frequency band
- 3. Design Microstrip patch antenna for mobile applications
- 4. Design and develop Microstrip dipole antenna
- 5. Design reflector antenna for satellite TV reception
- 6. Simulation of a half wave dipole antenna array.
- 7. Study the effect of change in distance between elements of array on radiation pattern of dipole array.
- 8. Study the effect of the variation of phase difference 'beta' between the elements of the array on the radiation pattern of the dipole array.

Total = 45 PERIODS

At the end of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level	
CO1	Design and simulate AM & FM antennas.	Apply	
CO2	Design and simulate Broadband Yagu uda antenna.	Apply	
CO3	Design Microstrip patch antenna and Microstrip dipole for mobile applications.	Apply	
CO4	Design and simulate reflector types of antenna for satellite and TV reception.	Apply	
CO5	Design and simulate dipole Array antenna and its types.	Apply	

- 1. J.D. Krauss, "Antennas for all applications", Fourth Edition, MH publication, 2010
- 2. C. Balanis, "Antenna Theory: Analysis and design", Third Edition, Wiley India, 2009

Mapping of COs with POs and PSOs							
PO1	PO2	PO3	PSO1	PSO2			
3	-	3	3	-			
3	-	3	3	-			
3	-	3	3	-			
3	-	3	3	-			
3	-	3	3	-			
3	-	3	3	-			
	PO1 3 3 3 3 3 3	PO1 PO2 3 - 3 - 3 - 3 - 3 - 3 -	PO1 PO2 PO3 3 - 3 3 - 3 3 - 3 3 - 3 3 - 3 3 - 3	PO1 PO2 PO3 PSO1 3 - 3 3 3 - 3 3 3 - 3 3 3 - 3 3 3 - 3 3 3 - 3 3 3 - 3 3 3 - 3 3			

CU24D12	ADVANCED COMMUNICATION NETWORKS	Category	L	Т	Р	С
CU24P12	LABORATORY	PCC	0	0	4	2

PREREQUISITE:

Students should have familiar in communication systems fundamentals of wireless communication, Digital Communication, Network protocols, Electromagnetics, Software defined radio.

OBJECTIVES:

- To make the students apply various network commands and configure network files to manage and troubleshoot network settings.
- To delve into build expertise in sub-netting and implement routing mechanisms to efficiently manage and direct network traffic.
- To develop the students to show proficiency in basic computer network protocols and their functions within a network.
- To apply networking protocols to the design and implementation of functional and efficient network systems.
- To Explore the concepts of admission control, effective bandwidth, and the architecture of Differentiated Services.

List of Experiments:

- 1. Study of Networking Commands (Ping, Tracert, TELNET, nslookup, net stat, ARP, RARP) and Network Configuration Files.
- 2. Linux Network Configuration.
 - a. Configuring NIC's IP Address.
 - b. Determining IP Address and MAC Address using if-config command.
 - c. Changing IP Address using if-config.
 - d. Static IP Address and Configuration by Editing.
 - e. Determining IP Address using DHCP.
 - f. Configuring Hostname in /etc/hosts file.
- 3. Design TCP iterative Client and Server application to reverse the given input sentence.
- 4. Design a TCP concurrent Server to convert a given text in to upper case using multiplexing system call "select".
- 5. Design UDP Client Server to transfer a file.
- 6. Configure a mail server for IMAP/POP protocols and write a simple SMTP client in C/C++/Java Client to send and receive mails.

7. Configure FTP Server on a Linux/ Windows machine using a FTP client/ SFTP client characterize file transfer rate for a cluster of small files 100k each and a video file of 700mb. Use a TFTP client and repeat the experiment.

8. Signaling and QoS of labeled paths using RSVP in MPLS.

9. Find shortest paths through provider network for RSVP and BGP.

Total = 45 PERIODS

At the end of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Apply different types of network commands and configure files.	Apply
CO2	Build the skills of sub-netting and routing mechanisms.	Apply
CO3	Demonstrate basic protocols of computer networks.	Apply
CO4	Apply the protocols to design and implementation of network.	Apply
CO5	Simulate the QoS and Shortest path algorithms to estimate network parameters	Apply

- 1. David Tse and Pramod Viswanath, Fundamentals of wireless communications, Cambridge University Press, First Edition, 2012.
- 2. Andrea Goldsmith, Wireless Communications, Cambridge University Press, First Edition, 2007.

	Ν	Iapping of COs v	vith POs and PSC)s	
COs/ POs	PO1	PO2	PO3	PSO1	PSO2
CO1	3	-	3	3	-
CO2	3	-	3	3	-
CO3	3	-	3	3	-
CO4	3	-	3	3	-
CO5	3	-	3	3	-
Avg.	3	-	3	3	-
1 - Low, 2 - Medi	um, 3 - High				

.E Communication	Systems	Regulations 2024				
CU24T21	RESEARCH METHODOLOGY AND IPR	Category	gory L		Р	С
0024121	KESEAKCH METHODOLOGI AND II K	РСС	3	0	0	3

PREREOUISITE:

Students should have a basic understanding of research methodologies and techniques, including problem identification, data collection, and analysis. Familiarity with academic writing and literature review practices is also essential. Knowledge of intellectual property concepts and patenting processes will be beneficial. Additionally, students should be acquainted with the fundamentals of intellectual property rights, including patents, copyrights, and trademarks, as well as current issues and advancements in this field.

OBJECTIVES:

- To make the student to understand how to define and identify research problems, including their • sources, characteristics.
- To develop skills in writing effective research papers, including conducting literature reviews, avoiding plagiarism, adhering to research ethics, and creating well-structured research proposals.
- To provide the students to gain knowledge about various forms of intellectual property, such as patents, • designs, trademarks, and copyrights.
- To disseminate the scope of patent rights, the processes of licensing, technology transfer and the use ٠ of patent information.
- To make the students to stay updated on recent developments in intellectual property rights, including • advancements in patent administration, IPR issues related to biological systems and computer software.

UNIT - I **INTRODUCTION**

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations.

())	UNIT - II	RESEARCH PAPER WRITING	(9)
	UNIT - H	RESEARCH PAPER WRITING	(9)

Effective literature studies approaches, analysis Plagiarism, Research ethics, Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

UNIT - III INTELLECTUAL PROPERTY RIGHTS	(9)
---	-----

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

UNIT - IV PATENT RIGHTS

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications

UNIT - V RECENT ADVANCEMENTS IN IPR	
-------------------------------------	--

(9)

(9)

(9)

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

Total (L: 45) = 45 PERIODS

At the end of the course, the students will be able to:

Course Description		Bloom's Taxonomy Level
CO1 Effectively define and identify research problems, understanding their sources and characteristics.		Understand
CO2	Demonstrate proficiency in writing research papers, conducting literature reviews, and creating well-structured research proposals while adhering to ethical standards and avoiding plagiarism.	Understand
CO3	Comprehensive understanding of various forms of intellectual property, including patents, designs, trademarks, and copyrights.	Understand
CO4	Interpret patent rights, manage licensing and technology transfer, utilize patent information and databases, and understand the concept of geographical indications.	Understand
CO5	Describe the latest advancements in intellectual property rights, including developments in patent systems, IPR issues related to new technologies, and case studies on traditional knowledge.	Understand

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students", Juta & Company, Reprint 2007.
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction", Juta Academic, 2014.
- 3. Ranjit Kumar, "Research Methodology: A Step by Step Guide for beginners", Pearson Education, USA, 2005.
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd, 2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.

	Mapping of COs with POs and PSOs							
COs/ POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	-	3	3	3	-			
CO2	-	3	3	3	-			
CO3	-	3	3	3	-			
CO4	-	3	3	3	-			
CO5	-	3	3	3	-			
Avg.	-	3	3	3	-			
1 - Low, 2 - Med	ium, 3 - High							

CU24T22	MODERN DIGITAL COMMUNICATION	Category	L	Т	Р	С
0024122	TECHNIQUES	PEC	3	0	0	3

PREREQUISITE:

Students should have a solid understanding of basic mathematics, including calculus, which is essential for understanding the principles of signal analysis and system design. In addition, a fundamental understanding of digital signal processing techniques such as Fourier transforms and filtering is essential. Basic concepts in digital and analog communication, including modulation and noise are also critical for grasping modern communication methods.

OBJECTIVES:

- To compare the performance of coherent and non-coherent receivers in terms of error rates, bandwidth efficiency, and complexity and also analyze how each receivers performs under Rayleigh and Rician channel conditions.
- To explore different equalization algorithms to reduce ISI in digital communication receives.
- To equip the students to perform various Shannon's channel codes and block codes in digital communication.
- To develop skills in designing various convolution coding algorithms and analyzing its performance.
- To make the students to gain insight into the design and optimization of modern communication systems.

UNIT - I	COHERENT AND NON-COHERENT COMMUNICATION

Coherent receivers – Optimum receivers in WGN – IQ modulation & demodulation – QAM modulation and demodulation - Non-coherent receivers in random phase channels; MFSK receivers – Rayleigh and Rician channels – Partially coherent receivers – DPSK; M-PSK; M-DPSK-BER Performance Analysis. Carrier Synchronization Bit synchronization.

UNIT - II EQUALIZATION TECHNIQUES

Band Limited Channels - ISI – Nyquist Criterion - Controlled ISI-Partial Response signals- Equalization algorithms – Linear equalizer – Decision feedback equalization – Adaptive Equalization algorithms.

UNIT - III BLOCK CODES

Architecture and performance – Binary block codes; – Shannon's channel coding theorem; Channel capacity; Matched filter; Concepts of Spread spectrum communication – Coded BPSK and DPSK demodulators– Linear block codes; Hamming; Golay; Cyclic; BCH ; Reed – Solomon codes. Space time block codes.

UNIT - IV CONVOLUTIONAL CODES

Representation of codes using Polynomial, State diagram, Tree diagram, and Trellis diagram –Decoding techniques using Maximum likelihood, Viterbi algorithm, Sequential and Threshold methods – Error probability performance for BPSK and Viterbi algorithm, Turbo Coding.

UNIT - V MULTICARRIER AND MULTIUSER COMMUNICATIONS

(9)

(9)

(9)

(9)

(9)

Single vs Multicarrier modulation, Orthogonal Frequency Division Multiplexing (OFDM), Modulation and demodulation in an OFDM system, An FFT algorithmic implementation of an OFDM system, Bit and power allocation in multicarrier modulation, Peak-to-average ratio in multicarrier modulation. Introduction to CDMA systems, multiuser detection in CDMA systems – optimum multiuser receiver, suboptimum detectors, successive interference cancellation.

Total (L: 45) = 45 PERIODS

At the end of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Analyze and compare the performance of coherent and non-coherent receivers under Rayleigh and Rician channel conditions.	Analyze
CO2	Proficient in applying and comparing various equalization algorithms to reduce ISI in digital communication systems.	Apply
CO3	Assess the effectiveness of different block codes in improving communication reliability and error resilience.	Apply
CO4	Analyze the performance of convolutional codes using metrics such as the Viterbi algorithm for decoding.	Analyze
CO5	Design and optimization of modern communication systems like OFDM and CDMA.	Apply

- 1. John G. Proakis and Masoud Salehi, "Digital Communication", McGraw Hill Publication, Fifth Edition, 2014.
- 2. Simon Haykin, "Digital Communication Systems", John Wiley and sons, First Edition, 2014.
- 3. Bernard Sklar and Pabitra Kumar Ray, "Digital Communications Fundamentals & Applications", Pearson Education, Second Edition, 2009.
- 4. Lathi B P and Zhi Ding, "Modern Digital and Analog Communication Systems", Oxford University Press, First Edition, 2011.
- 5. Richard Van Nee & Ramjee Prasad, "OFDM for Multimedia Communications", Artech House Publication, First Edition, 2001.

	Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	3	-	3	3	-		
CO2	3	-	3	3	-		
CO3	3	-	3	3	-		
CO4	3	-	3	3	-		
CO5	3	-	3	3	-		
Avg.	3	-	3	3	-		
1 - Low, 2 - Med	ium, 3 - High	•	•				

M.E.	- Communication	Systems	Regulations 2024					
	CU24T23 ADVANCED DIGITAL SIGNAL PROCESSING	Category	L	Т	Р	C		
	024125	AD VANCED DIGITAL SIGNAL I ROCESSING	PCC	3	1	0	4	

PREREQUISITE:

Students should have a strong foundation in basic probability and statistics, including random variables and covariance. They should be familiar with discrete-time signal processing concepts such as convolution and Fourier transforms. Knowledge of linear algebra, including matrix operations and solving linear systems, is essential. A basic understanding of digital signal processing, including the Discrete Fourier Transform and sampling theory, is also required. Additionally, familiarity with estimation theory and practical programming skills in tools like MATLAB.

OBJECTIVES:

- To make the students to analyze discrete random processes, apply Parseval's theorem and filter white noise using power spectral density and spectral factorization.
- To Estimate spectra from finite signals using non-parametric and parametric methods and evaluate the performance of different spectral estimators.
- Gain skills in linear prediction, solve normal equations with Levinson recursion, and apply Wiener filters and Kalman filters for filtering and prediction.
- Design and implement adaptive FIR and RLS filters, and apply adaptive algorithms for channel equalization, echo cancellation, and noise cancellation.
- To provide the insights to implement sampling rate conversion techniques, including interpolation and decimation for subband coding and wavelet transforms.

UNIT - I	DISCRETE RANDOM SIGNAL PROCESSING	(9)

Discrete random processes - Ensemble averages - Stationary processes: Bias and Estimation, Auto covariance, Autocorrelation - Parseval's theorem - Wiener Khintchine relation - White noise - Power spectral density, Spectral factorization Theorem - Filtering random processes - Low pass filtering of white noise.

UNIT - II SPECTRUM ESTIMATION (9)

Estimation of spectra from finite duration signals -Non-Parametric methods: Correlation method -Periodogram estimator - Performance analysis of estimators - Unbiased, Consistent estimators - Modified periodogram -Bartlett and Welch methods - Blackman - Tukey method - Parametric methods: AR, MA and ARMA model based spectral estimation, Yule- Walker equations-Solutions using Durbin's algorithm.

UNIT - III	LINEAR ESTIMATION AND PREDICTION	(9)
------------	----------------------------------	-----

(9)

Linear prediction - Forward and backward predictions, Solutions of the normal equations - Levinson recursion algorithms – Least mean squared error criterion – Wiener filter for filtering and prediction – FIR Wiener filter and IIR Wiener filters – Discrete Kalman filter.

UNIT - IV **ADAPTIVE FILTERS**

FIR adaptive filters – Adaptive filter based on steepest descent method – Widrow Hoff LMS adaptive algorithm -Normalized LMS - Adaptive channel equalization - Adaptive echo cancellation-Adaptive noise cancellation -Adaptive recursive filters - RLS adaptive filters - Exponentially weighted RLS sliding window RLS.

UNIT - V MULTIRATE DIGITAL SIGNAL PROCESSING

Regulations 2024

(9)

Mathematical description of change of sampling rate – Interpolation and decimation – Decimation by an integer factor – Interpolation by an integer factor – Sampling rate conversion by a rational factor–Filter implementation for sampling rate conversion – Direct form FIR structures – Polyphase filter structures-Time-variant structures –Multistage implementation of multirate system – Application to sub band coding -Wavelet transform and filter bank implementation of wavelet expansion of signals.

Total (L: 45) = 45 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Analyze and filter discrete random processes, and compute auto covariance and autocorrelation.	Analyze
CO2	Estimate power spectra accurately using various methods and assess performance.	Apply
CO3	Implement linear prediction and Wiener filtering techniques and apply discrete Kalman filtering.	Apply
CO4	Design adaptive filters, apply LMS and RLS algorithms, and solve practical filtering problems.	Apply
CO5	Apply sampling rate conversion techniques effectively and implement multirate DSP systems, including wavelet transforms.	Apply

REFERENCES:

- 1. Monson H. Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley & Sons, Inc., First Edition, 2008
- 2. John G. Proakis, Dimitris G. Manolakis, "Digital Signal Processing", Pearson Education, Fourth Edition, 2007.
- 3. Dimitris G. Manolakis, Vinay K. Ingle, Stephen M. Kogon, "Statistical and Adaptive Signal Processing", Artech House Publishers, First Edition, 2005.
- 4. John G. Proakis, Charles M. Rader, Fuyun Ling, Marc Moonen, Ian K. Proudler, Chrysostomos L. Nikias, "Algorithms for Statistical Signal Processing", Prentice Hall, First Edition, 2002.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	3	-	-	3	-	
CO2	3	-	-	3	-	
CO3	3	-	-	3	-	
CO4	3	-	-	3	-	
CO5	3	-	-	3	-	
Avg.	3	-	-	3	-	
1 - Low, 2 - Med	lium, 3 - High					

K.S.R. College of Engineering

CI 12 4TT2 4		Category	L	Т	Р	С
CU24T24	DIGITAL COMMUNICATION RECEIVERS	PCC 3		0	0	3
	TE: have fundamental knowledge in communication theory, sigses, Modulation Techniques, Communication System Arch		-		-	and
OBJECTIVES	•					
To exploreTo exposeTo equip the	the students to understand the basic principles of digital con- the concept of optimization process in receivers for AWG the students to analyze the performance of receivers for fac ne students to perform various techniques used in synchron o skills in designing of adaptive equalization algorithms.	N channel. ling channels.		iques	š.	
UNIT - I	REVIEW OF DIGITAL COMMUNICATION TECH	NIQUES			(9)	
	band pass communication; Signal space representation, lir d spectral characteristics of digital modulation.	ear and nonli	near	modı	ılatic	'n
UNIT - II OPTIMUM RECEIVERS FOR AWGN CHANNEL (9)						
	nodulator, matched filter, maximum likelihood sequence of - ary orthogonal signals, envelop detectors for M-ary and c					or
UNIT - III	RECEIVERS FOR FADING CHANNELS				(9)	
	n of fading multiple channels, statistical models, slow fadir que, RAKE demodulator, coded waveform for fading chanr	• •	selec	tive	fadin	g,
UNIT - IV	SYNCHRONIZATION TECHNIQUES				(9)	
	al synchronization, carrier phase estimation – PLL, Decisior imum likelihood and non-decision directed timing estimation				timi	ng
UNIT - V	ADAPTIVE EQUALIZATION (9)					
00	orithm, LMS algorithm, adaptive decision–feedback equaliz Kalman algorithm, blind equalizers and stochastic gradient	•	zatio	n of '	Trelli	is
		Total (L: 4	5) = 4	15 PI	ERIC	DS

At the end of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Describe the basic principles of digital communication techniques.	Understand
CO2	Apply the concept of optimization process in receivers for AWGN channel.	Apply
CO3	Analyze the performance of receivers for Fading channel.	Analyze
CO4	Apply various techniques used in synchronization process.	Apply
CO5	Design adaptive equalization algorithms to satisfy the evolving demands in digital communication	Apply

- 1 K.Hein rich Meyer, Mare Moeneclacy, Stefan.A.Fechtel, Digital Communication Receivers, Vol I & Vol II, John Wiley, First Edition, 1997.
- 2 John.G.Proakis, Digital communication, McGraw-Hill, Fourth Edition, 2001.
- 3 E.A.Lee and D.G.Messerschmitt, Digital communication, Allied Publishers, Second Edition, 1994.
- 4 Simon Marvin, Digital communication over fading channel; An unified approach to performance Analysis, John Wiley, First Edition, 2000.
- 5 N.Benuveruto & G.Cherubini, Algorithms for Communication Systems and their Applications, Wiley, First Edition, 2002.

	Mapping of COs with POs and PSOs							
COs/ POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	3	-	3	3	-			
CO2	3	-	3	3	-			
CO3	3	-	3	3	-			
CO4	3	-	3	3	-			
CO5	3	-	3	3	-			
Avg.	3	-	3	3	-			

Regulations 2024

Category Р С PCC 0 2 4 0

PREREQUISITE:

Students should have a foundational understanding of signal processing principles, including discrete-time signals and systems, as well as basic knowledge of linear algebra, such as matrix operations and eigenvalues. Familiarity with digital filter design, including Butterworth and Chebyshev filters, is essential. Additionally, students should be comfortable with transforms and algorithms, particularly the Fast Fourier Transform (FFT) and convolution, as well as the Z-transform for analyzing and designing digital systems.

OBJECTIVES:

- To make the students to Compute auto-correlation and cross-correlation functions to analyze and interpret signal relationships and properties.
- To develop the students to apply the Routh-Hurwitz criterion to assess the stability of linear time-• invariant systems.
- To provide the knowledge on designing a Butterworth and Chebyshev filters for various signal • processing applications.
- To Utilize FFT for frequency analysis and inverse Z-transform for time-domain signal processing.
- To provide insights to Implement and optimize cascade digital IIR filters, and apply decimation and interpolation techniques.

LIST OF EXPERIMENTS:

- 1. Basic signal representation
- 2. Auto Correlation and Cross Correlation
- 3. Stability Using Routh Hurwitz Criteria
- 4. Sampling FFT of Input Sequence
- 5. Butterworth Lowpass and High pass Filter Design
- 6. Chebychev Type I, Type II Filter
- 7. Cascade Digital IIR Filter Realization
- 8. Decimation and Interpolation Using Rationale Factors
- 9. Convolution and M Fold Decimation
- 10. Normal Equation Using Levinson Durbin
- 11. Estimation of PSD
- 12. Inverse Z Transform

Total (P: 45) = 45 PERIODS

At the end of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Compute and analyze auto-correlation and cross-correlation functions to understand signal behavior.	Analyze
CO2	Determine system stability using the Routh-Hurwitz criterion and interpret its implications on system performance.	Apply
CO3	Design and evaluate Butterworth and Chebyshev filters, demonstrating the ability to meet specific frequency response criteria.	Apply
CO4	Perform FFT sampling, convolution, and apply decimation and interpolation techniques effectively.	Apply
CO5	Use the Levinson-Durbin algorithm for parameter estimation and apply inverse Z-transform for digital filter analysis and design	Apply

- 1. Monson H. Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley & Sons, Inc., First Edition, 2008
- 2. John G. Proakis, Dimitris G. Manolakis, "Digital Signal Processing", Pearson Education, Fourth Edition, 2007.

Mapping of COs with POs and PSOs					
COs/ POs	PO1	PO2	PO3	PSO1	PSO2
CO1	3	-	-	3	-
CO2	3	-	-	3	-
CO3	3	-	-	3	-
CO4	3	-	-	3	-
CO5	3	-	-	3	-
Avg.	3	-	-	3	-

PROFESSIONAL ELECTIVE COURSES

CU24E01	DSP PROCESSOR ARCHITECTURE AND	Category	L	Т	Р	С
	PROGRAMMING	PEC	3	0	0	3

PREREQUISITE:

Students should have a foundational understanding of digital signal processing concepts, including discretetime signals, Fourier transforms, and filtering techniques. They should also be familiar with digital electronics and computer architecture, as well as possess programming skills in assembly language and highlevel languages such as C or C++. A solid grasp of mathematical principles, signal transformations and filter design. Additionally, basic knowledge of microprocessors and microcontrollers will help students understand how DSP processors integrate into broader embedded systems and microprocessor-based designs.

OBJECTIVES:

- To make the students to comprehend essential DSP concepts including basic operations, bus structures, memory access and on-chip peripherals, to understand their role in efficient signal processing.
- To incorporate the students to develop assembly language syntax and addressing modes of the TMS320C5X processor.
- To equip the students to examine the architecture, data formats and addressing modes of the DSP processor.
- To build up the skills to analyze the architecture and addressing modes of the of DSP processors.
- To explore to investigate the architectures of advanced DSP processors, compare the features and capabilities of different DSP families.

UNIT - I	FUNDAMENTALS OF PROGRAMMABLE DSPs	(9)
UNIT - I	FUNDAMENTALS OF PROGRAMMABLE DSPs	(9)

Multiplier and multiplier accumulator – Modified bus structures and memory access in PDSPs– Multiple access memory – Multi-port memory – VLIW architecture- Pipelining –Special addressing modes in P-DSPs – On chip peripherals.

UNIT - II	TMS320C5X PROCESSOR -Fixed	(9)
-----------	----------------------------	-----

Architecture – Assembly language syntax - Addressing modes – Assembly language Instructions - Pipeline structure, Operation – Block diagram of DSP starter kit – Application programs for processing real time signals.

UNIT - III	TMS320C3X PROCESSOR -Floating	(9)
------------	-------------------------------	-----

Architecture – Data formats - Addressing modes – Groups of addressing modes- Instruction sets - Operation – Block diagram of DSP starter kit – Application programs for processing real time signals - Generating and finding the sum of series, Convolution of two sequences, Filter design.

UNIT - IV ADSP PROCESSORS

Architecture of ADSP-21XX and ADSP-210XX series of DSP processors- Addressing modes and assembly language instructions – Application programs –Filter design, FFT calculation.

UNIT - V ADVANCED PROCESSORS

Architecture of TMS320C54X: Pipe line operation, Code composer studio – Architecture of TMS320C6X - Architecture of Motorola DSP563XX – Comparison of the features of DSP family processors.

Total (L: 45) = 45 PERIODS

(9)

(9)

At the end of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Describe DSP basic operations, bus structures, memory access, and on-chip peripherals, and their impact on signal processing efficiency.	Understand
CO2	Write assembly language syntax and addressing modes for the TMS320C5X processor.	Apply
CO3	Analyze the architecture, data formats and addressing modes of DSP processors.	Analyze
CO4	Compare and analyse the architecture with addressing modes of various DSP processors.	Analyze
CO5	Investigate and compare the features and capabilities of advanced DSP processor families.	Analyze

- 1 Venkataramani B. and Bhaskar M., "Digital Signal Processors Architecture, Programming and Applications", Tata McGraw Hill Publishing Company Limited, Second Edition, 2011.
- 2 Sen.M.Kuo, Woon–Seng S.Gan, "Digital Signal Processors: Architecture, Implementation and Applications", Pearson, First Edition, 2012.
- 3 Avtar Singh and S. Srinivasan, "Digital Signal Processing Implementations using DSP Microprocessors with Examples from TMS320C54xx", Cengage Learning India Private Limited, 2012.
- 4 User guides Texas Instrumentation, Analog Devices and Motorola.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	3	-	2	3	-	
CO2	3	-	2	3	-	
CO3	3	-	2	3	-	
CO4	3	-	2	3	-	
CO5	3	-	2	3	-	
Avg.	3	-	2	3	-	

		Category	L	Т	Р	C
CU24E02	COGNITIVE RADIO NETWORK	PEC	3	0	0	3
principles (mod defined radio (S OBJECTIVES • To introdu functionalit	have familiar in communication systems, wireless network ulation, coding, signal processing), network protocols, spec DR) and fundamental optimization and game theory concept	ctrum mana, s. eed for cogn	geme	nt, s radi	oftwa os, tl	are.
communicaTo provideTo dissemi and learnin	ation based on two spectrum sharing business models. the insight into design the cognitive radio network architecture nate understand the basic concept of dynamic spectrum acce g algorithms. e various applications and advanced features of cognitive radio	ures and pro ess radio reso	tocol	s.		
UNIT - I	COGNITIVE RADIO TECHNOLOGY				(9)	
	Cognitive Radios: Digital dividend, cognitive radio (CR) arch platform for Cognitive Radio – Hardware and Software Arch		ction	s of c	ogni	tive
UNIT - II	SPECTRUM SENSING AND SPECTRUM SHARING				(9)	
Tradeoffs in spe Non-Real-Time	ng-detection of spectrum holes (TVWS), Primary user detector ctrum sensing. Unlicensed and Licensed Spectrum Sharing, S SSA – Real-Time SSA-Models of Dynamic Spectrum Actor - spectrum trading.	Secondary S	Spect	rum	Acce	ess -
UNIT - III	COGNITIVE RADIO NETWORK ARCHITECTURES PROTOCOLS	S AND			(9)	
-	Network Architectures-Topology Aware CRN Architecture- n TV bands- IEEE 802.22 Standard-IEEE 1900 standards.	Cognitive ra	adio f	or br	oadb	and
UNIT - IV	DYNAMIC SPECTRUM				(9)	
• •	um Access and Management: Spectrum broker, cognitive r m access, distributed dynamic spectrum access, learning alg					zed
UNIT - V	RESEARCH CHALLENGES AND APPLICATIONS				(9)	
in Cognitive rad	chniques of Dynamic Spectrum Allocation, Security issues in io, cross layer design issues in cognitive radio networks, pul gnitive radio for Internet of Things-Vehicular communication	blic safety a	nd co	gniti	ve ra	-
		Total (L: 45	5) = 4	5 PE	ERIO	D

At the end of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Articulate the need for cognitive radios, functionality and their hardware and software architectures.	Understand
CO2	Employ technologies for efficient utilization of TV White Space (TVWS) and analyze spectrum sharing business models.	Analyze
CO3	Access cognitive radio network architectures and protocols, including their design and implementation.	Apply
CO4	Utilize dynamic spectrum access techniques, radio resource management strategies and learning algorithms.	Understand
CO5	Describe the advanced features and applications of cognitive radios in various contexts.	Understand

- 1. Ekram Hossain, Dusit Niyato, Zhu Han, "Dynamic Spectrum Access and Management in Cognitive Radio Networks", Cambridge University Press, First Edition, 2009.
- 2. Kwang-Cheng Chen, Ramjee Prasad, "Cognitive radio networks", John Wiley & Sons Ltd., First Edition, 2009.
- 3. Bruce A Fette, "Cognitive Radio Technology", Elsevier publication, Burlington, First Edition, 2009.
- 4. Huseyin Arslan, "Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems", Springer, Verlag, First Edition, 2007.
- 5. Francisco Rodrigo Porto Cavalcanti, Soren Andersson, "Optimizing Wireless Communication Systems", Springer, Verlag, First Edition, 2009.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	3	-	3	3	-	
CO2	3	-	3	3	-	
CO3	3	-	3	3	-	
CO4	3	-	3	3	-	
CO5	3	-	3	3	-	
Avg.	3	-	3	3	-	

CU24E03	OPTICAL COMMUNICATION AND	Category	L	Т	Р	C
	NETWORKING	PEC	3	0	0	3

PREREQUISITE:

A solid understanding of basic mathematics, including calculus and linear algebra, is required for analyzing signal processing, network performance. Students also need basic knowledge of optical fibers, including their properties, types and fundamental operation principles is essential. Familiarity with fundamental concepts in communication systems, such as modulation, signal processing, and data transmission, is necessary. An understanding of basic networking concepts and protocols is important for comprehending network design and functionality.

OBJECTIVES:

- To apply the principles of optical system components effectively in the design and implementation of optical networks, ensuring optimized performance and reliability.
- To apply the knowledge and skills to implement various optical network architectures in order to meet specific communication needs.
- To perform various wavelength routing networks for effective managing wavelength resources.
- To optimize packet switching mechanisms and access network architectures, focusing on efficient data transmission, network performance, and resource management.
- To implement effective network management strategies and survivability techniques.

Optical system components: Couplers, Isolators and circulators, Multiplexers and filters, Optical amplifiers, switches wavelength converters –Transmission system engineering system model power penalty – Transmitter, receiver, optical amplifiers, cross talk, dispersion, Wave length stabilization: Overall design considerations.

UNIT – II	OPTICAL NETWORK ARCHITECTURES	(9)
-----------	-------------------------------	-----

Introduction to optical networks; SONET/SDH, Metropolitan Area Networks, Layered architecture; Broad cast and select Networks– Topologies, Media Access Control protocols and test beds.

UNIT – III	WAVELENGTH ROUTING NETWORKS	(9)

WDM network elements: WDM network design – Cost tradeoffs, Routing and wavelength assignment, Virtual topology design, Wavelength routing test beds, Architectural variations.

UNIT – IV PACKET SWITCHING AND ACCESS NETWORKS

(9)

(9)

Photonic packet switching: OTDM, Multiplexing and De-multiplexing, Synchronization, Broadcast OTDM networks, Switch based networks – Access Networks – Network architecture overview, Future access networks, Optical access network architectures and OTDM networks.

UNIT – V	NETWORK MANAGEMENT AND SURVIVABILITY	(9)
----------	--------------------------------------	-----

Control and Management: Network management functions, Configuration management, Performance management, Fault management, Optical safety, Service interface.

At the end of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Apply the principles of optical system components in the design and implementation of optical networks.	Apply
CO2	Implement various optical network architectures in order to meet specific communication requirements and optimize network performance.	Apply
CO3	Apply different multiplexing techniques in optical networks to enhance data transmission efficiency and optimize bandwidth utilization.	Apply
CO4	Analyze different accessing techniques by comparing their efficiency, scalability, and suitability for various network scenarios to identify the most appropriate technique for specific use cases.	Analyze
CO5	Apply network management strategies and survivability techniques to ensure continuous operation and quick recovery of optical networks during failures.	Apply

- 1 Max Ming-Kang Liu, Principles and Applications of Optical Communication, Tata McGraw Hill Education Pvt., Ltd., First Edition 2010.
- 2 Rajiv Ramaswami and Kumar N.Sivarajan, Optical Networks: A Practical Perspective, Harcourt Asia Pvt.Ltd, Second Edition, 2006.
- 3 C.Siva Ram Moorthy and Mohan Gurusamy, WDM Optical Networks: Concept, Design and Algorithms, Prentice HallofIndia, Second Edition, 2002.
- 4 Thomas E. Stern, Georgios Ellinas, Krishna Bala, "Multi wavelength Optical Networks -Architecture, Design and control ", Cambridge University Press, Second Edition, 2009.
- 5 Biswanath Mukherjee, Optical WDM Networks, Springer, First Edition, 2006.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	3	-	3	3	-	
CO2	3	-	3	3	-	
CO3	3	-	3	3	-	
CO4	3	-	3	3	-	
CO5	3	-	3	3	-	
Avg.	3	-	3	3	-	

CU24E04	WIRELESS SENSOR NETWORKS	Category	L	Т	Р	С
CU24EU4	WIRELESS SENSOR NET WORKS	PEC	3	0	0	3
PREREQUISI	TE:					
	a basic knowledge in networking, Mobile Networks wirele munication Networks.	ess Networks, (Comj	outer	netw	vork
OBJECTIVES	:					
• To make s	tudents to understand the basics of wireless sensor network	ks.				
To provide	e the design principles of architecture and placement strate	gies of Sensors				
• To equip the	he students to perform various protocols.					
• To make the	he students to establish WSN infrastructure.					
• To introdu	ce the procedure to analyze network platforms and tools.					
UNIT - I	OVERVIEW OF WIRELESS SENSOR NETWOR	RKS			(9)	
UNIT - II	ARCHITECTURES				(9)	
UNIT - II	ARCHITECTURES				(9)	
Single node Arc and execution of	chitecture – Hardware components, Energy consumption of environments, Network architecture – Sensor network so		-	-	syst	
Single node Arc and execution of	hitecture – Hardware components, Energy consumption of		-	-	syst	
Single node Arc and execution of	chitecture – Hardware components, Energy consumption of environments, Network architecture – Sensor network so		-	-	syst	
Single node Arc and execution of figures of merit UNIT - III Physical layer a duty cycle proto	chitecture – Hardware components, Energy consumption of environments, Network architecture – Sensor network so , Gate way concepts. NETWORKING OF SENSORS and transceiver design considerations, MAC protocols fo cols and wakeup concepts- S-MAC, The mediation device me management, Assignment of MAC addresses, Routir	r wireless sens	sor no	etwor	systoals (9)	and Lov
Single node Arc and execution of figures of merit UNIT - III Physical layer a duty cycle proto Address and na	chitecture – Hardware components, Energy consumption of environments, Network architecture – Sensor network so , Gate way concepts. NETWORKING OF SENSORS and transceiver design considerations, MAC protocols fo cols and wakeup concepts- S-MAC, The mediation device me management, Assignment of MAC addresses, Routir	r wireless sens	sor no	etwor	systoals (9)	and Lov
Single node Arc and execution of figures of merit UNIT - III Physical layer a duty cycle proto Address and na routing, Geogra UNIT - IV	chitecture – Hardware components, Energy consumption of environments, Network architecture – Sensor network so , Gate way concepts. NETWORKING OF SENSORS and transceiver design considerations, MAC protocols fo cols and wakeup concepts- S-MAC, The mediation device me management, Assignment of MAC addresses, Routin phic routing.	r wireless sens protocol, Wake ag protocols –	sor no eup ra Ener	etwor adio c gy –	(9) (9) (9) (9) (9)	and Lov pts ien
Single node Arc and execution of figures of merit UNIT - III Physical layer a duty cycle proto Address and na routing, Geogra UNIT - IV	Chitecture – Hardware components, Energy consumption of environments, Network architecture – Sensor network so , Gate way concepts. NETWORKING OF SENSORS and transceiver design considerations, MAC protocols fo cols and wakeup concepts- S-MAC, The mediation device me management, Assignment of MAC addresses, Routir phic routing. INFRASTRUCTURE ESTABLISHMENT ol, Clustering, Time synchronization, Localization and loc	r wireless sens protocol, Wake ag protocols – alization servio	sor no eup ra Ener	etwor adio c gy –	(9) (9) (9) (9) (9)	and Lov pts ien

At the end of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Identify the Challenges and technologies of wireless sensor networks.	Understand
CO2	Design WSN architectures based on its principles and operating systems for simulating environment situations	Apply
CO3	Examine the various concepts for assignment of MAC addresses.	Apply
CO4	Choose the appropriate infrastructure, topology, joint routing and information aggregation for wireless sensor networks	Apply
CO5	Analyze the sensor network platform and tools state-centric programming.	Analyze

- 1 Holger Karl & Andreas Willig, "Protocols and Architectures for Wireless Sensor Networks", John Wiley, 2011.
- 2 Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks An Information Processing Approach", Elsevier, Reprint 2012.
- 3 KazemSohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks -Technology, Protocols, and Applications", John Wiley, Reprint 2012.
- 4 Waltenegus Dargie , Christian Poellabauer, "Fundamentals Of Wireless Sensor Networks Theory And Practice", John Wiley & Sons Publications, 2011.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
C01	3	-	3	3	-	
CO2	3	-	3	3	-	
CO3	3	-	3	3	-	
CO4	3	-	3	3	-	
CO5	3	-	3	3	-	
Avg.	3	-	3	3	-	

DEC 3 0 0 3	CU24E05	MICROSTRIP PATCH ANTENNA DESIGN	Category	L	Т	Р	С
			PEC	3	0	0	3

PREREQUISITE:

Students should have a solid understanding of electromagnetics, including wave propagation and basic antenna theory. Knowledge of circuit theory, including impedance matching and electronic components, is also essential. Familiarity with signal processing concepts, such as frequency analysis, will help in evaluating antenna performance. Additionally, a good grasp of mathematical principles, including algebra and calculus, is necessary for effective problem-solving and design analysis in antenna systems.

OBJECTIVES:

- To develop the students to design patch antenna, feeding techniques and Learn different types of patch antennas with their specific applications.
- To make the students to Gain insight into broadband microstrip antennas by examining how substrate parameters affect bandwidth and design advanced antennas with tunable and dual-frequency capabilities.
- To equip the students to perform various design strategies for planar multiresonators and compact broadband microstrip antennas.
- To explore different polarization techniques including linear, elliptical and circular polarization.
- To develop skills in designing and analyzing microstrip antenna arrays.

UNIT - I	BASICS OF MICROSTRIP PATCH ANTENNA	(0)
UNII - 1	DASICS OF MICKOSIKIP PATCH ANTENNA	(9)

Introduction – Radiation mechanism of micro strip antenna – Feeding techniques – Printed slot antennas - Design considerations of rectangular patch – Substrate selection – Radiation pattern and radiation resistance – Characteristics of patch antennas – Circular disc and ring antennas.

UNIT - II BROADBAND MICROSTRIP ANTENNAS	(9)
---	-----

Introduction – Effects on substrate parameters on Bandwidth – Selection of feeding techniques – Multimoding techniques – Tunable and dual frequency microstrip antennas – Broadband circularly polarized microstrip antennas.

UNIT - III	PLANAR MULTIRESONATORS AND COMPACT BROADBAND	(9)
UNII - III	MICROSTRIP ANTENNAS	(9)

Introduction – Mechanism of parasitic coupling – Gap coupled MSA – radiating and non-radiating edge coupled MSAs – Compact shorted RMSAs – slot loaded RMSAs – U slot RMSAs.

	CIRCULARLY POLARIZED MICROSTRIP ANTENNAS AND	
UNIT - IV	TECHNIQUES	

(9)

Introduction – Linear elliptical and circularly polarized antennas – Dual feed circularly polarized antennas - various types of circularly polarized microstrip antennas – Design Procedure for Single-Feed Circularly Polarized MSAs - Bandwidth enhancement techniques.

Parallel and series feed systems – Mutual coupling – design of linear arrays – Design of planar arrays – Monolithic integrated phased arrays and its design considerations

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Design various types of microstrip patch antennas, including rectangular, circular, and ring patches, tailored to specific applications.	Apply
CO2	Analyze how substrate parameters impact the bandwidth of microstrip antennas and design advanced broadband antennas with tunable and dual- frequency capabilities.	Analyze
CO3	Perform various design strategies for planar multiresonators and compact broadband microstrip antennas.	Apply
CO4	Implement different polarization techniques, including linear, elliptical, and circular polarization.	Apply
CO5	Design and analyze microstrip antenna arrays, including linear and planar configurations.	Analyze
EFERENC	ES:	
	es & P.S.Hall, Handbook of Microstrip Antennas, IEEE Electromagnetic Wave	es Series, Firs

- 2 Ramesh Garg and Prakash Bhartia, Microstrip Antenna Design Hand Book, Artech house, First Edition, 2001.
- 3 G.Kumar and K.P.Ray, Broad band Microstrip Antennas, Artech house, Fist Edition, 2003.

	Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	3	-	3	3	-		
CO2	3	-	3	3	-		
CO3	3	-	3	3	-		
CO4	3	-	3	3	-		
CO5	3	-	3	3	-		
Avg.	3	-	3	3	-		

		Category	L	Т	Р	С
CU24E06	COMMUNICATION PROTOCOL ENGINEERING	PEC	3	0	0	3
	TE: Communication Protocol Engineering, students need a ba s the OSI model, TCP/IP model, network topologies, routing					
OBJECTIVES	•					
 To be expose To explore k To be aware To understa 	tworks for the communication Protocol engineering process ed to Protocol specifications nowledge on verification and validation process of performance testing nd the synthesis and implementation of the Protocols					
UNIT - I	NETWORK REFERENCE MODEL				(9)	
engineering pro	model-software, subsystems, protocol, protocol deve cess, Layered architecture, Network services and Interfa actions, TCP/IP protocol suite, Application Protocols.	•				
UNIT - II	PROTOCOL SPECIFICATIONS				(9)	
· ·	protocol, Specifications of communication service, Protocol cocol, Internet protocol, SDL, SDL based protocol other prot	•				
UNIT- III	PROTOCOL VERIFICATION / VALIDATION				(9)	
	ation, Verification of a protocol using finite state machines,, rotocol validation approaches, SDL based protocol verification					
UNIT-IV	PROTOCOL CONFORMANCE / PERFORMANCE T	TESTING			(9)	
generation meth with semi contro testing of MPLS	esting methodology and framework, Conformance test ods, Distributed architecture by local methods, Conformance ollable interfaces- RIP, SDL based tools for conformance test S Performance testing, SDL based performance testing of TC and CSMA/CA protection	e testing with ting, SDL ba CP and OSPF	h TT ised c F, Inte	CN, s confo erope	syste ormar erabil	ms nce ity
UNIT-V	PROTOCOL SYNTHESIS AND IMPLEMENTATION	N			(9)	
of SDL from M	ds, Interactive Synthesis Algorithm, Automatic Synthesis Al ASC, Protocol Re-synthesis, Requirements of Protocol Im otocol Implementation, Protocol Compilers, Code generatio	plementation	n, Oł	ojects	s Bas	sed
		Total (L: 45	5) = 4	l5 PH	ERIC	DDS

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Understand and articulate the layered architecture of communication systems and the protocols associated with each layer.	Understand
CO2	Identify and explain various types of communication protocols used in networking.	Understand
CO3	Analyze and evaluate the protocols used in specific applications, understanding their impact on performance and functionality.	Analyze
CO4	Develop and implement a methodology for performance testing of communication protocols.	Apply
CO5	Apply various protocol synthesis techniques to design and optimize communication networks.	Apply

- Pallapa Venkataram, Sunilkumar S.Manvi, and B.sathish Babu, "Communication protocol 1 Engineering", PHI Learning Private Limited, Second Edition, 2014.
- 2 Drago Hercog, "Communication Protocols Principles, Methods and Specifications", Springer, First Edition 2020.
- Richard Lai, Ajin Jirachiefpattana, "Communication Protocol Specification and Verification" Springer 3 - Verlag New York Inc.; Softcover reprint of the original First Edition, 2013.
- Hartmut Konig, "Protocol Engineering", Springer Heidelberg New York Dordrecht London, First 4 Edition, 2012.

Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	3	1	3	3	-	
CO2	3	1	3	3	-	
CO3	3	1	3	3	-	
CO4	3	1	3	3	-	
CO5	3	1	3	3	-	
Avg.	3	1	3	3	-	

CU24E07	SIGNAL INTEGRITY FOR HIGH SPEED DESIGN	Category I	L	Т	Р	С
CU24E07	SIGNAL IN LEGKLIY FOR HIGH SPEED DESIGN	PEC	3	0	0	3
Waveform Ana High-Speed Sig for Manufactura OBJECTIVES • To make th • To provide	have fundamental concepts in Basic Electrical systems, Transis, PCB Design Fundamentals, Electromagnetic Compatinal Modeling and Simulation, Termination Techniques, Sign bility.	bility (EMC) al Integrity 7), Po Testin	wer I ig and	ntegr 1 Des	ity,
• To propos circuits.	e and optimize power delivery systems and manage power ent effective clock distribution techniques and oscillators.	er considerat	tions	in e	lectro	onic
UNIT - I	SIGNAL PROPAGATION ON TRANSMISSION LIN	ES			(9)	
	cuit elements resistance, Capacitance and inductance or systematic systemate		nce	and	ringi (9)	ng-
talk, Minimizin	transmission lines, Coupling physics, Per unit length paran cross-talk (stripline and microstrip), Differential signaling, ossy and lossless models.					
UNIT - III				r i		
	NON-IDEAL EFFECTS				(9)	
•	NON-IDEAL EFFECTS I return paths, gaps, BGA fields via transitions, Parasitione losses- Rs, tanô, Routing parasitic, Common-mode curre			-	acitar	
Transmission li	l return paths, gaps, BGA fields via transitions, Parasition	ent, Differen		-	acitar	
Transmission li Connectors. UNIT - IV SSN/SSO, DC and system pow streams, PRBS	l return paths, gaps, BGA fields via transitions, Parasitione losses- Rs, tanô, Routing parasitic, Common-mode curro	ent, Differen N families, Po asitic, SPICE	wer E, IBI	node consu S mo	curr curr (9) umpti dels,	ent, ion, Bit
Transmission li Connectors. UNIT - IV SSN/SSO, DC and system pow streams, PRBS	I return paths, gaps, BGA fields via transitions, Parasitione losses- Rs, tanδ, Routing parasitic, Common-mode curre POWER CONSIDERATIONS AND SYSTEM DESIG power bus design, Layer stack up, SMT decoupling, Logic er delivery, Logic families and speed, Package types and para and filtering functions of link-path components, Eye of	ent, Differen N families, Po asitic, SPICE diagrams, Ji	wer E, IBI	node consu S mo	curr curr (9) umpti dels,	ent, ion, Bit
Transmission li Connectors. UNIT - IV SSN/SSO, DC and system pow streams, PRBS interference bit- UNIT - V	I return paths, gaps, BGA fields via transitions, Parasitione losses- Rs, tanδ, Routing parasitic, Common-mode curre POWER CONSIDERATIONS AND SYSTEM DESIG power bus design, Layer stack up, SMT decoupling, Logic er delivery, Logic families and speed, Package types and para and filtering functions of link-path components, Eye of error rate, Timing analysis. CLOCK DISTRIBUTION AND CLOCK OSCILLATO Clock slew, Low impedance drivers, Terminations, Delay Ad	ent, Differen N families, Po asitic, SPICE diagrams, Ji DRS	wer E, IBI tter,	node consu S mo Inter	(9) umptidels, -sym	ent, ion, Bit ibol

At the end of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level	
CO1	Describe the source of circuit board and transmission line properties.	Understand	
CO2	Propose and minimize cross-talk in multi-conductor transmission lines.	Apply	
CO3	Diagnose and mitigate non-ideal effects such as parasitic inductance and capacitance and transmission line losses.	Analyze	
CO4	Design effective DC power systems and analyze power consumption.	Apply	
CO5	Design and optimize clock distribution networks.	Apply	

- 1. Samuel H. Russ, Signal Integrity: Applied Electromagnetics and Professional Practice, Springer Nature AG, Second Edition 2022.
- 2. Howard W. Johnson and Martin Graham, High-Speed Digital Design: A Handbook of Black Magic, Publisher: Pearson, First Edition, 1993.
- 3. Douglas Brooks, Signal Integrity Issues and Printed Circuit Board Design, Prentice Hall, First Edition, 2012.
- 4. Stephen H. Hall, G. Hall, and J. McCall, High-Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices, Wiley; First Edition. 2014.
- 5. Eric Bogatin, Signal Integrity Simplified (Prentice Hall Modern Semiconductor Design Series) Prentice Hall, Second Edition, 2009.

	N	Apping of COs v	with POs and PSC	Ds	
COs/ POs	PO1	PO2	PO3	PSO1	PSO2
CO1	3	2	2	3	2
CO2	3	2	2	3	2
CO3	3	2	2	3	2
CO4	3	2	2	3	2
CO5	3	2	2	3	2
Avg.	3	2	2	3	2

	PATTERN RECOGNITION AND MACHINE	Category	L	Т	Р	С
CU24E08	LEARNING	PEC	3	0	0	3
PREREQUIS	TE:					
statistical know	standing of mathematics, including linear algebra, calculus vledge. Proficiency in programming languages like Python handling data. Additionally, familiarity with fundamental ots.	is essential	for i	mple	men	ing
OBJECTIVES	S:					
of patternTo equip tTo explor neural net		on. eptron's and	back	c pro	paga	tio
	p the skills in linear discriminant functions and their application inary and multi-class classification.	on in creating	g deci	sion	surfa	ice
	gate algorithm-independent machine learning techniques and	l clustering m	netho	ds.		
UNIT - I	INTRODUCTION TO PATTERN RECOGNITION				(9)	
Problems, app Parametric lear	INTRODUCTION TO PATTERN RECOGNITION lications, design cycle, learning and adaptation, examp ning, Maximum likelihood and Bayesian decision theory, Bay and Bayesian error analysis		-		ibuti	
Problems, app Parametric lear	lications, design cycle, learning and adaptation, examp ning, Maximum likelihood and Bayesian decision theory, Bay		-		ibuti	
Problems, app Parametric lear oss functions a UNIT - II	lications, design cycle, learning and adaptation, examp ning, Maximum likelihood and Bayesian decision theory, Bay and Bayesian error analysis	ves rule, discr	imina	ant fi	ibutio inctio	
Problems, app Parametric lear oss functions a UNIT - II	lications, design cycle, learning and adaptation, examp ning, Maximum likelihood and Bayesian decision theory, Bay and Bayesian error analysis LINEAR MODELS	ves rule, discr	imina	ant fi	ibutio inctio	
Problems, app Parametric lear oss functions a UNIT - II Linear models UNIT - III Perceptron, mu	lications, design cycle, learning and adaptation, examp ning, Maximum likelihood and Bayesian decision theory, Bay and Bayesian error analysis LINEAR MODELS for regression, linear regression, logistic regression, Linear m	nodels for cla	ssific	ant fu atior	ibutio unctio (9) n. (9)	ons
Problems, app Parametric lear loss functions a UNIT - II Linear models UNIT - III Perceptron, mu	lications, design cycle, learning and adaptation, examp ning, Maximum likelihood and Bayesian decision theory, Bay and Bayesian error analysis LINEAR MODELS for regression, linear regression, logistic regression, Linear m NEURAL NETWORK Ilti-layer perceptron, back propagation algorithm, error sur	nodels for cla	ssific	ant fu atior	ibutio unctio (9) n. (9)	ons
Problems, app Parametric lear loss functions a UNIT - II Linear models UNIT - III Perceptron, mu Improving back UNIT - IV Decision surfa	lications, design cycle, learning and adaptation, examp ning, Maximum likelihood and Bayesian decision theory, Bay and Bayesian error analysis LINEAR MODELS for regression, linear regression, logistic regression, Linear m NEURAL NETWORK Ilti-layer perceptron, back propagation algorithm, error sur propagation, additional networks and training methods, Ada	nodels for cla faces, practicationaboost, Deep	ssific cal te learn	ant fu atior cchni ing.	ibutio inctio (9) n. (9) ques (9)	fo
Problems, app Parametric lear oss functions a UNIT - II Linear models UNIT - III Perceptron, mu mproving back UNIT - IV Decision surfa	Ications, design cycle, learning and adaptation, exampling, Maximum likelihood and Bayesian decision theory, Bay and Bayesian error analysis LINEAR MODELS for regression, linear regression, logistic regression, Linear models NEURAL NETWORK alti-layer perceptron, back propagation algorithm, error surtice propagation, additional networks and training methods, Adaptation, additional networks and training methods, Adaptation, two-category, multi-category, minimum squared error	res rule, discr nodels for cla faces, practic aboost, Deep	ssific cal te learn	ant fu atior cchni ing.	ibutio inctio (9) n. (9) ques (9)	fo
Problems, app Parametric lear loss functions a UNIT - II Linear models UNIT - III Perceptron, mu improving back UNIT - IV Decision surfa procedures, line UNIT - V Lack of inherer	lications, design cycle, learning and adaptation, exampling, Maximum likelihood and Bayesian decision theory, Bay and Bayesian error analysis LINEAR MODELS for regression, linear regression, logistic regression, Linear modeliti-layer perceptron, back propagation algorithm, error sure propagation, additional networks and training methods, Ada LINEAR DISCRIMINANT FUNCTIONS ces, two-category, multi-category, minimum squared error ear programming algorithms, Support vector machine. ALGORITHM INDEPENDENT MACHINE LEARNI	res rule, discr nodels for cla faces, practic aboost, Deep r procedures, NG AND for classifier	ssific cal te learn	ant fu	(9) (9) (9) ques (9) Kash (9)	fo

At the end of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Describe the basics and methodologies of pattern recognition.	Understand
CO2	Design the various types of linear models involved in pattern classification.	Apply
CO3	Explore the neural network architectures for complex pattern recognition.	Apply
CO4	Implement the decision boundaries for classification using optimization techniques.	Apply
CO5	Evaluate the classifier performance and clustering methods for data analysis.	Analyze

- 1 Richard O. Duda, Peter E. Hart, David G. Stork, Pattern Classification, John Wiley & Sons, Second Edition, 2007.
- 2 Trevor Hastie, Robert Tibshirani, Jerome H. Friedman, The Elements of Statistical Learning, Springer, Second Edition, 2009.
- 3 C. Bishop, Pattern Recognition and Machine Learning, Springer, First Edition, 2009.

	Mapping of COs with POs and PSOs						
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	3	-	3	3	-		
CO2	3	-	3	3	-		
CO3	3	-	3	3	-		
CO4	3	-	3	3	-		
CO5	3	-	3	3	-		
Avg.	3	-	3	3	-		

CU24E09	MIMO SYSTEMS	Category	L	Т	Р	C
		PEC	3	0	0	3
and calculus. K Familiarity with electromagnetic	FE: have a solid understanding of mathematics including linear a nowledge of fourier and laplace transforms, convolution, signal processing concepts, such as frequency analysis. Ad and antenna theory can be beneficial, particularly in underst gation which are relevant in MIMO systems.	and filtering ditionally, so	; is a ome l	lso e know	essen ledge	tial e o
OBJECTIVES:						
antennas witTo explore thTo make theTo equip the	he students to design patch antenna, feeding techniques and h their specific applications. he different equalization techniques and functions are involve students to gain insight into beamforming techniques to can students to study different channel model implicated in MIN skills in designing and analyzing channel estimation technique	ed in MIMO cel interferen AO systems.	systence in	ems.	_	atcl
UNIT - I	OVERVIEW OF MIMO				(9)	
rake receiver, C	e, Delay diversity, Cyclic delay diversity, Space-frequency ombining techniques, Spatial Multiplexing, Spectral efficier ams in parallel, Mathematical notation. MIMO FUNCTIONS AND EQUALIZATION TECHN	ncy and capa			-	
MIMO systems Disadvantages	MO problem, Singular Value Decomposition, Eigen values , Disadvantages of equalizing MIMO systems, Pre disof pre-distortion in MIMO systems, Pre-coding and corpre-coding and combining, Disadvantages of pre coding a	istortion in ombining in	MIN MIN	AO AO	syste syste	ms ms
						<u></u>
UNIT - III	BEAMFORMING TECHNIQUES IN MIMO				(9)	
Codebooks for	MIMO, Beam forming, Beam forming principles, In cellation, Switched beam former, Adaptive beam former	-			ficie	ncy
Codebooks for Interference car	MIMO, Beam forming, Beam forming principles, In cellation, Switched beam former, Adaptive beam former	-			ficie	ncy
Codebooks for Interference car Wideband beam UNIT - IV Case study: MIN for transmit div codebooks, Pro propagation char baseband multip UNIT - V	MIMO, Beam forming, Beam forming principles, In acellation, Switched beam former, Adaptive beam former former.	, Narrow ba patial multip based pre-co sion, AWG fading enviro hannel mode	lexin oding N an onme els.	g, Pr g, Pr g, Pr nd n	ficien form (9) e-coo e-coo e-coo nultip Comp (9)	ncy ner ling ling batl

Total (L: 45) = 45 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Proficient in describing and analyzing channel models and diversity techniques involved in MIMO systems.	Apply
CO2	Evaluate various equalization techniques involved in MIMO systems.	Analyze
CO3	Implement beamforming strategies to manage and mitigate interference in MIMO system environments.	Apply
CO4	Design and implement code words that are tailored to the specific characteristics of MIMO channels.	Apply
CO5	Construct the various estimation techniques in MIMO systems.	Apply

REFERENCES:

1 Claude Oestges, Bruno Clerckx, "MIMO Wireless Communications: From Real-world Propagation to Space-time Code Design", Academic Press, First Edition, 2010.

2 Mohinder Janakiraman, "Space - Time Codes and MIMO Systems", Artech House Publishers, First Edition, 2004.

3 N. Costa and S. Haykin, "Multiple-input multiple-output channel models", John Wiley & Sons, First Edition, 2010.

4 T. M. Duman and A. Ghrayeb, "Coding for MIMO communication systems", John Wiley and Sons, First Edition, 2007.

	Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PSO1	PSO2				
CO1	3	-	3	3	-				
CO2	3	-	3	3	-				
CO3	3	-	3	3	-				
CO4	3	-	3	3	-				
CO5	3	-	3	3	-				
Avg.	3	-	3	3	-				

CU24E10	ADVANCED SATELLITE COMMUNICATION	Category	L	Т	Р	С
CU24E10	AND NAVIGATION SYSTEMS	PEC	3	0	0	3
calculus, linear error analysis communication communication theory, and rad OBJECTIVES • To explor respect to • To exami communica applicatio • To make	ITE Id have a solid foundation in basic mathematics and statist ralgebra, and probability/statistics which is essential for un and system design. Further understanding of electronic in systems, modulation methods, and signal processing in a theory is essential. In addition, understanding of electromagn io frequency (RF) principles is crucial for satellite communic S: e link budget calculation in satellite communication and orbi link budget parameters. ne the insight knowledge on how Internet of Things (IoT) & cation technologies integrate and impact modern communica	stics, includi derstanding circuits, a the fields o etic wave pro ation. tal mechanic & Machine-to tion systems vork.	ing p signa nalog of ele opaga s par	rofic l pro and ectron ation, ticula	iency ocess d dig nics , ante arly v	y in ing, gital and mna with
• To identif	y key the components & subsystems involved in the design, exploration missions.		y and	ope	ratio	ı of
UNIT - I	OVERVIEW OF SATELLITE COMMUNICATION				(9)	
	satellite communication and orbital mechanics Link bud uxiliary Equations, Performance Calculations.	get Paramet	ters,	Link	buc	lget
UNIT - II	M2M DEVELOPMENTS AND SATELLITE APPLICA	TIONS			(9)	
Roles Context Satellite Opera	e Internet of Things and M2M- M2M Applications Examples and Applications- Antennas for Satellite M2M Applications- tors-Ultra HD Video/TV and Satellite Implications-High Th cam Technologies-Aeronautical, Maritime and other Mobility	M2M Marke roughput Sa	t Opp	ortu	nities	for
UNIT - III	SATELLITE COMMUNICATION IN IPV6 ENVIRON	MENT			(9)	
scenarios and s in IPv6 – Impa	Pv6 and its benefits for Satellite Networks - Migration and support- Preparations for IPv6 in Satellite communication- Sa act of IPv6 on Satellite Network architecture and services D over satellites - Key results and recommendations.	atellite speci	fic Pi	otoc	ol iss	sues
UNIT - IV	SATELLITE NAVIGATION AND GLOBAL POSITIO SYSTEM	NING			(9)	
Acquisition, M	Radio and Satellite Navigation, GPS Principles, Signal mod athematical model of GPS observables, Methods of process Differential GPS. IRNSS, GAGAN, GLONASS and Galileo				-	-
UNIT - V	DEEP SPACE NETWORKS AND INTER PLANETAR	Y MISSION	IS		(9)	
Rover- Missio Telecom subsy Mission - Miss Telecom subsy	Functional description - Design procedure and performar n and spacecraft summary-Telecommunication subsystem ystem and Link performance Telecom subsystem Hardware sion and spacecraft summary-Telecommunication subsystem ystem and Link performance. Mangalyaan Mission - Miss ation subsystem overview- Ground Subsystem-Telecom subsystem	overview G and softwa overview-G sion and spa	round re Cl round leeera	l Sut handi d Sut aft su	osyst rayaa osyst umma	em- an-1 em- ary-

At the end of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Investigate the link budget parameters which are essential for satellite link design.	Apply
CO2	Analyze the characteristics and requirements of IoT/M2M technologies in satellite applications.	Analyze
CO3	Build satellite network in IPv6 environment.	Apply
CO4	Describe satellites for navigation and global positioning system.	Understand
CO5	Interpret deep space networks and inter planetary missions.	Apply

- 1 Anil K. Maini, Varsha Agrawal, Satellite Technology: Principles and Applications, Wiley Publication, New Jersey, Third Edition, 2014.
- 2 Daniel Minoli, Innovations in Satellite Communication and Satellite Technology, Wiley Publication, New Jersey, First Edition, 2015
- 3 Daniel Minoli, Satellite Systems Engineering in an IPv6 Environment, CRC Press, Florida , 2009.
- 4 Hofmann-Wellenhof B., Lichtenegger H., and Elmar Wasle, Global Navigational Satellite Systems, Springer-Verlag, First Edition, 2008.
- Jim Taylor, Deep Space Communications, John Wiley & Sons, New Jersey, First Edition, 2016.

	Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PSO1	PSO2				
CO1	3	-	3	3	-				
CO2	3	-	3	3	-				
CO3	3	-	3	3	-				
CO4	3	-	3	3	-				
CO5	3	-	3	3	-				
Avg.	3	-	3	3	-				

CU24E11	MACHINE LEARNING	Category	L	Т	Р	С
CU24E11	MACHINE LEAKNING	PEC	3	0	0	3
 probability. Fan programming, eralgorithms and orintroductory mace OBJECTIVES: To provide learning, arallearning, a	d have a solid background in mathematics, particularly niliarity with statistical concepts for model evaluation a specially in languages like Python or R, are also essential. lata structures will aid in implementing machine learning m chine learning concepts will help in tackling more advanced	and a worki Additionally nodels, and p topics. cepts and prin near regressi heoretical un ropagation a tion behind i cture of prob	ng k y, a g prior l nciple on, d nderp lgorit t. pabili	now grasp know ees of eecisi innir hm, stic §	ledge of ba rledge mach on trongs. which graph	of asic e of iine ees, h is
UNIT - I Machine Learnin	FUNDAMENTALS OF MACHINE LEARNING ng–Types of Machine Learning: Supervise d Learning, Uns s- Testing machine learning algorithms - Hypothesis space	supervised L		•		
• •	t sets, cross validation, Concept of over fitting, under fitting SUPERVISED LEARNING METHODS				(9)	
Regression: Lin Regression; Clas Nearest Neighbo	ear Regression - Least Squares - Under fitting and Overfittin sification: Linear and Non-linear models - Support Vector Nours, Decision Tree - Classification and regression trees (ing - Random Forest, Evaluation of Classification Algorithm	Machines - K (CART); En	ernel	Met	Logi hods	K-
UNIT - III	MULTILAYER PERCEPTRON				(9)	
- MLP as a Un	e Perceptron - Training a Perceptron - Learning Boolean Fun iversal Approximator - Backpropagation Algorithm - Trai Dimensionality Reduction - Learning Time.					
UNIT - IV	PROBABILISTIC GRAPHICAL MODELS AND EVO LEARNING	OLUTIONA	RY		(9)	
	ls – Undirected Graphical Models: Markov Random Fields orks – Conditional Independence properties – Markov					
	enetic Algorithm.				utior	ary
					(9)	ary

At the end of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Explain the basic concepts of machine learning	Understand
CO2	Describe linear and non-linear techniques for classification problems	Understand
CO3	Apply neural networks to solve real world problems	Applying
CO4	Develop importance of neural networks in machine learning	Applying
CO5	Summarize the concepts of reinforcement learning.	Understand

- 1 Ethem Alpaydin, "Introduction to Machine Learning (Adaptive Computation and Machine Learning series)", The MIT Press, Cambridge, Fourth Edition, 2020.
- 2 Stephen Marsland, "Machine Learning An Algorithmic Perspective", Chapman and Hall, CRC Press, Second Edition, 2015.
- 3 Tom M Mitchell, "Machine Learning", McGraw-Hill Education Private Limited, India, First Edition, 2017.
- 4 Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, Second Edition, 2011.
- 5 Kevin Murphy, "Machine Learning: An Probabilistic Perspective", MIT Press, Cambridge, First Edition, 2012.

	Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PSO1	PSO2				
C01	2	2	2	3	2				
CO2	3	2	2	3	2				
CO3	3	2	-	-	2				
CO4	3	2	2	3	2				
CO5	3	-	2	3	2				
Avg.	3	1.6	1.6	2.4	2				

(9)

(9)

(9)

(9)

	CU24E12	COMMUNICATION NETWORK SECURITY	Category	L	Т	Р	С
			PEC	3	0	0	3
ſ	DDEDEOLUGI						

PREREQUISITE:

Students should have a solid foundation in computer science principles, including data structures and algorithms. They should also understand basic networking concepts such as IP addressing and protocols. Familiarity with mathematical concepts used in cryptography, like modular arithmetic, is essential. Proficiency in at least one programming language is needed for implementing security measures, and a basic understanding of operating systems is important.

OBJECTIVES:

- To explore techniques such as cryptography and steganography, and review necessary mathematical concepts for cryptography.
- To develop the students to implement substitution and transposition ciphers, stream and block ciphers, and key algorithms including DES, AES, RC4, and RSA.
- To make the students to apply the hash functions, digital signatures, authentication methods, biometrics and key management techniques.
- To explore firewall types and configurations, IP security architecture, web security requirements, and protocols such as SSL/TLS and SET.
- To analyze security issues in wireless networks, including attacks and defenses for Wi-Fi and 4G networks, and secure ad-hoc and sensor networks.

UNIT - I INTRODUCTION ON SECURITY

Security goals, Types of attacks: Passive attack, Active attack, Attacks on confidentiality, Attacks on Integrity and Availability. Security services and mechanisms, Techniques: Cryptography, Steganography, Revision on Mathematics for cryptography.

UNIT - II SYMMETRIC & ASYMMETRIC KEY ALGORITHMS

Substitution Ciphers, Transposition ciphers, Stream and block ciphers, Data Encryption Standards (DES), Advanced Encryption Standard (AES), RC4, Principle of asymmetric key algorithms, RSA cryptosystem.

UNIT - III INTEGRITY, AUTHENTICATION AND KEY MANAGEMENT

Message integrity, Hash functions: SHA, Digital signatures: Digital signature standards. Authentication: Entity authentication, Biometrics, Key management techniques.

UNIT - IV NETWORK SECURITY, FIREWALLS AND WEB SECURITY

Introduction on firewalls, Types of firewalls, Firewall configuration and Limitation of firewall. IP security overview, IP security architecture, Authentication header, Security pay load, Security associations, Key management. Web security requirement, Secure sockets layer, Transport layer security, Secure electronic transaction, Dual signature.

UNIT - V WIRELESS NETWORK SECURITY (9)

Security attack issues specific to wireless systems: Wormhole, Tunneling, DoS, WEP for Wi-Fi network, Security for 4G networks: Secure adhoc network, Secure sensor network.

CO1		Taxonomy Level
CO1	Apply cryptography and steganography techniques and understand mathematical foundations.	Apply
CO2	Implement and evaluate symmetric and asymmetric key algorithms, including DES, AES, RC4, and RSA for securing data.	Analyze
CO3	Apply hash functions and digital signatures for message integrity and authentication. Utilize key management techniques for secure communication.	Apply
CO4	Configure and evaluate firewalls, understand IP security components, and implement web security protocols like SSL/TLS.	Apply
CO5	Identify and mitigate security threats specific to wireless networks, including WEP, and secure 4G, ad-hoc, and sensor networks.	Apply
EFERENC	ES:	
McGraw	A. Forouzan, Debdeep Mukhopadhyay, "Cryptography and Network see v Hill, Third Edition, 2015. Stallings, "Cryptography and Network security: Principles and Practice", Pears	

- 3 Atul Kahate, "Cryptography and Network security", Tata Mc-Graw Hill, Fourth Edition, 2019.
- 4 Lidong Zhou; Z.J. Haas, "Securing Ad Hoc Networks", IEEE Network Magazine, Vol.13, No. 6, pp 24-30, December , 1999.
- H. Yang, Fan Ye, Songwu Lu, "Security in Mobile Ad Hoc Networks: Challenges and Solution", IEEE
 Wireless Communications, Vol.11, No.1, pp38-47, March 2004.

	Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PSO1	PSO2				
CO1	3	-	3	3	-				
CO2	3	-	3	3	-				
CO3	3	-	3	3	-				
CO4	3	-	3	3	-				
CO5	3	-	3	3	-				
Avg.	3	-	3	3	-				

		Category	L	Т	024 P	С
CU24E13	RF MEMS FOR WIRELESS COMMUNICATION	PEC	3	0	0	3
 component fun covering wave p as S-parameters techniques for a technology, incl OBJECTIVES To provide To explore packaging To dissemina application To make switchable 	 d have a foundational understanding of electronics and c ctions and circuit analysis. They should also be familiar propagation and transmission lines. Knowledge of microways and resonators, is important. Additionally, students need analyzing and manipulating signals, as well as an introduc luding basic fabrication processes and components. : e insights to design and evaluate transceiver systems across value physical and practical aspects of RF circuit design, include considerations. inate the design principles and operations of MEMS switches, as in RF circuits. students to examine and design MEMS-based reconfigura RF front ends. 	ircuit theory with electry e engineerin a grasp of tory underst arious platfo ding impeda capacitors, i rable circuit	y, indo omag ng pri sign tandin orms. nce r nduc ts, re	cludin metic incip al pr ng of nism tors,	ng ba theoles, s ocess ME atch and t	asic ory uch sing MS and hei
	he students to develop phase shifters, FBAR filters and micror various RF applications.	ro-machinec	l or r	econi	igura	able
·	WIRELESS TRANSCEIVER ARCHITECTURES heres of wireless activities - The home and office -The grour		-			
Introduction Sp space platform systems, wirele MEMS based w effect, transmis aspects of RF ci	heres of wireless activities - The home and office -The grour - Wireless standards - Systems and architectures, wireless ss transceiver architectures, power and bandwidth-efficient v ireless appliances enable ubiquitous connectivity. Physical as sion lines on thin substrates, self- resonance frequency, qua recuit design, dc biasing, and impedance mismatch effect in RF	standards, co wireless syst pects of RF lity factor pa	oncep ems circui	otual & cha it des	rm - ' wire allen ign, s	les: ges skir
Introduction Sp space platform systems, wireled MEMS based w effect, transmis	heres of wireless activities - The home and office -The grour - Wireless standards - Systems and architectures, wireless ss transceiver architectures, power and bandwidth-efficient v ireless appliances enable ubiquitous connectivity. Physical as sion lines on thin substrates, self- resonance frequency, qua	standards, co wireless syst pects of RF lity factor pa	oncep ems circui	otual & cha it des	rm - ' wire allen ign, s	les: ges skir
Introduction Sp space platform systems, wireles MEMS based w effect, transmis aspects of RF ci UNIT - II Enabled circuit elements - Caps MEM switch a Resonators - Tr	heres of wireless activities - The home and office -The grour - Wireless standards - Systems and architectures, wireless ss transceiver architectures, power and bandwidth-efficient v ireless appliances enable ubiquitous connectivity. Physical as sion lines on thin substrates, self- resonance frequency, qua recuit design, dc biasing, and impedance mismatch effect in RF	standards, co wireless syst pects of RF lity factor part <u>F MEMS</u> s - Micro m I switch - Lo gs suspension omechanical	oncep ems a circuit ackag nachin ow vo	btual & chait des tit	rm - ' wire allen ign, s pract (9) enhan e hin switc cs - F	less ges skin ica cec gec
Introduction Sp space platform systems, wireles MEMS based w effect, transmis aspects of RF ci UNIT - II Enabled circuit elements - Capa MEM switch a Resonators - Tr bulk acoustic w UNIT - III Enabled circuits CPW resonator-	heres of wireless activities - The home and office -The grour - Wireless standards - Systems and architectures, wireless as stransceiver architectures, power and bandwidth-efficient wireless appliances enable ubiquitous connectivity. Physical as sion lines on thin substrates, self- resonance frequency, qua rcuit design, dc biasing, and impedance mismatch effect in RF MEM SWITCHES AND ITS APPLICATIONS elements and models - RF/Microwave substrate properties acitors, inductors, varactors - MEM switches - Shunt MEM pproaches - Push-pull series switch - Folded beam spring ansmission line planar resonators, cavity resonators - Micro ave resonators - MEMS modeling - Mechanical modeling, elements and models - MEMS modeling - Mechanical modeling, elements - MEMS modeling - Mechanical modeling	standards, ce wireless syst pects of RF lity factor pa F MEMS s - Micro m I switch - Le gs suspension omechanical ectromagnet apacitors – In e - Stub tune	oncep ems o circui ackag nachin ow vo on se t reso ic mo ic mo	btual & cha it des ring, ned e oltag ries nator odelin odelin	rm - ' wire allen ign, s pract (9) enhan e hin switc rs - F ng. (9) Tuna ub tu	less ges skir ica cec geo ch Film able
Introduction Sp space platform systems, wireles MEMS based w effect, transmis aspects of RF ci UNIT - II Enabled circuit elements - Capa MEM switch a Resonators - Tr bulk acoustic w UNIT - III Enabled circuits CPW resonator- filters, resonator	heres of wireless activities - The home and office -The grour - Wireless standards - Systems and architectures, wireless as ss transceiver architectures, power and bandwidth-efficient wireless appliances enable ubiquitous connectivity. Physical as sion lines on thin substrates, self- resonance frequency, qua reuit design, dc biasing, and impedance mismatch effect in RF MEM SWITCHES AND ITS APPLICATIONS elements and models - RF/Microwave substrate properties acitors, inductors, varactors - MEM switches - Shunt MEM pproaches - Push-pull series switch - Folded beam spring ransmission line planar resonators, cavity resonators - Micro ave resonators - MEMS modeling - Mechanical modeling, ele- RF APPLICATIONS OF MEMS s - Reconfigurable circuits - The resonant MEMS switch - Ca MEMS microswitch arrays - Reconfigurable circuits - Doubl	standards, ce wireless syst pects of RF lity factor pa F MEMS s - Micro m I switch - Le gs suspension omechanical ectromagnet apacitors – In e - Stub tune	oncep ems o circui ackag nachin ow vo on se t reso ic mo ic mo	btual & cha it des ring, ned e oltag ries nator odelin odelin	rm - ' wire allen ign, s pract (9) enhan e hin switc rs - F ng. (9) Tuna ub tu	less ges skir ica geo ch Filn ablo
Introduction Sp space platform systems, wireles MEMS based w effect, transmis aspects of RF ci UNIT - II Enabled circuit elements - Caps MEM switch a Resonators - Tr bulk acoustic w UNIT - III Enabled circuits CPW resonator- filters, resonator shifters. UNIT - IV Phase shifters – RF MEMS Pha	heres of wireless activities - The home and office -The grour - Wireless standards - Systems and architectures, wireless as ss transceiver architectures, power and bandwidth-efficient wireless appliances enable ubiquitous connectivity. Physical as sion lines on thin substrates, self- resonance frequency, qua reuit design, dc biasing, and impedance mismatch effect in RF MEM SWITCHES AND ITS APPLICATIONS elements and models - RF/Microwave substrate properties acitors, inductors, varactors - MEM switches - Shunt MEM pproaches - Push-pull series switch - Folded beam spring ransmission line planar resonators, cavity resonators - Micro ave resonators - MEMS modeling - Mechanical modeling, ele- RF APPLICATIONS OF MEMS s - Reconfigurable circuits - The resonant MEMS switch - Ca MEMS microswitch arrays - Reconfigurable circuits - Doubl r tuning system-Massively parallel switchable RF front ends	standards, c wireless syst pects of RF lity factor pa <u>F MEMS</u> s - Micro m I switch - La gs suspensio omechanical ectromagnet apacitors – In e - Stub tune -True time-a	oncep ems o circul ackag nachin ow vo on se reso ic mo nduct er, Ntl delay	btual & cha it des it des it des ing, ned e oltag ries nator odelin cors - n – st digit	rm - ' wire allen; ign, s pract (9) enhan e hin switc rs - F ng. (9) Tuna ub tu tal ph (9) (9) Ka- B	less ges skir ica cec geoch Film able ner nase
Introduction Sp space platform systems, wireles MEMS based w effect, transmis aspects of RF ci UNIT - II Enabled circuit elements - Caps MEM switch a Resonators - Tr bulk acoustic w UNIT - III Enabled circuits CPW resonator- filters, resonator shifters. UNIT - IV Phase shifters – RF MEMS Pha	heres of wireless activities - The home and office -The grour - Wireless standards - Systems and architectures, wireless as stransceiver architectures, power and bandwidth-efficient v ireless appliances enable ubiquitous connectivity. Physical as sion lines on thin substrates, self- resonance frequency, qua rcuit design, dc biasing, and impedance mismatch effect in RF MEM SWITCHES AND ITS APPLICATIONS elements and models - RF/Microwave substrate properties acitors, inductors, varactors - MEM switches - Shunt MEM pproaches - Push-pull series switch - Folded beam spring ransmission line planar resonators, cavity resonators - Micro ave resonators - MEMS modeling - Mechanical modeling, ele RF APPLICATIONS OF MEMS s - Reconfigurable circuits - The resonant MEMS switch – Ca MEMS microswitch arrays - Reconfigurable circuits - Doubl r tuning system-Massively parallel switchable RF front ends Fundamentals - X-Band RF MEMS phase shifter for phased use shifter for radar systems applications - Film bulk acoustions is shifter for radar systems applications - Film bulk acoustions	standards, c wireless syst pects of RF lity factor pa <u>F MEMS</u> s - Micro m I switch - La gs suspensio omechanical ectromagnet apacitors – In e - Stub tune -True time-a	oncep ems o circul ackag nachin ow vo on se reso ic mo nduct er, Ntl delay	btual & cha it des it des it des ing, ned e oltag ries nator odelin cors - n – st digit	rm - ' wire allen; ign, s pract (9) enhan e hin switc rs - F ng. (9) Tuna ub tu tal ph (9) (9) Ka- B	less ges skin ica geoch Filn ablo ner naso
Introduction Sp space platform systems, wireles MEMS based w effect, transmis aspects of RF ci UNIT - II Enabled circuit elements - Capa MEM switch a Resonators - Tr bulk acoustic w UNIT - III Enabled circuits CPW resonator- filters, resonator shifters. UNIT - IV Phase shifters – RF MEMS Pha fundamentals, F UNIT - V Micro machineo	heres of wireless activities - The home and office -The grour - Wireless standards - Systems and architectures, wireless as stransceiver architectures, power and bandwidth-efficient v ireless appliances enable ubiquitous connectivity. Physical as sion lines on thin substrates, self- resonance frequency, qua reuit design, dc biasing, and impedance mismatch effect in RF MEM SWITCHES AND ITS APPLICATIONS elements and models - RF/Microwave substrate properties acitors, inductors, varactors - MEM switches - Shunt MEM pproaches - Push-pull series switch - Folded beam spring ansmission line planar resonators, cavity resonators - Micro ave resonators - MEMS modeling - Mechanical modeling, ele RF APPLICATIONS OF MEMS s - Reconfigurable circuits - The resonant MEMS switch – Ca MEMS microswitch arrays - Reconfigurable circuits - Doubl r tuning system-Massively parallel switchable RF front ends Fundamentals - X-Band RF MEMS phase shifter for phased as shifter for radar systems applications - Film bulk acoust BAR filter for PCS applications.	standards, c wireless syst pects of RF lity factor part <u>F MEMS</u> s - Micro m I switch - La gs suspension omechanical ectromagnet apacitors – If e - Stub tune -True time- array application tic wave filt	ackag ac ac ac ac ac ac ac ac ac ac ac ac ac	btual & cha it des it des ing, ned e oltag ries nator odelin odelin cors - n – st digit	rm - ' wire allen ign, s pract (9) mhan e hin switc rs - F ng. (9) Tuna ub tu tal ph (9) (9) Ca- B AR ff (9) Tuna	les gesskin ica geoch Film able able able able able able able able able

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Design and assess wireless transceiver systems tailored for different platforms and apply appropriate wireless standards to optimize system performance.	Apply
CO2	Design and analyze RF circuits, impedance matching circuits, packaging, and the effects of physical phenomena like skin effect.	Analyze
CO3	Designing and implementing MEMS-based components and integrating them into RF circuits to meet specific application needs.	Apply
CO4	Designing MEMS-based reconfigurable circuits, including resonators and switchable RF front ends.	Apply
CO5	Design and implement phase shifters, FBAR filters and advanced antennas for a variety of RF applications.	Apply

REFERENCES:

1 Hector J. De Los Santos, "RF MEMS Circuit Design for Wireless Communications", Artech House, First Edition, 2002.

- 2 Vijay K.Varadan, K.J. Vinoy, K.A. Jose., "RF MEMS and their Applications", John Wiley and sons, LTD, First Edition, 2002.
- 3 Gabriel M. Rebeiz, "RF MEMS Theory, Design & Technology", Wiley Inter science, First Edition, 2002.

Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	3	-	3	3	-			
CO2	3	-	3	3	-			
CO3	3	-	3	3	-			
CO4	3	-	3	3	-			
CO5	3	-	3	3	-			
Avg.	3	_	3	3	-			

CU24E14	MULTIMEDIA COMPRESSION TECHNIQUES	Category	L	Т	Р	С
CU24E14	MULTIMEDIA COMPRESSION TECHNIQUES	PEC 3		0	0	3
lossy methods, i in mathematics, algorithms and Additionally, fa	TE: have basic concepts in general data compression principles, es also essential for understanding specific multimedia compression particularly linear algebra, probability, and statistics, as we data structures, is crucial as many compression methodimiliarity with signal processing concepts, such as Fourier inderstanding data transformation and compression.	ression techn ell as a basic ods rely on	iques und thes	s. Pro ersta e pr	oficie nding incip	ncy g of les.
OBJECTIVES						
To exploTo makeTo build	foundational understanding of the principles and need for m re various multimedia compression algorithms and standards the students to gain insight into different audio compression up skills in designing image compression techniques. igate different techniques involved in video compression.	used for tex	-			
UNIT - I	INTRODUCTION				(9)	
images, graphic compression – I	of multimedia, Graphics and image data representations – s, video and digital audio – Storage requirements for multi Lossy & Lossless compression techniques – Overview of sou s– Kraft McMillan in equality. TEXT COMPRESSION	media applic	catior	ns —]	Need	for
-	hniques – Run length coding – Huffmann coding–Adaptive n-fano coding- Dictionary techniques – LZW family algorith		oding	- A1	rithm	etic
UNIT - III	AUDIO COMPRESSION				(9)	
UNIT - III Audio compress band coding – Progressive enc	AUDIO COMPRESSION ion techniques – µLaw and A-Law companding frequency do Application to speech coding – G.722 – Application to a oding for audio – Silence compression, speech compression te	audio coding	g – N	APE0	isic si G au	dio,
UNIT - III Audio compress band coding – Progressive enc	ion techniques – μLaw and A-Law companding frequency do Application to speech coding – G.722 – Application to a	audio coding	g – N	APE0	isic si G au	dio,
UNIT - III Audio compress band coding – Progressive enc vocoders. UNIT - IV Contour based c filter banks–Wa	ion techniques – μLaw and A-Law companding frequency do Application to speech coding – G.722 – Application to a oding for audio – Silence compression, speech compression te	audio coding echniques – F d coding alge	g – M Forma	APE ant an ms: E	usic st G au nd CE (9) Design	dio, ELF
UNIT - III Audio compress band coding – Progressive enc vocoders. UNIT - IV Contour based c filter banks–Wa	ion techniques – μLaw and A-Law companding frequency do Application to speech coding – G.722 – Application to a oding for audio – Silence compression, speech compression te IMAGE COMPRESSION compression – Transform coding – JPEG standard – Sub-ban velet based compression: Implementation using filters – EZ	audio coding echniques – F d coding alge	g – M Forma	APE ant an ms: E	usic st G au nd CE (9) Design	dio, ELF
UNIT - III Audio compress band coding – Progressive enc vocoders. UNIT - IV Contour based of filter banks–Wa standards, JBIG UNIT - V Video compress II : MPEG– 4 a	ion techniques – μLaw and A-Law companding frequency de Application to speech coding – G.722 – Application to a oding for audio – Silence compression, speech compression te IMAGE COMPRESSION compression – Transform coding – JPEG standard – Sub-ban velet based compression: Implementation using filters – EZV , JBIG2 standards.	audio coding echniques – F d coding algo W, SPIHT co –1 and 2 – M	g – N Forma Dorithi Doders PEG	APE ant an ns: E – JP	(9) (9) (9) (9) (9) (9) (9) (9) (0) cod	dio, ELP

At the end of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Exhibit the special features, principles and need for multimedia compression.	Understand
CO2	Construct different multimedia coding techniques for text compression.	Analyze
CO3	Design the different audio compression techniques to compress audio signals.	Apply
CO4	Apply the knowledge to compress the image signals using various image compression standards.	Apply
CO5	Apply the various standards involved in compress the video signals.	Apply

- 1 Khalid Sayood, "Introduction to Data Compression", Morgan Kauffman Harcourt, Fourth edition, 2012.
- 2 Mark S.Drew, Ze-Nian Li, "Fundamentals of Multimedia", PHI, First edition, 2003.
- 3 David Salomon, "Data Compression–The Complete Reference", Springer Verlag, Second edition, 2001.
- 4 Yun Q.Shi, Huifang Sun, "Image and Video Compression for Multimedia Engineering– Fundamentals Algorithms & Standards", CRC press, Third edition, 2019.
- 5 Peter Symes, "Digital Video Compression", McGraw Hill Publications, First edition, 2004.

Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3 PSO1 PSO					
C01	3	-	3	3	-			
CO2	3	-	3	3	-			
CO3	3	-	3	3	-			
CO4	3	-	3	3	-			
CO5	3	-	3	3	-			
Avg.	3	-	3	3	-			

CU24E15	HIGH PERFORMANCE COMPUTER	Category	L	Т	Р	С		
C024E15	NETWORKS	PEC		0	0	3		
PREREQUISITE:								
Students should have a foundational understanding of basic networking concepts, including the OSI and TCP/IP models. Familiarity with network protocols, switching, routing, and multimedia streaming principles is assential. Knowledge of fundamental security concepts, including cryptography and access control is also								

TCP/IP models. Familiarity with network protocols, switching, routing, and multimedia streaming principles is essential. Knowledge of fundamental security concepts, including cryptography and access control, is also required. Basic skills in traffic modeling and network performance evaluation will be beneficial. Additionally, practical experience with network configuration and management tools is recommended.

OBJECTIVES:

- To provide insights in to Key network protocols and architectures, including OSI and TCP/IP models and various technologies such as SONET, DSL, and ATM.
- To explore multimedia networking applications, focusing on streaming audio and video, best-effort and real-time services, and protocols like RSVP.
- To delve into advanced networking technologies such as VPNs, MPLS, and overlay networks.
- To make the students to apply traffic modeling techniques, including Little's theorem and Poisson versus non-Poisson models, and to evaluate network performance.
- To develop the students to implement network security, including cryptography, authentication, access control, and management frameworks.

UNIT - I	INTRODUCTION	(9)		
Review of OS DSL,ISDN,BISI	I,TCP/IP: Multiplexing, modes of communication, switching, routing, SODN, ATM	ONET,DWD,		
UNIT - II	UNIT - IIMULTIMEDIA NETWORKING APPLICATIONS(9)			
Streaming stored audio and video, Best effort service, Protocols for real time interactive applications, Beyond best effort, Scheduling and policing mechanism, Integrated services, RSVP, Differentiated services.				
UNIT - III	ADVANCED NETWORKS CONCEPTS	(9)		
	Access VPN, site-to-site VPN, Tunneling to PPP, Security in VPN, MPLS Operat se of FEC, Traffic Engineering, MPLS based VPN, Overlay Networks - P2P Contemporation of the security of the secu			
UNIT - IV	TRAFFIC MODELLING	(9)		
Little's theorem, Need for modeling, Poisson modeling and its failure, Non- Poisson models, Network performance evaluation.				
UNIT - V	NETWORK SECURITY AND MANAGEMENT	(9)		
walls, Attacks an	ptography, Authentication, Integrity, Key distribution and certification, Access cond counter measures, Security in many layers, Infrastructure for network manage I management framework, SMI, MIB, SNMP, Security and administration, ASN	ment, The		

At the end of	the course, the stud	ents will be able t	0:		
Course Outcome		Descri	iption		Bloom's Taxonomy Level
CO1	Explain key netw functions and interr	·	÷		Understand
CO2	To manage multime real-time application quality.		- -	-	
CO3 Design and implement VPN solutions, understand MPLS operations for efficient routing and traffic engineering, and manage overlay networks for enhanced connectivity.					
CO4	Apply traffic mode Little's theorem to of various modeling	analyze network b		-	
CO5	Implement networ using standard man appropriate counter	agement framewo	-		
REFERENCE	ES:				
 Pearson, 7 Walrand, Pvt. Ltd. 8 Aunurag Publisher Hersent O Education Fred Hals 	e & K.W.Ross, "C Third edition, Ninth J.Varatya, Morgan I Second Edition, Rep kumar.D, Anjuna s, First edition, Repr Gurle & Petit, IP Te h, Reprint 2011. sall and Lingana Go ducation, Reprint 20	impression 2011. Kauffman, "High I rint 2011. th. M,JoyKuri, ' int 2012. lephony, "Packet ouda Kulkarni, "C	Performance Com "Communication Pored Multimedia	munication Networking", M	'k", Harcourt Asia organ Kaufmann Systems", Pearson
	•	Mapping of COs	with POs and PS	Os	
COs/ POs	PO1	PO2	PO3	PSO1	PSO2
CO1	3	-	-	3	-
CO2	3	-	-	3	-
CO3	3	-	-	3	-
CO4	3	-	-	3	-
CO5	3	-	-	3	-
Avg.	3	-	-	3	-

(9)

(9)

(9)

CU24E16	VOICE AND DATA NETWORKS	Category	L	Т	Р	C
	VOICE AND DATA NET WORKS	PEC	3	0	0	3

PREREQUISITE:

Students should have a solid understanding of basic discrete mathematics, including concepts of sets, relations, functions, and graphs are essential for understanding network topologies. In addition, a fundamental understanding of digital signal processing techniques such as sampling, quantization, and modulation techniques helps understand data transmission over physical media and also Probability and Statistics are essential for understanding queuing models, performance metrics, and multiple access protocols.

OBJECTIVES:

- To make the students to comprehend the terms and concepts used in network design and operation.
- To provide the knowledge on designing data link layer and protocols.
- To equip the students to perform various concepts of queuing and its role in analyzing network performance.
- To enhance knowledge about the key concepts and issues related to inter-networking, including the global Internet, IP addressing, routing and end-to-end protocols.
- To make the students gain insight into the key concepts and issues related to congestion avoidance, quality of service (QoS) in packet networks and packet scheduling algorithms.

UNIT - I NETWORK BASICS AND SWITCHING

Network Design Issues, Network Performance Issues, and Network Terminology, centralized and distributed approaches for network design and Issues in the design of voice and data networks. Layered and Layer less Communication, Cross-layer design of Networks, Voice Networks (wired and wireless) and Switching, Circuit Switching and Packet Switching, and Statistical Multiplexing.

UNIT - II	DATA LINK LAYER					
	Data Networks and their Design, Link layer design- Link adaptation, Link Layer Protocols, Retransmission. Mechanisms (ARQ), Hybrid ARQ (HARQ), Go Back N, Selective Repeat protocols and their analysis.					
UNIT - III	QUEUING AND MULTIPLE ACCESS TECHNIQUES	(9)				

Queuing Models of Networks, Traffic Models, Little's Theorem, Markov chains, M/M/1 and other Markov systems, Multiple Access Protocols, Aloha System, Carrier Sensing, and Examples of Local Area Networks.

UNIT - IV NETWORK LAYER

Inter-networking, Bridging, Global Internet, IP protocol and addressing, Subnetting, Classless Interdomain Routing (CIDR), IP address lookup and Routing in the Internet. End-to-end Protocols, TCP and UDP. Congestion Control, Additive Increase/Multiplicative Decrease, Slow Start, Fast Retransmit/ Fast Recovery.

UNIT - V QoS IN NETWORKS

Congestion avoidance, RED TCP Throughput Analysis, Quality of Service in Packet Networks. Network Calculus, Packet Scheduling Algorithms – DPI Packet inspection

At t	he end of	the course, the stud	ents will be able t	to:		
	Course Description				Bloom's Taxonomy Level	
	CO1	Describe the terms	and concepts used	in network design	and operation.	Understand
	CO2	Design data link lay	ver and protocols.			Apply
CO3 Design and analyze the queuing models and multiple access.					Analyze	
	CO4 Illustrate the functions of the network layer					Understand
	CO5Discuss the concepts and issues related to congestion avoidance, quality of service (QoS) in packet networks and packet scheduling algorithms.					Understand
REI	FERENCE	S:				
1	D. Bertse	kas and R. Gallager	, "Data Networks"	, Pearson, India, S	econd Edition, 20	15.
2	L. Peters Edition, 2	on and B. S. Davie, 2021.	"Computer Netwo	orks: A Systems A	pproach", Morgan	n Kaufman, Sixth
3		Kumar, D. Manjunat Kaufman, First Editi		ommunication Net	working: An ana	lytical approach",
4	Jean Wal	rand, "Communicat	ions Network: A F	irst Course", McG	raw Hill, Second	Edition, 2002.
5	Aaron K Edition,	ershenbaum, "Telec 1993.	communication Ne	etwork Design Al	gorithms", McGr	aw Hill, Second
		Ν	Apping of COs v	vith POs and PSC)s	
(COs/ POs	PO1	PO2	PO3	PSO1	PSO2
	CO1	2	3	-	3	3
	CO2	2	3	-	3	3
	CO3	2	3	-	3	3
	CO4	2	3	-	3	3
	CO5	2	3	-	3	3
	Avg.	2	3	-	3	3

ON	Category	L	Т	Р	C
	PEC	3	0	0	3
•	, and basic co hematical too			-	
and v axima	s in AWGN various spread al length seq onization of w various condi	spec juenc videba	etrum ces, a	meth and t	ods heir s in
-	chemes, Signa ion imperfect	-		-	
ns and K, QI	tection schem d examples of PSK and MS oherent slow blex envelope	of spi K, F and f	ead reque fast f	spect ency reque	rum hop ncy
				(9)	
		0.0110	nce		
n and	polynomial t	-		-	
n and code g	polynomial t generators.	-		-	
n and code g M SY e trac	l polynomial (generators. YSTEMS cking loops fo	tables or FH	s for	maxi (9) Optin	mal
n and code <u>s</u> M SY e trac Synch	l polynomial t generators. XSTEMS cking loops fo pronization us	tables or FH	s for	maxi (9) Optin	mal
n a co M e Sy	and ode I SY trac vnch	and polynomial to ode generators. I SYSTEMS tracking loops for ruchronization us	and polynomial tables ode generators. I SYSTEMS tracking loops for FH enchronization using r	and polynomial tables for ode generators. I SYSTEMS tracking loops for FHSS, Overchronization using match STEM	Definition, PN sequence gener and polynomial tables for maxi de generators. I SYSTEMS (9) tracking loops for FHSS, Optim enchronization using matched fi

At the end of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Describe the principles and challenges of signal detection and transmission in band-limited channels.	Understand
CO2	Explore the various spread spectrum techniques and interference.	Apply
CO3	Apply the knowledge of sequence generation techniques in spread spectrum systems.	Apply
CO4	Implement the proficiency in synchronization techniques for effective spread spectrum communication.	Analyze
CO5	Analyze the performance of spread spectrum systems and error correction methods.	Analyze

REFERENCES:

1 Ziemer RE and Peterson RL, Digital Communication and Spread Spectrum Systems, Macmillan Publishing Co., First Edition, 1985.

- 2 Dixon R C, Spread Spectrum Systems, John Wiley & Sons, Inter science, Second Edition, 1984.
- 3 Holms JK, Coherent Spread Spectrum Systems, John Wiley & Sons, Inter science, Second Edition, 1982.
- 4 Ziemer RE and Peterson RL, Introduction to Spread Spectrum Communications, Prentice Hall of India, First Edition, 1995.
- 5 Don.J.Yorrieri, Principles of Spread Spectrum Communication Systems, Springer, 2004.

Mapping of COs with POs and PSOs							
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	3	-	3	3	-		
CO2	3	-	3	3	-		
CO3	3	-	3	3	-		
CO4	3	-	3	3	-		
CO5	3	-	3	3	-		
Avg.	3	-	3	3	-		

		Category	L	Т	Р	С
CU24E18	HIGH SPEED SWITCHING ARCHITECTURE	PEC	3	0	0	3
PREREQUISI	TE					
	ould have the foundational knowledge in computer netw ell as basic knowledge in digital logic and switching technic		ing I	LANS	and	I IP
OBJECTIVES						
 To impart the students a thorough exposure to the various LAN switching technologies. To develop the ability to design various network topologies, optimize data routing and manage congestion, particularly in complex systems. To make the students to evaluate the performance of queued switches. To apply knowledge of switching fabric technologies. To provide knowledge on implementing the various IP switching techniques. 						age
UNIT - I LAN SWITCHING TECHNOLOGY					(9)	
•	epts, Switch forwarding techniques, Switch path control, e and forward, Virtual LANs.	LAN switcl	ning,	Cut	thro	ugh
UNIT - II	ATM SWITCHING ARCHITECTURE (9)					
networks, Full a	ks, Basic and enhanced banyan networks, Sorting networks nd partial connection networks, Non-blocking networks- R non- blocking network, Switching with deflection routing, S	ecursive netw	vork	cons	truct	ion,
UNIT - III	QUEUES IN ATM SWITCHES			(9)		
	g - Input, output and shared queuing, Multiple queuing netwing - Performance analysis of queued switches.	works, Comb	ined	inpu	t, ou	tput
UNIT - IV	PACKET SWITCHING ARCHITECTURES			(9)		
	Architectures of internet switches and routers, Buffer less and buffered crossbar switches, Multi-stage switching, Optical packet switching, Switching fabric on a chip, Internally buffered crossbars.					
UNIT - V	IP SWITCHING (9)					
Addressing model, IP Switching types, Flow driven and topology driven solutions, IP over ATM address and next hop resolution, Multicasting, IPV6 over ATM.						
		Total (L: 45	5) = 4	5 PE	CRIO	DS

At the end of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Describe the difference between various LAN switching technologies.	Understand
CO2	Analyze and compare various ATM switching architectures	Analyze
CO3	Implement various queuing strategies within ATM switches	Apply
CO4	Expertise in Packet Switching Architectures	Apply
CO5	Implement different addressing models and switching types	Apply

- 1 Achille Pattavina, "Switching Theory: Architectures and Performance in Broadband ATM Networks", John Wiley & Sons Ltd, Reprint, 2012.
- 2 Elhanany M.Hamdi, "High Performance Packet Switching Architectures", Springer Publications, 2010.
- 3 Christopher Y Metz, "Switching Protocols & Architectures", McGraw–Hill Professional Publishing, Reprint, 2012.
- 4 Rainer Handel, Man fred N Huber, Stefan Schroder, "ATM Networks Concepts Protocols, Applications", Third Edition, Addison Wesley, 2009.

Mapping of COs with POs and PSOs							
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	3	-	-	3	-		
CO2	3	-	-	3	-		
CO3	3	-	-	3	-		
CO4	3	-	-	3	-		
CO5	3	-	-	3	-		
Avg.	3	-	-	3	-		

CU24E19	SPEECH AND AUDIO PROCESSING	Category	L	Т	Р	С
C024E1)	SI LECH AND AUDIO I ROCESSING	PEC	3	0	0	3

PREREQUISITE:

A basic understanding of calculus, algebra, and Fourier transforms, along with knowledge of digital signal processing (DSP) concepts like filtering and signal analysis. Familiarity with how linear systems work, basic probability and statistics are essential. Additionally, a basic grasp of acoustics, speech science will help to better understand the mechanisms of speech production, signal representation, and the algorithms used in speech recognition and synthesis.

OBJECTIVES:

- To explore the processes of speech production, signal representation, and auditory perception.
- To examine techniques for analyzing speech signals based on time-domain parameters.
- To investigate methods for speech analysis and synthesis using frequency domain techniques.
- To apply linear predictive coding (LPC) methods for speech analysis and pitch detection.
- To utilize algorithms for speech recognition, synthesis, and other applications in speech processing.

UNIT - I MECHANICS OF SPEECH

Speech production mechanism, Nature of speech signal, Discrete time modeling of speech production, Representation of speech signals, Classification of speech sounds, Phones, Phonemes, Phonetic and phonemic alphabets, Articulatory features, Music production, Auditory perception, Anatomical pathways from the ear to the perception of sound, Peripheral auditory system psychoacoustics.

UNIT - II	TIME DOMAIN METHODS FOR SPEECH PROCESSING	
-----------	---	--

Time domain parameters of speech signal, Methods for extracting the parameters energy, Average magnitude, Zero crossing rate, Silence discrimination using ZCR and energy, Short time auto correlation function, Pitch period estimation using auto correlation function.

UNIT - III	FREQUENCY DOMAIN METHOD FOR SPEECH PROCESSING
------------	---

(9)

(9)

(9)

Short time fourier analysis, Filter bank analysis, Formant extraction, Pitch extraction, Analysis by synthesis, Analysis synthesis systems, Phase vocoder, Channel vocoder, Homomorphic speech analysis: Cepstral analysis of speech, Formant and pitch estimation, Homomorphic vocoders.

UNIT - IV LINEAR PREDICTIVE ANALYSIS OF SPEECH	(9)
--	-----

Formulation of linear prediction problem in time domain, Basic principle, Auto correlation method, covariance method, Solution of LPC equations, Cholesky method, Durbin's recursive algorithm, Lattice formation and solutions, Comparison of different methods, Application of LPC parameters, Pitch detection using LPC parameters–Formant analysis – VELP – CELP

UNIT - V APPLICATIONS (9)

Algorithms: Spectral estimation, Dynamic time warping, Hidden Markov model, Music analysis, Pitch detection, Feature analysis for recognition, Music synthesis, Automatic speech recognition, Feature extraction for ASR, Deterministic sequence recognition, Statistical sequence recognition, ASR Systems, Speaker identification and verification, Voice response system, Speech synthesis: Text to speech, Voice over IP.

At the end of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Explain how speech is produced and perceived, including the basic features and classifications of speech sounds.	Understand
CO2	Apply methods to analyze speech signals by extracting parameters like energy and zero-crossing rate and use these parameters for tasks like detecting silence and estimating pitch.	Apply
CO3	Analyze speech signals using frequency-domain methods like short-time Fourier analysis and filter banks and evaluate techniques for extracting formants and pitch.	Analyze
CO4	Apply linear predictive coding (LPC) techniques to speech analysis, compare different methods for solving LPC equations, and use LPC parameters for pitch detection and formant analysis.	Apply
CO5	Implement algorithms and models for speech processing tasks such as speech recognition and synthesis, and evaluate their performance in practical applications.	Analyze
REFEREN	CES:	
1 LR Ra 2003.	biner and RW Schaffer, "Digital Processing of Speech signals", Prentice Hall	, First Edition
	old and Nelson Morgan, "Speech and Audio Signal Processing: Processing and and Music", John Wiley and Sons, Inc, Second Edition, 2011.	l Perception o

- 3 Quatieri, "Discrete-Time Speech Signal Processing: Principles and Practice", Prentice Hall, Second Edition, 2021.
- 4 John L Flanagan, Speech analysis Synthesis and Perception, Springer, Third Edition, 2021.
- 5 Ian H Witten, Principles of Computer Speech, Academic Press, First Edition, 1982.

Mapping of COs with POs and PSOs							
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
C01	3	-	3	3	-		
CO2	3	-	3	3	-		
CO3	3	-	3	3	-		
CO4	3	-	3	3	-		
CO5	3	-	3	3	-		
Avg.	3	-	3	3	-		

PE24T21	SOFT COMPUTING TECHNIQUES	Category	L	LT	Р	С
		PCC	3	0	0	3
PREREQUISITE:						

Familiarity with basic machine learning concepts (such as supervised and unsupervised learning, classification, regression, clustering) is helpful as soft computing techniques often deal with these areas and it crates strong foundation in basic algorithms (sorting, searching, optimization) and) will help in grasping more complex algorithms like genetic algorithms and neural networks.

OBJECTIVES:

- To understand the basic concepts of soft computing and its difference from traditional computing techniques.
- To gain knowledge about the fundamentals of artificial neural networks, including their architectures, learning mechanisms, and applications.
- To acquire the skills to learn the concepts of fuzzy logic, fuzzy sets, and their use in dealing with uncertainty and imprecision in real-world problems.
- To develop the ability to analyze and learn the concepts of fuzzy logic, fuzzy sets, and their use in dealing with uncertainty and imprecision in real-world problems.
- To enable the students to understand evolutionary algorithms, particularly genetic algorithms, and their applications in solving optimization and search problems.

UNIT - I	ARTIFICIAL NEURAL NETWORK	
----------	---------------------------	--

Biological neural networks - Artificial neural networks - Common activation functions - McCulloch-pitts neuron - Hebb Net - Perceptron - Linear separability - Perceptron learning rule - Delta rule.

NEURAL NETWORK ARCHITECTURE AND ALGORITHMS **UNIT-II**

Back propagation Neural Net: Standard and counter back propagation - Hopfield neural net: Discrete and Continuous – Associative memory neural networks – Boltzman machine – Case study: Power system voltage Stability assessment through artificial neural network.

UNIT-III COMPETITIVE NEURAL NETWORKS

Fixed-weight competitive nets - Maxnet - Mexican Hat Net - Kohonen self-organizing Maps - Adaptive Resonance Theory - Neuro controllers - Functional diagram - Inverse dynamics.

UNIT-IV FUZZY LOGIC SYSTEM

Fuzzy sets - Properties of classical and fuzzy sets - Operations on fuzzy sets - Fuzzy relations - Linguistic variables - Linguistic hedges - Fuzzy rule base - Fuzzy logic controller - Fuzzification - Membership functions – Defuzzification – Case study: Control of electrical drives based on fuzzy logic.

UNIT-V EVOLUTIONARY PROGRAMMING

Optimization methods - Genetic algorithm - Real coded GA - Particle swarm optimization - Lion optimization.

TOTAL = 45 PERIODS

(9)

(9)

(9)

(9)

(9)

COURSE OUTCOMES:					
At the end of the course, the students will be able to:					
COs	Course Outcome			Cognitive Level	
CO1	Infer the concepts of artificial neural network.			Understand	
CO2	Explicate the architecture and algorithms of BPN, Hopfield and apply the knowledge to voltage stability problem.				Apply
CO3	Understand the concept competitive neural networks and apply the knowledge to develop neuro controller.				Apply
CO4	Discuss the concepts of fuzzy logic system with classical system; apply the knowledge of fuzzy logic controller for classical applications.				Apply
CO5	Illustrate the fundamentals of genetic algorithm, Particle swarm optimization, Lion optimization and its various functionalities.				Understand
1 Third 2 Jacek 2 Jacek REFEREN 1 1 Lawre 2 J. Ros 3 S, Ra 4 David	Edition, 2018. .M.Zurada, Introd NCES: ence Faussett, Fun ss, Fuzzy Logic w jasekaran, G.A. V uesis and Applicat 1 E. Goldberg, O	luction to Artificial N ndamental of neural n ith Engineering App (ijayalakshmi Pai, No ions, PHI Publication	s of Soft Computing, Neural Systems, Jaico networks, Prentice H plications, John Wile eural Networks, Fuz n, Second Edition 20 in Search Optimiza 2013.	o Publishing House, Iall, First Edition, 20 y and Sons, Third E zy systems and evol 017.	Third Edition, 2006 004. dition, 2011 lutionary algorithms:
Mapping of COs with POs and PSOs					
COs/ POs	PO1	PO2	PO3	PSO1	PSO2
CO1	-	-	-	-	-
CO2	-	-	-	-	-
CO3	3	1	-	1	1
CO4	3	1	-	1	1
CO5	3	1	-	1	1
Avg.	3	1	-	1	1
1- Low, 2-	Medium, 3- High				