

M.E. - EMBEDDED SYSTEMS TECHNOLOGY Curriculum & Syllabus for Semester I and II

REGULATIONS 2024 (Academic Year 2024-25 Onwards)

K.S.R. COLLEGE OF ENGINEERING: TIRUCHENGODE - 637 215

(Autonomous)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

(REGULATIONS 2024)

Vision of the Institution

IV We envision to achieve status as an excellent Educational Institution in the global knowledge hub, making self-learners, experts, ethical and responsible engineers, technologists, scientists, managers, administrators and entrepreneurs who will significantly contribute to research and environment friendly sustainable growth of the nation and the world.

Mission of the Institution

- IM 1 To inculcate in the students self-learning abilities that enable them to become competitive and considerate engineers, technologists, scientists, managers, administrators and entrepreneurs by diligently imparting the best of education, nurturing environmental and social needs.
- **IM 2** To foster and maintain mutually beneficial partnership with global industries and Institutions through knowledge sharing, collaborative research and innovation.

Vision of the Department

DV We envision a department that leads in the field of Electrical and Electronics Engineering through education, training and research committed to influence the direction of the field and make a constructive contribution to society wherein the Department can thrive and grow.

Mission of the Department

- **DM 1** To create professionally competent and resourceful Electrical and Electronics Engineers.
- **DM 2** To promote excellence in teaching, pioneering research and innovation for a sustainable growth of the nation and enrichment of humanity.

Programme Educational Objectives (PEOs): M.E. - Embedded System Technologies

The graduates of the programme will be able to

- **PEO 1** Design and develop Embedded system automation based on dedicated ICs that have computation, networking and control capacity.
- **PEO 2** Conduct research and apply innovative problem-solving techniques, leading to the creation of cutting-edge embedded systems that address complex challenges in industry and academia, thereby contributing to technological progress.
- **PEO 3** Exhibit leadership qualities and ethical practices, positioning themselves as experts in the field of embedded systems while continuously pursuing professional development opportunities to stay abreast of technological advancements.

Programme Outcomes (POs) of M.E. - Embedded System Technologies

Progra	m Outcomes (POs)
PO1	An ability to independently carry out research/investigation and development work to solve practical problems.
PO2	An ability to write and present a substantial technical report/document.
PO3	Students should be able to demonstrate a degree of mastery over the area as per the
	specialization of the program. The mastery should be at a level higher than the requirements
	in the appropriate bachelor program.

Programme Specific Outcomes (PSOs) of M.E. - Embedded System Technologies

Progra	Program Specific Outcomes (PSOs)								
PSO1	Design and develop Embedded system automation based on dedicated ICs that have computation, networking and control capacity.								
PSO2	Skill to work on professional software languages, standard modeling and analysis tools and commercial packages with communication protocols and computation platforms for analysis and design of system automation.								

K.S.R. COLLEGE OF ENGINEERING (Autonomous) Approved by AICTE and Affiliated to Anna University, Chennai Accredited by NAAC ('A++' Grade) K.S.R. Kalvi Nagar, Tiruchengode - 637 215										Curriculum PG R - 2024				
De	partment	Department of Electrical and Electro	onics Engir	neer	ing									
Pro	ogramme	M.E Embedded System Technolog	gies											
		SEMEST	ER – I						F					
S. No.	Course Code	Course Title	Category	Per	riod:	s / V P	Veek Tot.	Credit	Ma CA	ES	arks Tot.			
THEC	RY COURSI	ES		_	-	-			••••					
1	MA24T17	Applied Mathematics (Common to PE, ET & CU)	FC	3	1	0	4	4	40 60 1					
2	RM24T19	Research Methodology and IPR	RMC	3	0	0	3	3	40	60	100			
3	ET24T11	Design of Embedded Systems	PCC	3	0	0	3	3	40 60 10					
4	ET24T12	Software for Embedded Systems	PCC	3	0	0	3	3	40 60 10					
5	-	Professional Elective – I	PEC	3	0	0	3	3	40	60	100			
6	-	Professional Elective – II	PEC	3	0	0	3	3	40	60	100			
LABORATORY COURSES														
7	ET24P11	Embedded System Laboratory – I	PCC	0	0	4	4	2	60	40	100			
8	ET24P12	Embedded Programming Laboratory	PCC	0	0	4	4	2	60	40	100			
			TOTAL	18	1	8	27	23	800					
		SEMEST	ER – II	-				_						
S.	Course	Course Title	Category	Pe	riod	s / V	Veek	Credit	Ma	ix. Ma	arks			
No.	Code	course rule	category	L	Т	Ρ	Tot.	creat	CA	ES	Tot.			
THEC	RY COURS	ES	1				r				1			
1	ET24T21	Real Time Operating System	PCC	3	0	0	3	3	40	60	100			
2	ET24T22	Embedded System Networking	PCC	3	0	0	3	3	40	60	100			
3	ET24T23	Embedded Control for Electric Drives	PCC	3	0	0	3	3	40	60	100			
4	ET24T24	IoT for Smart Systems	PCC	3	0	0	3	3	40	60	100			
5		Professional Elective – III	PEC	3	0	0	3	3	40	60	100			
6		Professional Elective – IV	PEC	3	0	0	3	3	40	60	100			
LABC	RATORY CO	DURSES	Γ	I		I	1	1			T			
7	ET24P21	Embedded System Laboratory – II	PCC	0	0	4	4	2	60	40	100			
EMPI	OYABILITY	ENHANCEMENT COURSES	[1		1	1	1		1	1			
8	ET24P22	Technical Presentation	EEC	0	0	2	2	1	60	40	100			
		TOTAL		18	0	6	24	21		800				

		SEMEST	ER – III											
S.	Course	Course Title	Catagoriu	Per	riod	s / V	Veek	Cuadit	Ma	x. Ma	arks			
No.	Code	Course Title	Category	L	Т	Ρ	Tot.	Credit	CA	ES	Tot.			
THEC	ORY COURS	ES												
1	ET24T31	RISC Processor Architecture and Programming	PCC	3	0	0	3	3	40	60	100			
2	ET24T32	Embedded Product Development	PCC	3	0	0	3	3	40	60	100			
3		Professional Elective – V	PEC	3	0	0	3	3	40 60 100					
4		Open Elective	OEC	3	0	0	3	3	40	60	100			
EMP	LOYABILITY	YENHANCEMENT COURSES												
5	ET24P31	Project Work Phase – I	EEC	0	0	12	12	6	60	40	100			
AUD	T COURSES	5						•						
6		Audit Course	AC	2	0	0	2	0	100		100			
		TOTAL		14	0	12	26	18		500				
								•						
		SEMESTI	ER – IV											
s.	Course			Per	riod	s / V	Veek	a 11.	Ma	x. Ma	arks			
No.	Code	Course Title	Category	L	т	Ρ	Tot.	Credit	CA	ES	Tot.			
EMP	LOYABILITY	VENHANCEMENT COURSES						1						
1	ET24P41	Project Work Phase – II	EEC	0	0	24	24	12	60	40	100			
			TOTAL	0	0	24	24	12		100				
		TOTAL NO. OF	CREDITS: 7	74			1							
		TOTAL NUMBER OF CRED	ITS TO BE	EARI	NED	FOF	2							
		AWARD OF THE	DEGREE =	74										
		ssional Core Courses, PEC-Professiona					•							
	• •	nhancement Courses, AC- Mandatory	Courses,	FC-F	oun	dati	on Co	ourses, l	RMC ·	- Res	earch			
wetr	iodology ar	nd IPR Courses												

11	K.S.R. COLLEGE OF ENGINEERING (Autonomous) Approved by AICTE and Affiliated to Anna University, Chennai Accredited by NAAC ('A++' Grade) K.S.R. Kalvi Nagar, Tiruchengode - 637 215							nai	Curriculum PG R - 2024			
De	epartment	Department of Electrical and Electr	onics Engi	nee	ring							
Pr	ogramme	M.E Embedded System Technolo	gies									
		FOUNDATION (COURSES (I	FC)								
s.	Course	Course Title	Category	Pe	riod	s / V	Veek	Credit	Ma	x. Ma	rks	
No.	Code	Course The	category	L	Т	Ρ	Tot.	creat	CA	ES	Tot.	
1.	MA24T17	Applied Mathematics	FC	3	1	0	4	4	40 60 100			
			TOTAL	3	1	0	4	4		100		
	PROFESSIONAL CORE COURSES (PCC)											
s.	Course	Course Title	Catagoni	Pe	riod	s / V	Veek	Credit	Ma	x. Ma	rks	
No.	Code	Course fille	Category	L	Credit	CA	ES	Tot.				
1.	ET24T11	Design of Embedded Systems	PCC	3	0	0	3	3	40	60	100	
2.	ET24T12	Software for Embedded Systems	PCC	3	0	0	3	3	40	60	100	
3.	ET24P11	Embedded System Laboratory – I	PCC	0	0	4	4	2	60	40	100	
4.	ET24P12	Embedded Programming Laboratory	PCC	0	0	4	4	2	60	40	100	
5.	ET24T21	Real Time Operating System	PCC	3	0	0	3	3	40	60	100	
6.	ET24T22	Embedded System Networking	PCC	3	0	0	3	3	40	60	100	
7.	ET24T23	Embedded Control for Electric Drives	PCC	3	0	0	3	3	40	60	100	
8.	ET24T24	IoT for Smart Systems	PCC	3	0	0	3	3	40	60	100	
9.	ET24P21	Embedded System Laboratory – II	PCC	0	0	4	4	2	60	40	100	
10.	ET24T31	RISC Processor Architecture and Programming	PCC	3	0	0	3	3	40	60	100	
11.	ET24T32	Embedded Product Development	PCC	3	0	0	3	3	40	60	100	
			TOTAL	24	0	12	36	30		1100		
		RESEARCH METHODOLOGY	AND IPR C	OUI	RSES	(RN	/IC)					
s.	Course	Course Title	Category	Pe	riod	s / V	Veek	Credit		x. Ma	arks	
No.	Code		Category	L	Т	Ρ	Tot.	creuit	СА	ES	Tot.	
1.	RM24T19	Research Methodology and IPR	RMC	3	0	0	3	3	40	60	100	
	TOTAL 3 0 0 3 3 10										0	

	EMPLOYABILITY ENHANCEMENT COURSES (EEC)												
s.	Course		Catagory	Pe	riod	s / V	Veek	Credit	Max. Marks				
No.	Code Course Title Category L T P Tot.								CA	ES	Tot.		
1.	ET24P22	Technical Presentation	EEC	0	0	2	2	1	60	40	100		
2.	ET24P31	Project Work Phase – I	EEC	0	0	12	12	6	60	40	100		
3.	ET24P41	Project Work Phase – II	EEC	0	0	24	24	12	60	40	100		
	TOTAL 0 0 38 38 19 300												

		PROFESSIONAL ELECTIV	E – I & II (SEM	ESTE	R I)						
S.	Course	Course Title	Catagori		eriod	s / V	Veek	Credit	Ma	ix. Ma	arks	
No.	Code	Course The	Category	Ĺ	Т	Ρ	Tot.	Credit	CA	ES	Tot.	
1.	ET24E01	Wireless and Mobile Communication	PEC	3	0	0	3	3	40	60	100	
2.	ET24E02	Robotics and Automation	PEC	3	0	0	3	3	40	60	100	
3.	ET24E03	Embedded Processor Development	PEC	PEC 3 0 0 3		3	40	60	100			
4.	ET24E04	System Design using Microcontroller (Common to PE & ET)	PEC	EC 3 0 0 3		3	40	60	100			
5.	ET24E05	Intelligent Control and Automation	PEC	3	0	0	3	3	40	60	100	
6.	ET24E06	Renewable Energy and Grid Integration	PEC	3	3 0 0 3		3	40	60	100		
7.	ET24E07	Electric Vehicles and Power Management	PEC	3	0	0	3	3	40	60	100	
8.	ET24E08	Unmanned Aerial Vehicle	PEC	3	0	0	3	3	40	60	100	
9.	ET24E09	DSP Based System Design	PEC	3	0	0	3	3	40	60	100	
			ΤΟΤΑΙ	. 27	0	0	27	27			900	
		PROFESSIONAL ELECTIVE	– III & IV ((SEN	1ESTI	ER II)						
S.	Course		Catagoria	Ре	riods	s / W	/ Week			Max. Marks		
No.	Code	Course Title	Category	L	т	Р	Tot.	Credit	CA	ES	Tot.	
1.	ET24E10	Automotive Embedded System	PEC	3	0	0	3	3	40	60	100	
2.	ET24E11	Computer Vision	PEC	3	0	0	3	3	40	60	100	
3.	ET24E12	Multimedia Communication	PEC	3	0	0	3	3	40	60	100	
4.	ET24E13	Embedded Networking and Automation of Electrical System	PEC	3	0	0	3	3	40	60	100	
5.	ET24E14	Smart System Design	PEC	3	0	0	3	3	40	60	100	
6.	ET24E15	Embedded Computing	PEC	3	0	0	3	3	40	60	100	
7.	ET24E16	Embedded Systems Security	PEC	3	0	0	3	3	40	60	100	
8.	ET24E17	Machine Learning and Deep Learning	PEC	3	0	0	3	3	40	60	100	
			TOTAL	24	0	0	24	24	_	_	800	

	PROFESSIONAL ELECTIVE – V (SEMESTER III)													
s.	Course	Course Title	Catagory	Ре	riod	s / W	/eek	Credit	Ma	x. Ma	arks			
No.	Code		Category	L	т	Ρ	Tot.	Credit	CA	ES	Tot.			
1.	ET24E18	Reconfigurable Processor and SoC Design	PEC	3	0	0	3	3	40	60	100			
2.	ET24E19	MEMS and NEMS Technology	PEC	3	0	0	3	3	40	60	100			
3.	ET24E20	Entrepreneurship Development	PEC	3	0	0	3	3	40	100				
4.	ET24E21	Embedded System for Biomedical Applications	PEC	3	0	0	3	3	40	60	100			
5.	ET24E22	Python Programming for Machine Learning	PEC	3	0	0	3	3	40	60	100			
6.	ET24E23	VLSI Design and Reconfigurable Architecture	PEC	3	0	0	3	3	40	60	100			
7.	PE24E16	Smart Grid (Common to PE & ET)	PEC	3	0	0	3	3	3 40 60					
8.	PE24E22	Virtual Instrumentation System (Common to PE & ET)	PEC	3	0	0	3	3	40	60	100			
			TOTAL	24	0	0	24	24			800			

OPEN ELECTIVES OFFERED BY OTHER PG PROGRAMMES												
s.	Course	Course Title	Cotogom	F	Periods	/ Wee	k	Credit	Ma	x. Ma	rks	
No.	Code	Course Intie	Category	L	Т	Р	Tot.	Credit	CA	ES	Tot.	
1.	CS24001	Machine learning and Deep Learning	OEC	3	0	0	3	3	40	60	100	
2.	CS24002	Blockchain and Crypto Currency	OEC	3	0	0	3	3	40	60	100	
3.	CS24003	Multimedia Technologies	OEC	3	0	0	3	3	40	60	100	
4.	BD24001	Big Data Analytics	OEC	3	0	0	3	3	40	60	100	
5.	BD24002	Internet of Things and Cloud	OEC	3	0	0	3	3	40	60	100	
6.	BD24003	Big Data Visualization	OEC	3	0	0	3	3	40	60	100	
7.	PE24O01	Switching Concepts and Power Semiconductor Devices	OEC	3	0	0	3	3	40	60	100	
8.	PE24002	Smart Grid Technology	OEC	3	0	0	3	3	40	60	100	
9.	PE24003	Renewable Energy Technology	OEC	3	0	0	3	3	40	60	100	
10.	PE24004	Energy Management and Conservation	OEC	3	0	0	3	3	40	60	100	
11.	IT24001	IoT for Smart System	OEC	3	0	0	3	3	40	60	100	
12.	IT24002	Machine Learning for Intelligent Multimedia Analytics	OEC	3	0	0	3	3	40	60	100	
13.	IT24003	DevOps and Microservices	OEC	3	0	0	3	3	40	60	100	

S.	Course		Catagory	Ρ	eriods	/Wee	ek	Cue dit	Ma	x. Ma	arks
No.	Code	Course Title	Category	L	т	Р	Tot.	Credit	CA	ES	Tot.
14.	IT24004	Cyber security and Digital Awareness	OEC	3	0	0	3	3	40	60	100
15.	CN24001	Energy Efficient Building	OEC	3	0	0	3	3	40	60	100
16.	CN24002	Economics and Finance Management in Construction	OEC	3	0	0	3	3	40	60	100
17.	CN24O03	Stress management	OEC	3	0	0	3	3	40	60	100
18.	ST24001	Principles of Sustainable Development	OEC	3	0	0	3	3	40	60	100
19.	ST24002	Failure Analysis of Structures	OEC	3	0	0	3	3	40	60	100
20.	ST24003	Smart materials and Smart Structures	OEC	3	0	0	3	3	40	60	100
21.	CU24001	Principles of Multimedia	OEC	3	0	0	3	3	40	60	100
22.	CU24O02	Software Defined Radio	OEC	3	0	0	3	3	40	60	100
23.	CU24O03	MEMS and NEMS	OEC	3	0	0	3	3	40	60	100
24.	CU24O04	Introduction to Cognitive Radio Network	OEC	3	0	0	3	3	40	60	100
25.	CC24O01	Digital Manufacturing	OEC	3	0	0	3	3	40	60	100
26.	CC24O02	Design for Manufacturing and Assembly	OEC	3	0	0	3	3	40	60	100
27.	CC24O03	Smart Materials and Structures	OEC	3	0	0	3	3	40	60	100
28.	IS24001	Industrial Safety Engineering	OEC	3	0	0	3	3	40	60	100
29.	IS24002	Fire Engineering and Protection	OEC	3	0	0	3	3	40	60	100
30.	IS24003	Food and Bio-safety	OEC	3	0	0	3	3	40	60	100
OPEN	N ELECTIVES	OFFERED TO OTHER PG PR	OGRAMME	S							
S.	Course		Catagomi	I	Periods / We		ek	Cradit	Ma	x. Ma	rks
No.	Code	Course Title	Category	L	т	Р	Tot.	Credit	CA	ES	Tot.
1.	ET24001	Embedded Systems	OEC	3	0	0	3	3	40	60	100
2.	ET24O02	Embedded Control	OEC	3	0	0	3	3	40	60	100
3.	ET24O03	Embedded Automation	OEC	3	0	0	3	3	40	60	100

	AUDIT COURSES (SEMESTER III)												
s.	Course	Course Title	Catagony	P	Periods	/ Wee	k	Credit	Max. Marks				
No.	Code	course fille	Category	L	Т	Р	Tot.	Creat	СА	ES	Tot.		
1.	AX24A01	Disaster Management	AC	2	0	0	2	0	100	-	100		
2.	AX24A02	Value Education	AC	2	0	0	2	0	100		100		
3.	AX24A03	Constitution of India	AC	2	0	0	2	0	100		100		
4.	AX24A04	Indian Knowledge System	AC	2	0	0	2	0	100		100		
	TOTAL 8 0 0 8 0												

SUMMARY

Name	Name of the Programme: M.E. & Embedded System Technologies											
s.	Subject area	C	redits Per	Semester		Credits Total	Percentage					
No	Subject area	I	П	ш	IV	Credits rotar	Credits					
1	FC	4	-	-	-	4	5.41					
2	PCC	10	14	6	-	30	40.54					
3	PEC 6 6 3 - 15				15	20.27						
4	RMC	3	-	-	-	3	4.05					
5	OEC	-	-	3	-	3	4.05					
6	EEC	-	1	6	12	19	25.68					
7	Audit Course	-	-	v	-	-	-					
	Total Credit	23	21	18	12	74	100					

		Category	L	Т	Р	С	
MA24T17	APPLIED MATHEMATICS	FC	3	1	0	4	
	(Common to CU, ES and PE)						
PREREQUISIT							
	ave the strong foundation in mathematical concepts ics, familiarity with Mathematical modeling and Nu					obability	
 To enalimplem To prov To deve To acquire 	p students to apply matrix decomposition methods. ble students to translate real-world problems into ent solutions effectively. vide insights into methods to analyze discrete and co elop the ability to analyze the basic components and uire the skills to apply and formulate to solve be tial equations.	ntinuous rando behavior of que	m va euing	riabl g sys	es. tems		
UNIT - I	MATRIX THEORY				(9 -	+ 3)	
	ons – The Cholesky decomposition – QR factorizati ion – Toeplitz matrices and some applications.	on – Least squa	res r	neth	od –	Singular	
UNIT - II	LINEAR PROGRAMMING PROBLEMS				(9 -	+ 3)	
Formulation of Ll – Dual Simplex n	PP – Graphical Method – Simplex Method – Big M I nethod.	Method – Two I	Phase	e Sin	nples	Method	
UNIT - III	ONE-DIMENSIONAL RANDOM VARIABLE				(9 + 3)		
and probability d	Random Variable – Discrete and continuous random lensity function – Expectations – Moments – Mo mial, Poisson, Uniform, Exponential and Normal dis	ment generatin					
UNIT - IV	QUEUING MODELS				(9 -	+ 3)	
Server with infir	Queuing Models – Kendall's notations – Little's f nite capacity – (M/M/C): (∞ /FIFO) Multi Serve Server with finite capacity – (M/M/C): (N/FIFO) M	r with infinite	capa	acity	- (]	M/M/1):	
UNIT - V	COMPUTATIONAL METHODS IN ENGINE	ERING			(9 -	+ 3)	
Liebmann's Iterat	roblems for ODE – Classification of PDE – Solutio ion Process – Solution of Heat Conduction Equation on Implicit Scheme – Solution of Wave Equation.	•			-		
	LECTURE: 45, TUT	ORIAL: 15, T	OTA	L: 6	0 PE	RIODS	

		UTCOMES: f the course, the stud	ents will be able t	to:		
	Os	i the course, the stud	Course Outcom		Cog	gnitive Level
C	01	Apply and decompose	matrices effective	ely.		Apply
C	02	Create models and for	mulate linear prog	ramming problems.		Analyze
CO	03	Analyze and work wit	h a single random	variable.		Analyze
C	14	Analyze and interpressystems.	et the key featur	res of various que	uing	Analyze
CO	05	Set up and solve boun	dary value probler	ns for ODEs.		Apply
TEX	T BOO	KS				
		n R. A. and Gupta C. I on, Eighth Edition, 20		nd's Probability and	Statistics for E	ngineers', Pearson
2.	Grewal	, B.S., 'Higher Engine	ering Mathematic	s', Khanna Publisher	s, Forty-Fourth	Edition, 2017.
REF	ERENC	CES:				
	Bronson Edition,	n, R., 'Schaum's Ou 2011.	tline Series of M	atrix Operations', M	/IcGraw-Hill E	ducation, Second
2.	Hamdy	A Taha., 'Operations	research. An intro	duction', Pearson Ed	ition, Tenth Ed	ition, 2017.
		Gross and Carl M. Edition, 2013.	Harris, 'Fundame	entals of Queuing 7	Theory', John	Wiley and Sons,
		amy, P., Thilagavathy dition, 2003.	and Gunavathy, I	K., 'Numerical Meth	ods', S. Chand	& Company Ltd,
		Ν	Apping of COs v	vith POs and PSOs		
CO	Os/ POs	PO1	PO2	PO3	PSO1	PSO2
	CO1	3	-	-	3	-
	CO2	3	-	-	3	-
	CO3	3	-	-	3	-
	CO4	3	-	-	3	-
	CO5	3	-	-	3	-
	Avg.	3	-	-	3	-
1 - Lo	ow, 2 - 1	Medium, 3 - High				

DN 12 4TT 1.0		Category	L	L T P	С		
RM24T19	RESEARCH METHODOLOGY AND IPR	RMC	3	0	0	3	
	(Common to PED, EST, CSE, BDA, CAD CAM	I, ISE)					
PREREQUISITE: A basic understanding of academic writing and critical thinking skills to analyze research literature, familiarity with fundamental statistical concepts for data analysis, and a strong grasp of core subject knowledge relevant to the student's field. Additionally, a general awareness of legal principles related to intellectual property, ethical research practices, and innovation trends will enhance the student's ability to engage with both research methodologies and IPR concepts.							
OBJECTIVE	S:						
-	up students with the ability to design and conduct rigorous redologies, and critically analyzing results.	esearch, empl	oyin	g app	oropr	iate	
	ter the ability to critically evaluate academic literature, identi ch questions.	fy research ga	aps, a	nd fo	ormu	late	
	able students to effectively communicate research findings in form and through presentations, to academic and profession	•	gum	ents,	both	ı in	
integri	still an understanding of ethical issues in research, includity, and the ethical use of intellectual property.						
	ovide a comprehensive understanding of intellectual prop narks, copyrights, and their application in various industries.	erty rights, i	nclu	ding	pate	nts,	
UNIT - I	RESEARCH DESIGN				(9)		
	esearch process and design – Use of Secondary and explorat itative research, Observation studies – Experiments and surve	•	iswei	the	resea	rch	
UNIT - II	DATA COLLECTION AND SOURCES				(9)		
	: Measurement Scales – Questionnaires and Instruments – a ploring, Examining and displaying.	Sampling and	l Me	thods	s. Da	ta -	
UNIT - III	DATA ANALYSIS AND REPORTING				(9)		
	Aultivariate analysis – Hypotheses testing and Measures of A sing written reports and oral presentation.	ssociation – P	resei	nting	Insig	ghts	
UNIT - IV	INTELLECTUAL PROPERTY RIGHTS				(9)		
development p establishments	operty – The concept of IPR, Evolution and development process, Trade secrets, utility Models, IPR & Biodiversity, R s, Right of Property, Common rules of IPR practices, Types a unctions of UNESCO in IPR maintenance.	ole of WIPO	and	WTC) in 1	PR	
UNIT - V	PATENTS				(9)		
Types of pate	ctives and benefits of patent – Concept, features of patent, nt application, process E-filling – Examination of patent – ignments. Licenses – Licensing of related patents – patent a	- Grant of pa	istrat	Rev ion o	vocati	on, tent	

COUR	SE OUTCOMES:						
At the	end of the course, tl	he students will be a	able to:				
COs		Course Out	tcome		Cognitive Level		
CO1	Develop a suitable	research process to	solve real-time prob	lems.	Apply		
CO2	Apply appropriate analysis.	methods to collect qu	alitative and quanti	tative data for	Apply		
CO3	Apply appropriate problems.	statistical tools to	analyze data and s	olve research	Apply		
CO4	Describe the types establishment.	and features of intell	ectual property and	its role in IPR	Apply		
CO5	Illustrate the patent procedures, E-filling, register of patents, and Apply licensing of patents.						
TEXT	BOOKS:						
1		, Schindler Pamela, ation, Eleventh Edit		K., "Business Res	search Methods", Tata		
2	Catherine J. Holla Entrepreneur Press	-	operty: Patents, Tra	ademarks, Copy	rights, Trade Secrets,		
REFE	RENCES:						
1	David Hunt, Long 2007.	Nguyen, Matthew	Rodgers, Patent Se	earching: Tools a	& Techniques, Wiley,		
2		Company Secretaries amme Intellectual Pr			n Act of Parliament, ptember 2013.		
		Mapping of C	COs with POs and l	PSOs			
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	3	3	-	1	1		
CO2	3	3	-	1	1		
CO3	3	3	-	1	1		
CO4	3	3	-	1	1		
CO5	3	3	-	1	1		
Avg.	3	3	-	1	1		
1 - Low	v, 2 - Medium, 3 - Hi	gh					

ET24T11	DESIGN OF EMBEDDED SYSTEMS	Category	L	Т	Р	С	
		РСС	3	0	0	3	

PREREQUISITE:

A solid foundation in basic electronics and digital logic is essential, including a strong understanding of circuits, microprocessors, microcontrollers, and digital logic design. Proficiency in programming, particularly in languages like C/C++, is crucial, along with familiarity with embedded system programming. Additionally, familiarity with standard communication protocols such as I2C, SPI, UART, and CAN is required to design and implement embedded systems effectively.

OBJECTIVES:

- To equip students with the skills to design and develop efficient embedded systems, from concept to implementation, using appropriate hardware and software tools.
- To enable students to write, optimize, and debug embedded software using industry-standard programming languages and development environments.
- To design and implement real-time embedded systems, focusing on scheduling, synchronization, and time-sensitive operations.
- To provide students with the ability to seamlessly integrate hardware components, including sensors, actuators, and communication modules, with embedded software.
- To foster critical thinking and innovation in solving complex design challenges in embedded systems, preparing students for advanced roles in industry or research.

UNIT – I	INTRODUCTION TO EMBEDDED SYSTEMS	(9)
----------	----------------------------------	-----

Introduction to Embedded Systems – Built-in features for embedded Target Architecture – Selection of Embedded processor – DMA – memory devices – Memory management methods – Memory mapping, cache replacement policies – Timer and Counting devices, Watchdog Timer, Real Time Clock – Software Development tools – IDE, assembler, compiler, linker, simulator, debugger, In-circuit emulator, Target Hardware Debugging – Overview of functional safety standards for embedded systems.

UNIT – II EMBEDDED NETWORKING BY PROCESSORS

Embedded Networking: Introduction, I/O Device Ports & Buses – Multiple interrupts and interrupt service mechanism – Serial Bus communication protocols – RS232 standard – RS485 – USB – Inter Integrated Circuits (I2C) – CAN Bus – Wireless protocol based on Wifi, Bluetooth, Zigbee – Introduction to Device Drivers.

UNIT – III RTOS BASED EMBEDDED SYSTEM DESIGN

(9)

(9)

Introduction to basic concepts of RTOS – Need, Task, Process & threads, interrupt routines in RTOS, Multiprocessing and Multitasking, preemptive and non-preemptive scheduling, Task communication – context switching, interrupt latency and deadline shared memory, message passing – Interprocess communication – synchronization between processes-semaphores, Mailbox, pipes, priority inversion, priority inheritance, comparison of Real-time Operating systems: VxWorks, uC/OS-II, RT Linux.

UNIT – IV

MODELLING WITH HARDWARE/SOFTWARE DESIGN APPROACHES

(9)

Modeling embedded systems – Embedded software development approach – Overview of UML modeling with UML, UML diagrams – Hardware/Software Partitioning, Co-Design Approaches for System Specification and modeling – CoSynthesis – Features Comparing Single-processor Architectures and Multi-Processor Architectures – Design approach on parallelism in Uniprocessors and Multiprocessors.

(9)

UNIT – V EMBEDDED SYSTEM APPLICATION DEVELOPMENT

Objective, need, different phases and Modelling of the EDLC. Choice of Target Architectures for Embedded Application Development-for Control Dominated-Data Dominated Systems-Case studies on Digital Camera, Adaptive Cruise control in a Car, Mobile Phone software for key inputs.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:						
COs	Course Outcome	Cognitive Level				
CO1	Demonstrate the functionalities of processor internal blocks, with their requirement.	Apply				
CO2	Recognize the Bus standards chosen based on interface overheads without sacrificing processor performance.	Apply				
CO3	Describe the role and features of the RT operating system, that makes multitask execution possible by processors.	Apply				
CO4	Illustrate that using multiple CPUs based on either hardcore or softcore helps data overhead management with processing speed reduction for uC execution.	Apply				
CO5	Recommend Embedded consumer product design based on phases of product development.	Apply				

TEXT BOOKS:

1	Rajkamal, "Embedded System: Architecture, Programming, Design", TMH, 2011.
2	Peckol, "Embedded system Design", John Wiley & Sons, 2010.

REFERENCES:

1	Rajiv Chopra, "Advanced Computer Architecture", S. Chand, 2010.
2	Elicia White, "Making Embedded Systems", O'Reilly Series, SPD, 2011.

3 Bruce Powel Douglass, Real-Time UML Workshop for Embedded Systems, Elsevier, 2011.

4 Lyla B.Das, "Embedded Systems: An Integrated Approach", Pearson, 2013.

Mapping of COs with POs and PSOs							
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	-	-	3	-	2		
CO2	2	-	1	-	2		
CO3	-	2	2	-	2		
CO4	2	-	3	-	2		
CO5	2	-	1	-	2		
Avg.	2	2	2	-	2		

ET24T12	SOFTWARE FOR EMBEDDED SYSTEMS	Category	L	L T P 3 0 0	C	
E124112	SOF I WARE FOR EMBEDDED SYSTEMS	РСС	3	0	0	3
Python, with understanding architectures a	SITE: Id have a strong background in programming, particularly in a focus on low-level programming and embedded so of microcontrollers and microprocessors is essential, in and interfacing techniques. Knowledge of operating systems, o OS), and their application in embedded environments is crucia	ftware develo cluding fami especially Rea	opme liarity	nt. A y wi	A so th th	olic nei
OBJECTIVE	S:					
	uip students with the ability to design, develop, and opti ded systems, focusing on efficiency and reliability.	mize softwar	e spe	cific	ally	for
	derstand and implement real-time operating systems in embed uling, synchronization, and resource management.	ded application	ons, ir	nclud	ing t	ask
	eamlessly integrate embedded software with hardware of unication and functionality within embedded systems.	components,	ensu	ring	smo	oth
softw	by bound by	-				
	courage critical thinking and innovation in solving complex are, preparing students for leadership roles in technology deve				nbed	led
UNIT – I	BASIC C PROGRAMMING				(9)	
Development Arrays.	ogram Development Environment – Introduction to C Program C – Data Types and Operators – C Program Control –				ction	
UNIT – II	EMBEDDED C				(9)	
Examples. M	ture to 'C' Code: Object-oriented programming with C, He eeting Real-time constraints: Creating hardware delays – N timeouts – Creating hardware timeouts.					
UNIT – III	C PROGRAMMING TOOL-CHAIN IN LINUX				(9)	
	r – Stages of Compilation – Introduction to GCC – Debuggin gure and Build System – GNU Binary utilities – Profiling – usi					
UNIT – IV	PYTHON PROGRAMMING				(9)	
	- Parts of Python Programming Language – Control Flow St naries – Tuples and Sets.	atements – Fi	inctio	ons –	Stri	ngs
UNIT – V	MODULES, PACKAGES AND LIBRARIES IN PYTH	ON			(9)	
– Library for	es and Packages – Creating Modules and Packages – Practical Mathematical functionalities and Tools – Numerical Plottir ging Libraries for Python – Networking Libraries.					
		ΤΟΤΑ	L: 4	5 PE	RIO	DS

2

2

2

2

2

COURSE OUTCOMES: At the end of the course, the students will be able to: Cognitive COs **Course Outcome** Level **CO1** Demonstrate C programming and its salient features for embedded systems. Understand Deliver insight into various programming languages/software compatible with **CO2** Apply embedded process development with improved design & programming skills. **CO3** Develop knowledge of C programming in a Linux environment. Apply **CO4** Possess the ability to write Python programming for Embedded applications. Apply Have improved Employability and entrepreneurship capacity due to knowledge **CO5** Apply upgradation on recent trends in embedded programming skills. **TEXT BOOKS:** Paul Deitel and Harvey Deitel, 'C How to Program', Eighth Edition, Pearson Education Limited, 1 2016. 2 Michael J.Pont, 'Embedded C', Addison-Wesley, An imprint of Pearson Education, 2002. **REFERENCES:** Gowrishankar, S. and Veena, A., 'Introduction to Python Programming', CRC Press, Taylor & 1 Francis Group, 2019. Noel Kalicharan, 'Learn to Program with C', Apress Inc., 2015. 2 3 Steve Oualline, 'Practical C programming', O'Reilly Media, 1997. 4 William Von Hagen, 'The Definitive Guide to GCC', Second Edition, Apress Inc., 2006. Mapping of COs with POs and PSOs COs/ **PO1 PO2 PO3 PSO1** PSO2 POs 2

CO1	-	-	2	-				
CO2	1	-	1	-				
CO3	-	2	-	-				
CO4	1	-	1	-				
CO5	-	-	2	-				
Avg.	1	2	1.5	-				
1 - Low, 2 - Medium, 3 - High								

- H	34D11	EMDEDDED CYCTEM I ADOD ATODY	Category	L	Т	Р	С
	24P11	EMBEDDED SYSTEM LABORATORY – I	PCC	0	0	4	2
Profic Famil and I/	liarity wi /O interf	SITE: C/C++ is essential since most embedded systems are p th microprocessor and microcontroller architectures, includ- aces. Basic knowledge of RTOS concepts, task scheduling liarity with IDEs like Keil, MPLAB, or Atmel Studio for em	ing memory his, and multitas	lerarc king	hy, 1 in er	egist nbed	ers dec
•	ECTIV To inv with s To im proces To end To tra	•	ols / Hardware ng on software es/tools. ardware-softw	Proc tool	cesso s and	r Boa 1 Dig	urd
LIST	Г OF EX	XPERIMENTS:					
1.	Program	ming with 8-bit Microcontrollers # Assembly programming					
2.	Program	ming with 8-bit Microcontrollers # C programming.					
3.	I/O Prog	gramming with 8-bit Microcontrollers.					
4.	I/O Inte	rfacing: Serial port programming/ LCD/Sensor Interfacing.					
5.	Program	ming with PIC Microcontrollers - Assembly and C program	nming.				
6.	I/O Prog	gramming with PIC Microcontrollers.					
7.	I/O Inte	rfacing: PWM Generation/ Motor Control/ADC/DAC/ LCD	/Sensor Interfa	cing	•		
8.		ner 8-bit Microcontrollers with peripherals; IDE, Board Supper/others.	port Software '	Tools	s /		
9.	8051 M	crocontrollers with peripherals; IDE, Board Support Softwa	are Tools/C Co	mpil	er/otl	ners.	
10.	8051 M	crocontrollers with peripherals; Board Support Software To	ols, peripheral	s wit	h int	erfac	e.
11.	PIC Mic	crocontrollers with peripherals; IDE, Board Support Softwar	e Tools/C Con	npile	r/oth	ers.	
12. PIC Microcontrollers with peripherals; Board Support Software Tools, peripherals with interfa							
12.	110 111						

COU	JRSE	OUTCOMES	:						
At th	At the end of the course, the students will be able to:								
C	Os	Course Outcome Cognitive Leve							
CO	01	Experiment with insight into various embedded processors of CISCand RISC architecture / computational processors with peripheralinterfaces.							
CO2 Understand the fundamental concepts of how process can be controlled with C.						Apply			
CO3 Experimenting on programming logic of Processor based on software suites (simulators, emulators).						Apply			
CO	04	Incorporate the	I/O software interfa	ce of a processor wit	h peripherals.	Apply			
C	CO5 Improved Employability and entrepreneurship capacity due to knowledge upgradation on recent trends in interfacing and use of commercial embedded processors.		Apply						
REF	ERE	NCES:							
1. 2.	Pear Moh	son Education, ammad Ali M	Second Edition, 20	007. cinley and Danny	Causey, 'PIC	Embedded Systems', Microcontroller and			
				Os with POs and					
COs POs		PO1	PO2	PO3	PO4	PO5			
CO	1	2	1	2	1	2			
CO2	2	-	-	1	1	2			
CO3	3	2	3	1	1	2			
CO ₂	4	2	-	2	1	2			
CO	5	-	-	1	1	2			
Avg	•	2	2	1.4	1	2			
1- Lo	1- Low, 2- Medium, 3- High								

T	0 4 D 4 O		Category	L	Т	Р	C
ΕT	24P12	EMBEDDED PROGRAMMING LABORATORY	PCC	0	0	4	2
			1.	1	• ,	с ·	
need	ed. Prot c knowl	wledge of microcontrollers and microprocessors, including their a ficiency in programming languages like C/C++ is essential, particledge of digital electronics and communication protocols such as	cularly for	low-	level	l cod	ing
_	ECTIV	TES:					
	for v	levelop knowledge in writing and debugging embedded software various microcontroller platforms.		-			
	sens	gain practical skills in interfacing embedded software with hard ors, actuators, and communication modules.	-				
•	that	inderstand and apply real-time operating system concepts by dev manages time-sensitive tasks.			-		
•	 To less 	earn to use debugging tools and techniques to identify, analyze, an ems.	d resolve is	ssues	in eı	nbed	de
		ntegrate software and hardware effectively, and optimize code features in embedded applications.	or perform	ance	and	resou	ırc
LIST	Г OF E	XPERIMENTS:					
1.	Progra	amming in Higher Level Languages/Open Source Platforms.					
2.	Progra	amming with Arduino Microcontroller Board.					
3.	HDL	Programming in FPGA processors.					
4.	Progra	amming and Simulation in Simulators/Tools/others using Proteus/	ORCAD.				
5.	Progra	amming and Simulation in Simulators /Tools/others using MATLA	AB/Others.				
			TOTA	L: 6	60 PH	ERIO	D
COU	URSE C	DUTCOMES:					
At tl	he end o	of the course, the students will be able to:					
С	Os	Course Outcome	C	ogni	tive	Leve	1
CO1 Apply programming concepts and syntax to develop applications in higher-level languages.					pply	ŗ	
C	CO2 Design and develop embedded system applications using Arduino Apply						
C		Simulate HDL code for implementing digital logic designs in FP processors.	GA	A	pply	,	
C		Develop and simulate electronic circuits using Proteus/ORC. software.	AD	A	pply	•	
	05	Develop programs to simulate dynamic systems and con	trol		pply		

REFF	ERENCES:							
	1. Jonathan W. Valvano 'Embedded Systems: Introduction to the MSP432 Microcontroller', Createspace Independent Publication, First Edition, 2015.							
	2. Richard H. Barnett, Sarah Cox, Larry O'Cull 'Embedded C Programming and the ATMEL AVR', Cengage Learning, Second Edition, 2012.							
		Mapping of C	COs with POs and l	PSOs				
COs/ POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	2	1	1	-	2			
CO2	2	-	2	-	2			
CO3	2	1	3	-	2			
CO4	2	1	2	-	2			
CO5	-	-	2	-	2			
Avg.	2	1	2	-	2			
1 - Lo	1 - Low, 2 - Medium, 3 - High							

FT94T91	DEAL TIME ODEDATING SYSTEM	Category	L	Т	Р	С
ET24T21	REAL TIME OPERATING SYSTEM	РСС	3	0	0	3
		I				
PREREQUIS	SITE:					
threads, scher (mutexes), ser development of a real-time sys	f how general-purpose operating systems (like Windows, Lir duling, and memory management. Understanding of mu maphores, and inter-process communication. Proficiency in often involves low-level programming close to the hardware. stem, including the difference between soft and hard real-time ed in embedded systems development, like Keil, IAR, or Eclip	ltithreading, C or C++ is Knowledge o systems. Exp	mutu cruci of wh	al e al, a at co	xclus s RT nstiti	ion OS utes
OBJECTIVE	ZS:					
comp To im To stu To co To inv	pose the students to the fundamentals of the interaction of utation. part the fundamental concepts of how processes are created a udy the programming logic of modeling Processes based on the mpare types and Functionalities in commercial OS, application volve Discussions/ Practice/Exercises on revising and familiari units of the subject for improved employability skills.	nd controlled he range of OS on development	with S feat nt usi	OS. ures. ng R	TOS	
UNIT - I	REVIEW OF OPERATING SYSTEMS				(9)	
implementatio	les – Operating system structures – System calls – File on of processes – Communication between processes – Introc edded operating systems.					
UNIT - II	OVERVIEW OF RTOS				(9)	
	nd Task state – Multithreaded Preemptive scheduler – Proce boxes – pipes – Critical section – Semaphores – Classic					
UNIT - III	REALTIME MODELS AND LANGUAGES				(9)	
	 Process-based and Graph-based Models – Real-Time La Interrupt processing – Synchronization – Control Blocks – Me 	0 0			KS –	RT
UNIT - IV	REALTIME KERNEL				(9)	
	Design issues – Polled Loop Systems – RTOS Porting to a T us RTOS like – VX works – Linux supportive RTOS – C Exe	0	paris	on ai	nd Ba	asic
UNIT - V	APPLICATION DEVELOPMENT				(9)	
Discussions of Application –	on Basics of Linux supportive RTOS – uCOS – C Execut Case study.	ive for devel	opme	ent o	f RT	OS
		ТОТА	L: 4	5 PE	RIO	DS

COURSE OUTCOMES: At the end of the course, the students will be able to: **Course Outcome** Cognitive Level COs Recognize operating system structures and types. **CO1** Understand Insight into scheduling, and disciplining of various processes **CO2** Apply execution. **CO3** Exemplify knowledge of various RTOS support modeling. Understand Demonstrate commercial RTOS Suite features to work on real-time **CO4** Understand process design. Improved employability and entrepreneurship capacity due to knowledge upgradation on recent trends in RTOS and embedded **CO5** Apply automation design. **TEXT BOOKS:** 1. Silberschatz, Galvin, Gagne, 'Operating System Concepts', Sixth Edition, John Wiley, 2003. Charles Crowley, 'Operating Systems: A Design Oriented approach', McGraw Hill, 1997. 2. **REFERENCES:** Raj Kamal, 'Embedded Systems- Architecture, Programming and Design', Tata McGraw Hill, 1. 2006. Karim Yaghmour, 'Building Embedded Linux System', O'reilly Publication, 2003. 2. 3. Mukesh Sighal and Shi, N.G., 'Advanced Concepts in Operating System', McGraw Hill, 2000. Mapping of COs with POs and PSOs COs/ **PO1 PO2** PO3 **PSO1** PSO2 POs **CO1** 2 1 2 2 **CO2** 2 2 2 _ -**CO3** 2 2 2 2 -**CO4** 2 2 3 2 2 **CO5** 2 2 1 2 2 1.8 2 2 Avg. 1- Low, 2- Medium, 3- High

ET24T22	EMBEDDED SYSTEM NETWORKING	Category	L	Т	Р	С		
E124122	ENIDEDDED SISTEM NETWORKING	PCC	3	0	0	3		
PREREQUIS	ITE:							
A knowledge on the architecture, instruction sets, and interfacing of microcontrollers and microprocessors is needed. It also needs the knowledge on CAN bus protocol, widely used in automotive and seria communication protocols like RS-232, RS-485, and USB. Familiarity with implementing embedded web servers for remote monitoring and control.								
OBJECTIVE	S:							
• To exp	pose the students to the fundamentals of wired embedded netw	working techn	iques	S.				
• To intr	roduce the concepts of embedded ethernet.							
	pose the students to the fundamentals of wireless embedded n	0						
	cuss the fundamental building blocks of digital instrumentation							
• To inti	roduce the design of programmable measurement and control			es.				
UNIT - I	EMBEDDED PROCESS COMMUNICATION WITH I BUS	NSTRUMEN	T		(9)			
	working: Introduction – Cluster of instruments in System: I bus protocols – RS 232C, RS 422, RS 485 and USB standard nd CAN bus.							
UNIT - II	EMBEDDED ETHERNET				(9)			
and network sp	network – Inside Ethernet – Building a Network: Hardware peed – Ethernet controllers – Inside the internet protocol – Ex ail for Embedded systems using FTP – Keeping devices and	changing me	ssage					
UNIT - III	WIRELESS EMBEDDED NETWORKING				(9)			
synchronizatio	or networks – Introduction – Node architecture – Network to n – Energy efficient MAC protocols – SMAC – Energy effic – WSN Applications – Home Control – Building Automatio	cient and robu	st ro	uting	$-\mathbf{D}$			
UNIT - IV	BUILDING SYSTEM AUTOMATION				(9)			
– Data acquisi UC for automa	& Characteristics: Sensing Voltage, Current, flux, Torque, Pos tion system – Signal conditioning circuit design – Uc Based tion and protection of electrical appliances – Processor-based pper motors, Relays – System automation with multi-channel	& PC based digital control	data llers	acqu for sv	isitio vitch	n – ing		
UNIT - V	COMMUNICATION FOR LARGE ELECTRICAL SYS AUTOMATION	STEM			(9)			
principles – ou	Data Acquisition, Monitoring, Communication, Event Processing, and Polling Principles, SCADA system principles – outage management – Decision support application – Substation automation, extended control feeder automation, Performance measure and response time, SCADA Data Models, need, sources, interface.							
		ΤΟΤΑ	L: 4	5 PE	RIO	DS		

COUF	RSE OUTCOMES:								
At the	At the end of the course, the students will be able to:								
СО	s	Course O	outcome		Cognitive Level				
СО	CO1 Recognize the different bus communication protocols used for Understand								
CO	CO2 Explain the basic concepts of embedded networking. Understand								
CO	3 Apply the emb	edded networking co	oncepts in wireless r	networks.	Apply				
CO	4 Relate differen	t data acquisition co	ncepts.		Apply				
СО	5 Build system a	utomation for different	ent applications.		Apply				
ТЕХТ	BOOKS:								
1.	Mohammad Ilyas, I sensing systems', C		ndbook of sensor N	etworks: Compact	wireless and wired				
2.	Peter W. Gofton, 'U	nderstanding Serial	Communication', S	ybes International,	2000.				
REFE	RENCES:								
1.	Jan Axelson, 'Embe	dded Ethernet and I	nternet Complete', F	Penram Publication	s, 2003.				
2.	Krzysztof Iniewski,	'Smart Grid, Infrast	ructure and Network	king', TMcGH, 201	2.				
3.	James Northcote-Gr Systems', CRC, Tay			nation of Electrical	Power Distribution				
		Mapping of C	COs with POs and I	PSOs					
COs/ POs	PO1	PO2	PO3	PSO1	PSO2				
CO1	1	2	-	2	2				
CO2	-	2	-	2	2				
CO3	3	2	2	2	2				
CO4	2	-	3	2	2				
CO5	3	-	3	2	2				
Avg.	2.25	2	2.7	2	2				

1- Low, 2- Medium, 3- High

ET24T23	EMBEDDED CONTROL FOR ELECTRIC DRIVES	Category	L	Т	P	C
		PCC	3	0	0	3
in embedded s primary langu PID control, tr	of architecture, instruction sets, and peripherals of microcontry ystems is needed. Proficiency in C or C++ for programming n ages used in embedded system development. Basic knowledg ransfer functions, feedback loops, power semiconductor dev	nicrocontrolle ge of control	ers, as princ	s thes iples	se are , suc	e the h a
 OBJECTIVE To pro To em To pro To ena mode of 	ers (DC-DC, AC-DC, DC-AC), and their operation. S: wide the control concept for electrical drives. phasize the need for an embedded system for controlling the wide knowledge about various embedded system-based control able students to grasp and articulate the basic principles under converters and machine learning techniques used for electrical niliarize the high-performance computing for electrical drives	ol strategies for erlying the op al drives.	or ele			
UNIT - I	INTRODUCTION ELECTRICAL DRIVES				(9)	
Dynamics of m	and its classifications, Four-quadrant drive, Dependence of notor – load combination – Solid State Controlled Drives – Ma electrical drives – IoT for Electrical drives applications.	-				
UNIT - II	OVERVIEW OF EMBEDDED PROCESSOR			(9)		
Embedded Proprocessors.	ocessor architecture - RTOS - Hardware/software co-des	ign – Progra	immii	ng v	vith S	SoC
UNIT - III	INDUCTION MOTOR CONTROL			(9)		
• •	control methods – PWM techniques – VSI fed three-phase introl for three phase induction motor – FPGA based three ph				-	-
subcu specu et	BLDC MOTOR CONTROL					
UNIT - IV						
UNIT - IV Overview of E	BLDC Motor – Speed control methods – PWM techniques – – ANN for BLDC Motor control and operation.	- ARM proce	essor	base	d BE	DLC
UNIT - IV Overview of E	BLDC Motor – Speed control methods – PWM techniques -	– ARM proce	essor	base	d BE (9)	
UNIT - IV Overview of E motor control UNIT - V Overview of S	BLDC Motor – Speed control methods – PWM techniques – – ANN for BLDC Motor control and operation.	-			(9)	

COUR	SE OUTCOMES:						
At the	end of the course, th	he students will be	able to:				
COs		Course C	Outcome		Cognitive Level		
CO1	Interpret the sig	gnificance of embed	ded control of elect	rical drives	Understand		
CO2	CO2 Deliver insight into various control strategies for electrical drives. Understand						
CO3	Develop knowl for motor contr	•	of Machine learning and optimization techniques Apply				
CO4		dded system solution cles and UAVs.	ns for real-time app	olications such	Apply		
CO5	knowledge gra	ployability and en dation on recent tr otor control strategy.	rends in embedded		Apply		
TEXT	BOOKS:						
1.	Krishnan, R., 'Elec Ltd., New Delhi, 2		Modeling, Analysis	and Control', Pr	entice-Hall of India Pvt.		
2.		yam, 'Electric Dr ny Ltd., New Delhi,		nd Applications	s', Tata McGraw-Hill		
REFE	RENCES:						
1.	Venkataratnam, K.	, 'Special Electrical	Machines', Univer	sities Press, 2014	4.		
2.	Steve Furber, 'AR	M System on Chip A	Architecture', Addis	tion Wesley,201	0.		
3.	Ron Sass, Anderev Practices', Elsevier		edded System desig	n with platform	FPGAs: Principles and		
4.	Steve Kilts, 'Adv Willey, 2007.	vanced FPGA Des	sign: Architecture,	Implementatio	n, and Optimization',		
	Γ	Mapping of C	COs with POs and	PSOs			
COs/ POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	1	-	2	2	2		
CO2	1	1	3	2	2		
CO3	2	-	-	2	2		
CO4	1	2	3	2	2		
CO5	-	-	-	2	2		
Avg.	1.25	1.5	2.7	2	2		
1- Low,	2- Medium, 3- High	1					

ET7/T7/	LT EOD SMADT SVSTEMS	Category	L	Т	Р	C
ET24T24	IoT FOR SMART SYSTEMS	PCC	3	0	0	3
Understanding services (AW processing an healthcare), d	SITE: basic electrical components like resistors, capacitors, transist g how to store and retrieve data from databases (SQL, NoSC S, Azure, Google Cloud) as IoT systems often integrate d storage. Depending on the smart system's application (e.g., omain-specific knowledge will be beneficial. Understanding syption, secure communication protocols, and device authenti	QL). Basic kr with cloud p smart home, the security	nowle platfo smai	edge rms rt agr	of cl for a ricult	oud data ure,
To introcTo familTo provide	CS: about the Internet of Things technologies and their role in realuce the infrastructure required for IoT. iarize the accessories and communication techniques for IoT. de insight into the embedded processors and sensors required iarize the different platforms and Attributes of IoT.		ation	s.		
UNIT - I	INTRODUCTION TO INTERNET OF THINGS				(9)	
	rdware and software requirements for IOT – Sensor and a ers, Typical IoT applications – Trends and implications.	ctuators – Te	echno	ology	driv	ers,
UNIT - II	IOT ARCHITECTURE			(9)		
Networking -	model and architecture – Node Structure – Sensing, Process Topologies, Layer/Stack architecture, IoT standards, Cloud v Energy beacons.					
UNIT - III	PROTOCOLS AND WIRELESS TECHNOLOGIES FO PROTOCOLS	OR IOT,			(9)	
small cell. Wit	and RFID, Zigbee MIPI, M-PHY, UniPro, SPMI, SPI, M-PC reless technologies for IoT: WiFi (IEEE 802.11) – Bluetooth/E (IEEE 802.15.4), 6LoWPAN, Proprietary systems – Recent tr	Bluetooth Sma				
UNIT - IV	IoT PROCESSORS			(9)		
Maintainabilit	butes: Big-Data Analytics for IoT – Dependability y. Embedded processors for IoT: Introduction to Python pro PI and Arduino.					
UNIT - V	CASE STUDIES				(9)	
	- Home Automation – Smart Cities, Smart Grid connec ironment, Agriculture – Productivity Applications – IoT Defe		– Ele	ectric	veh	icle
		ТОТА	L: 4	5 PF	ERIO	DS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Deliberate the concepts of IoT and its present developments.	Understand
CO2	Compare and contrast different platforms and infrastructures available for IoT.	Understand
CO3	Elucidate different protocols and communication technologies used in IoT.	Understand
CO4	Apply the big data analytics and programming of IoT.	Apply
CO5	Implement IoT solutions for smart applications.	Apply

TEXT BOOKS:

1.	Arshdeep Bahga, Vijai Madisetti, 'A Hands-on Approach: Internet of Things', Universities Press, 2015.
2.	Oliver Hersent, David Boswarthick, 'Omar Elloumi', The Internet of Things, Wiley, 2016.
REFE	RENCES:

1.	Samuel Greengard, 'The Internet of Things', The MIT Press, 2015.
2.	Adrian McEwen, Hakim Cassimally, 'Designing the Internet of Things', Wiley, 2014.
3.	Jean-Philippe Vasseur, Adam Dunkels, 'Interconnecting Smart Objects with IP: The Next Internet', Morgan Kuffmann Publishers, 2010.

		Mapping of (COs with POs and l	PSOs	
COs/ POs	PO1	PO2	PO3	PSO1	PSO2
CO1	1	1	2	2	2
CO2	-	2	-	2	2
CO3	1	2	-	2	2
CO4	2	-	3	2	2
CO5	3	2	3	2	2
Avg.	1.75	1.75	2.6	2	2
1- Low,	2- Medium, 3- Higl	n	1		

ETA4	D21	EMBEDDED CVCTENT LADODATODV	Category	L	Т	Р	C
ET24	P21	EMBEDDED SYSTEM LABORATORY – II	PCC	0	0	4	2
The stup particul operation	larly in	should have a foundational understanding of embedded system C/C++. Proficiency in hardware interfacing techniques ems (RTOS) are also essential. Basic knowledge of digital	and familiar	ity w	vith 1	real-t	im
OBJE(•	C TIVE To en	S: hance skills in designing and developing complex ember	dded systems	. inte	egrati	ing ł	ootl
•	hardw To gai	are and software components. n experience with advanced interfacing techniques, including			-	-	
•	To app	N, Ethernet, and wireless technologies. ply real-time operating system (RTOS) concepts to develop a e timing and task management.	and test applic	cation	is tha	t req	uir
•		cus on optimizing embedded software for performance, efficient ing memory and power consumption.	ency, and reso	ource	mana	agem	ent
•		prove debugging skills and troubleshoot complex issues in en and techniques.	bedded system	ms us	ing a	dvan	ceo
LIST (OF EXI	PERIMENTS:					
	•	mming ARM processor: ARM7/ARM9/ARM Cortex – Stud rs and debuggers.	y on In-circu	it em	ulato	ors, c	ros
2. I	/O Prog	gramming with ARM processor: ARM7/ARM9/ARM Cortes	Microcontro	llers.			
		rfacing: Timers / Interrupts / Serial portprogramming / PWI DAC / LCD / RTC Interfacing / Sensor Interfacing.	M Generation	/ Mo	otor (Conti	ol
		ming with Raspberry Pi Microcontroller Board: Study rs and debuggers.	on in-circuit	emu	ılatoı	rs, ci	ros
I	nterrup	gramming with Arduino, Raspberry Pi Microcontroller Bo ts / Serial port programming / PWM Generation / Motor Cor ing / Sensor Interfacing / IoT Applications.			0		
5. F	Program	ming with DSP processors.					
6. S	Study of	f one type of Real-Time Operating Systems (RTOS).					
			ΤΟΤΑ	L: (50 PI	ERIC	D

COURSE OUTCOMES:

At the	end of the course, t	he students will be	able to:		
COs	5	Course (Outcome		Cognitive Level
CO	l processors u	mplement programs sing in-circuit er ptimize embedded s	nulators, cross-co	mpilers, and	Apply
CO2	2 ARM7/ARM9 peripherals suc	troubleshoot I/O /ARM Cortex ch as timers, interrup ADC/DAC, LCD, F	microcontrollers, ots, serial ports, PW	interfacing M generation,	Apply
CO:	and Arduino r cross-compiler	plement I/O interfact nicrocontroller boar rs, and debuggers or integration, PWM	ds, utilizing in-circ for real-time IoT	uit emulators, applications,	Apply
CO4	process real-ti	ed programming te me data, ensuring h ems applications.		•	Apply
CO	5 Systems (RTO	rchitecture and funct S) and implement e essing and multitask	mbedded applicatio		Apply
REFE	RENCES:				
1. A	Amos Gilat, 'MATL	AB: An Introduction	with Applications'	, Wiley, Fourth	Edition, 2012.
	Farzin Asadi, 'Simu Analyze, and Prototy				3®/Simulink®, Design ion, 2022.
		Mapping of (COs with POs and	PSOs	
COs/ POs	PO1	PO2	PO3	PSO1	PSO2
CO1	2	1	2	-	2
CO2	-	-	2	-	2
CO3	2	3	2	-	2
CO4	2	-	2	-	2
CO5	-	-	2	-	2
Avg.	2	2	2	-	2
1 - Lov	v, 2 - Medium, 3 - H	igh			

ET24P22	TECHNICAL PRESENTATION	Category	L	Т	Р	С
E 1 24F 22	TECHNICAL PRESENTATION	EEC	0	0	2	1

PREREQUISITE:

Students should have a core grasp of the subject matter connected to their area of study to efficiently prepare and deliver technical presentations. This understanding should include a fundamental comprehension of research methodologies, the ability to write reports, and familiarity with key technical ideas.

OBJECTIVES:

- To enable students to critically review and recognize key challenges in their field of interest, enabling distinct study and the development of new solutions.
- To facilitate students to explore particular topics or areas of interest via complete literature evaluation, including journals, conference proceedings, and other academic sources.
- To bridge the gap between theoretical knowledge and practical application by enhancing students' ability to apply learned concepts to solve real-time problems effectively and collaboratively.
- To enhance their understanding of a topic by having them present and receive feedback on their findings.
- To equip students with the skills needed to effectively communicate their research and ideas through structured report writing and professional presentations related to their area of study.

The students should adhere to the following Guidelines:

- 1. The students have to refer to the journals and conference proceedings and collect the published literature.
- 2. By mutual discussions with the faculty in-charge the student can decide on a topic related to the area/topic.
- 3. The student is expected to collect at least 20 such research papers published in the last 5 years.
- 4. Using OHP / PowerPoint, the student has to make a presentation for 20 minutes followed by 10 minutes discussion.
- 5. The student has to make five presentations in the semester.
- 6. The student has to write a technical report for about 30 50 pages (Title page, One-page Abstract, Review of Research paper under various sub-headings, concluding remarks, and list of references). The technical report has to be submitted to the course coordinator one week before the final presentation, after the approval of the faculty in-charge.

TOTAL: 30 PERIODS

COURSE	OUT	FCOMES:				
Upon com	pleti	on of the course	, the students wil	l be able to:		
Course Outcome			Descrip	tion		Bloom's Taxonomy Level
CO1	Far	niliarize the prob	lems in general ar	eas of interest to	the student.	Understand
CO2		ntify the area/j ceedings, etc.	problem by refe	erring to journa	als, conference	Understand
CO3		velop the collecti e problems.	ve skills between	theoretical know	ledge and real-	Understand
CO4	Gai	n knowledge on	the problem by pr	esentation and rev	view.	Understand
CO5	Aco	quire ideas on rep	oort writing and pr	resentation.		Understand
		Ν	Mapping of COs	with POs and PS	Os	
COs/ PO	s	PO1	PO2	PO3	PSO1	PSO2
CO1		2	3	3	3	2
CO2		2	3	3	3	2
CO3		2	3	3	3	2
CO4		2	3	3	3	2
CO5		2	3	3	3	2
Avg.		2	3	3	3	2

n, 7.4 n • • •	WIRELESS AND MOBILE COMMUNICATION	Category	L	Т	Р	C
ET24E01	WIRELESS AND MOBILE COMMUNICATION	PEC	3	0	0	3
essential. Fam in understandi provides an a	SITE: lation in basic communication principles, including analog iliarity with electromagnetic theory, signal processing, and r ng complex topics. Knowledge of electronics, particularly in 1 advantage. Additionally, programming skills and experien 1 enhance practical understanding and application.	network funda RF and micro	ament wave	tals v engi	vill h neeri	iel
OBJECTIVE To rea To ex To inv To de	· · · ·					
UNIT - I	THE CELLULAR CONCEPT				(9)	
Strategies – Pr channel Inter interference, F	n Fundamentals: Introduction, Frequency Reuse, Channel A ioritizing Handoffs, Practical Handoff Considerations, Interfe Ference and system capacity, Channel planning for Wirele Power Control for Reducing interference, Trunking and Grade Cellular Systems-Cell Splitting, Sectoring.	erence and systems, A	tem c Adjac	apac cent	ity – Char	Co ine
	Centual Systems-Cent Spitting, Sectoring.					ag
UNIT - II	MOBILE RADIO PROPAGATION: LARGE-SCALE I				(9)	-
UNIT - II Introduction to Diffraction-Fr Scattering, Or Propagation M Ericsson Mult		elating Powe ultiple knife- a Model, Ha Log-distance	edge ta M path	Dif odel loss	ic Fie fracti , Ind mo	eld ion loo del
UNIT - II Introduction to Diffraction-Fr Scattering, Or Propagation M Ericsson Mult	MOBILE RADIO PROPAGATION: LARGE-SCALE I o Radio Wave Propagation, Free Space Propagation Model, R esnel Zone Geometry, Knife edge Diffraction Model, M utdoor Propagation Models-Longley-Ryce Model, Okumur Models-Partition losses, Partition losses between Floors, I iple Breakpoint Model, Attenuation Factor Model, Signal	elating Powe ultiple knife- a Model, Ha Log-distance	edge ta M path	Dif odel loss	ic Fie fracti , Ind mo	eld ion loo del
UNIT - II Introduction to Diffraction-Fr Scattering, Or Propagation M Ericsson Mult Tracing and S UNIT - III Small-Scale F fading, Doppl and Received Channels – T Types of Sma selective fadin Equalization, Equalizers, No	MOBILE RADIO PROPAGATION: LARGE-SCALE I D Radio Wave Propagation, Free Space Propagation Model, R esnel Zone Geometry, Knife edge Diffraction Model, M utdoor Propagation Models-Longley-Ryce Model, Okumur Models-Partition losses, Partition losses between Floors, I iple Breakpoint Model, Attenuation Factor Model, Signal p ite Specific Modelling. MOBILE RADIO PROPAGATION ading and Multipath: Small Scale Multipath propagation – er shift, Impulse Response Model of a multipath channel – R power, Small-Scale Frequency Domain Channels Sounding, I ime Dispersion Parameters, Coherence Bandwidth, Doppler Il-Scale Fading-Fading effects Due to Multipath Time Delay ng, Fading effects Due to Doppler Spread – Fast fading, Training A Generic Adaptive Equalizer, Equalizers in a co onlinear Equalization.	Eelating Powe ultiple knife- a Model, Ha Log-distance penetration in Factors influe elationship be Parameters of r Spread and Spread, Flat slow fading,	edge ta M path to bu encing etwee Mob Cohe fadin Fund	Dif odel, loss ildin g sm n Ba ile M erenc g, Fr dame	ic Fid fracti fracti no ags, 1 (9) all-sc ndwi lultip e Ti eque ntals , Lin	eld ion del Ray cale idth path me ncy ; 0
UNIT - II Introduction to Diffraction-Fr Scattering, Or Propagation M Ericsson Mult Tracing and S UNIT - III Small-Scale F fading, Doppl and Received Channels – T Types of Sma selective fadin Equalization,	MOBILE RADIO PROPAGATION: LARGE-SCALE I o Radio Wave Propagation, Free Space Propagation Model, R esnel Zone Geometry, Knife edge Diffraction Model, M utdoor Propagation Models-Longley-Ryce Model, Okumur Models-Partition losses, Partition losses between Floors, I iple Breakpoint Model, Attenuation Factor Model, Signal p inte Specific Modelling. MOBILE RADIO PROPAGATION ading and Multipath: Small Scale Multipath propagation – er shift, Impulse Response Model of a multipath channel – R power, Small-Scale Frequency Domain Channels Sounding, I ime Dispersion Parameters, Coherence Bandwidth, Doppler Il-Scale Fading-Fading effects Due to Multipath Time Delay ng, Fading effects Due to Doppler Spread – Fast fading, Training A Generic Adaptive Equalizer, Equalizers in a complexition	Eelating Powe ultiple knife- a Model, Ha Log-distance penetration in Factors influe elationship be Parameters of r Spread and Spread, Flat slow fading,	edge ta M path to bu encing etwee Mob Cohe fadin Fund	Dif odel, loss ildin g sm n Ba ile M erenc g, Fr dame	ic Fie fracti fracti , Ind mo ags, I (9) all-so ndwi Iultip e Tin eque entals	eld ion del Ray

UNIT	NIT - V IP MOBILITY FRAMEWORK			(9)		
Name	nges of IP Mobility - Server Interfaces – Se cess Network – IPv6	curity – Mobility –	Based AAA Protoc			
				Т	COTAL: 4	5 PERIODS
COUR	RSE OUTCOMES:					
At the	end of the course, the					
CO	s	Course	Outcome		Cogni	tive Level
CO	1 Describe the pr	rinciples of cellular	communication.		Und	erstand
CO	2 Exemplify the	concepts of mobile	radio propagation.		Und	erstand
CO	3 Perceive the w	ireless network's di	fferent types of MA	C protocols.	А	pply
CO	4 Discuss Equali	zation and Diversit	у.		Und	erstand
CO	5 Build the Wire	less multiple access	s and IP.		А	pply
TEXT	BOOKS:					
1.	Theodore S. Rappap 2002.	oort, 'Wireless Com	munications, Princ	iples', Practice, S	Second Edi	tion, PHI,
2.	Andrea Goldsmith,	Wireless Commun	ications', Cambridg	ge University Pre	ess, 2005.	
REFE	RENCES:					
1.	Kaveh Pah Laven an 2002.	nd P. Krishna Murtl	ny, 'Principles of W	vireless Networks	s', Pearson	Education,
2.	Gottapu Sasibhusha	na Rao, 'Mobile Ce	ellular Communicat	ion', Pearson Ed	ucation, 20	012.
3.	Kamilo Feher, 'Wir	eless Digital Comm	unications', PHI, 1	999		
4.	Sanjeev Kumar, 'W	ireless and Mobile	Communication', N	Jew Age Internat	ional, 2008	3.
		Mapping of	COs with POs and	l PSOs		
COs/ POs	PO1	PO2	PO3	PSO1		PSO2
CO1	3	3	2	-		2
CO2	3	3	2	-		2
CO3	3	3	2	-		2
CO4	-	-	-	-		2
CO5		-	-	-		2
Avg.	3	3	2	-		2
1- Low	v, 2- Medium, 3- Higl	1		•	·	

етэлеаэ		Category	L	Т	Р	С
ET24E02	ROBOTICS AND AUTOMATION	PEC	3	0	0	3
essential. Kno robotic motion with embedde	SITE: Indation in mathematics, including linear algebra, calculus, owledge of physics, particularly in mechanics and dynamic in and control. Familiarity with programming languages like d systems are important for developing robotic algorithms. ns, sensors, and actuators will enhance the understanding	s, is crucial : Python or C+ Additionally,	for un + and a ba	nders d exp ickgr	stand peries ound	ing nce in
 OBJECTIVE To im To ex To stu To ex 	S: part the need for embedded system technology for robot build plore the various parts of robots and the fields of robotics. dy the various kinematics and inverse kinematics of robots. plore the trajectory planning for the robot. dy the control of robots for some specific applications.	ling.				
UNIT - I	INTRODUCTION TO ROBOTICS & AUTOMATION				(9)	
Software for A Generations o	Robotics and Automation – Principles and Strategies of Autor Automation – Embedded Processors for Automation – Differ f Robots – Asimov's Laws of Robotics – Key Components o robot – Role of embedded system in Robotics and automation	rent Types of of a Robot – D	Robo Desigi	ots –	Vari	ous
UNIT - II	SENSORS AND DRIVE SYSTEMS				(9)	
friction coeffic Speed Arrang Magnetic) – F	eumatic, and Electric Drive Systems – Understanding how cient affects the design of a robot – Determination of motor H gements. Sensors – Classification based on sensing type proximity Sensors – Ranging Sensors – Speed & Displacement s – Smart Sensors – MEMS sensors.	HP and gearin (including C	g rati Optica	lo – V al, A	Varia cous	ble tic,
UNIT - III	MANIPULATORS AND GRIPPERS				(9)	
Manipulator I	to Manipulators – Joints and Degrees of Freedom – Co Dynamics and Force Control – Electronic and Pneumatic Man prious Types of Grippers – Design Considerations.					
UNIT – IV	KINEMATICS AND PATH PLANNING				(9)	
Jacobian-base	uations – Forward and Inverse Kinematics – Solution of d Velocity Kinematics – Various Path Planning Algorithms ng System – Simulation and modeling of a simple path plann	- Hill Climb	ing T			
UNIT - V	CASE STUDIES				(9)	
	esign – Humanoid Robot – Robots in healthcare application nufacturing and Non-Manufacturing Applications – Self-b					
		ТОТА	L: 4	5 PE	RIO	DS

At the	end of the course.	the students will be	able to:		
COs			Outcome		Cognitive Level
CO1	Choose suitable e		Understand		
CO2	Demonstrate the robots.	concepts of robotic	cs and automation	and the working of	Apply
CO3	Describe the func	tion of sensors and a	ctuators in the robot		Undersatnd
CO4	Develop a program	m to use a robot for a	a typical application.		Apply
CO5			and entrepreneursh system-based robot	ip capacity due to development.	Apply
ТЕХТ	BOOKS:				
1.	Mikell P. Weiss G 2017.	.M., Nagel R.N., O	draj N.G., 'Industria	al Robotics', Mc Grav	w-Hill Singapor
2.	Ghosh, 'Control i Chennai, 2009.	n Robotics and Au	atomation: Sensor I	Based Integration', A	Allied Publisher
REFEI	RENCES:				
1.	Deb. S.R., 'Robotic	cs Technology and F	lexible Automation'	, John Wiley, USA 19	92.
2.		nielewski T.A., Neg lia, New Delhi, 1994		ngineering - An Integ	rated Approach
3.	Mc Kerrow P.J. 'In	troduction to Roboti	cs', Addison Wesley	, USA, 1991.	
4.	Issac Asimov 'Rob	ot', Ballantine Book	s, New York, 1986.		
	1	Mapping of	COs with POs and	PSOs	
COs/ POs	PO1	PO2	PO3	PSO1	PSO2
CO1	1	2	-	-	2
CO2	-	3	-	-	2
CO3	-	-	-	-	2
CO4	-	-	-	-	2
CO5	-	-	2	-	2
	1	2.5	2		2

ET24E03		Category	L	Т	Р	C
ET24E03	EMBEDDED PROCESSOR DEVELOPMENT	PEC	3	0	0	3
C/C++ progr Knowledge o Additionally, skills in desig OBJECTIVI • To de their • To bu and u • To d	erstanding of microcontroller architecture and digital electro ramming and assembly language is essential for coding a f computer organization, operating systems, and real-time syst hands-on experience with development boards and debugg ming and optimizing embedded systems.	and interfacing tems provides a ing tools will of embedded s iding its structu	g wit solic enhar ysten ure, f	h ha l founce p ns, in uncti	rdwa ndati oracti clud onal	are ion ica ling ity
• To b	uild and compile object-oriented programming concepts us cation in embedded systems.	ing C++, with	a fo	cus	on tł	hei
• To cr	reate effective software models for embedded systems, utilized odologies.	zing industry-s	tanda	rd to	ols a	anc
• To cr	reate effective software models for embedded systems, utiliz	zing industry-s	tanda	rd to	ools a	anc
• To cr methe UNIT - I Introduction embedded sy Architecture	reate effective software models for embedded systems, utilized odologies.	mbedded syste tt trends in en	ms, (Dver led s	(9) view yster	7 0 ms
• To cr methe UNIT - I Introduction embedded sy Architecture	reate effective software models for embedded systems, utilized odologies. EMBEDDED CONCEPTS to embedded systems, Application Areas, Categories of ensembedded systems, recent of embedded systems, Hardware architecture, Software architecture, Softw	mbedded syste at trends in en hitecture, Appl	ms, (Dver led s	(9) view yster	7 O
To cr metho UNIT - I Introduction embedded sy Architecture Communicati UNIT - II Background of Thumb-2 and Purpose Regi Exceptions an Assembly B	reate effective software models for embedded systems, utilized ologies. EMBEDDED CONCEPTS to embedded systems, Application Areas, Categories of enstem architecture, Specialties of embedded systems, recent of embedded systems, Hardware architecture, Software architecture, Software, Development and debugging Tools. ARM ARCHITECTURE AND OVERVIEW OF CORT of ARM Architecture, Architecture Versions, Processor Namin Instruction Set Architecture. Overview of Cortex-M3. Cortexisters, Stack Pointer, Link Register, Program Counter, Special Interrupts, Vector. Tables, Stack Memory Operations, Rasics, Instruction List, Instruction Descriptions. Cortex-Rasics, Instruction List, Instruction Descriptions. Cortex-Rasics, Diagram, Bus Interfaces on Cortex-M3, I-Code Bus, D-Comparison.	mbedded syste at trends in en hitecture, Appl TEX ng, Instruction a x-M3 Basics: F cial Registers, eset Sequence. M3 Implement	ms, (bedc icatic Set D Regist Oper Insti-	Dver led s on So evelo ters, ation ation	(9) view yster oftwa (9) opma Gene Mo Opm Se ervia	ent ent era ode ets ew
To cr metho UNIT - I Introduction embedded sy Architecture Communicati UNIT - II Background of Thumb-2 and Purpose Regi Exceptions an Assembly B Pipeline, Bloo PPB and DAI	reate effective software models for embedded systems, utilized ologies. EMBEDDED CONCEPTS to embedded systems, Application Areas, Categories of enstem architecture, Specialties of embedded systems, recent of embedded systems, Hardware architecture, Software architecture, Software, Development and debugging Tools. ARM ARCHITECTURE AND OVERVIEW OF CORT of ARM Architecture, Architecture Versions, Processor Namin Instruction Set Architecture. Overview of Cortex-M3. Cortexisters, Stack Pointer, Link Register, Program Counter, Special Interrupts, Vector. Tables, Stack Memory Operations, Rasics, Instruction List, Instruction Descriptions. Cortex-Rasics, Instruction List, Instruction Descriptions. Cortex-Rasics, Diagram, Bus Interfaces on Cortex-M3, I-Code Bus, D-Comparison.	mbedded syste at trends in en hitecture, Appl TEX ng, Instruction a x-M3 Basics: F cial Registers, eset Sequence. M3 Implement	ms, (bedc icatic Set D Regist Oper Insti-	Dver led s on So evelo ters, ation ation	(9) view yster oftwa (9) opma Gene Mo Opm Se ervia	ent era ode ew
To cr metho UNIT - I Introduction embedded sy Architecture Communicati UNIT - II Background o Thumb-2 and Purpose Regi Exceptions an Assembly B Pipeline, Bloo PPB and DAI UNIT - III Overview, T Standard), U Software Inte	reate effective software models for embedded systems, utilized ologies. EMBEDDED CONCEPTS to embedded systems, Application Areas, Categories of enstem architecture, Specialties of embedded systems, recent of embedded systems, Hardware architecture, Software architecture, Software, Development and debugging Tools. ARM ARCHITECTURE AND OVERVIEW OF CORT of ARM Architecture, Architecture Versions, Processor Naminal Instruction Set Architecture. Overview of Cortex-M3. Cortexisters, Stack Pointer, Link Register, Program Counter, Special Interrupts, Vector. Tables, Stack Memory Operations, Reasics, Instruction List, Instruction Descriptions. Cortex-Rasics, Instruction List, Instruction Descriptions. Cortex-Rasics, Processor Naminal Interrupts, Bus Interfaces on Cortex-M3, I-Code Bus, D-CP Bus.	mbedded syste at trends in en hitecture, Appl TEX ng, Instruction a x-M3 Basics: F cial Registers, eset Sequence. M3 Implement Code Bus, Syst errocontroller Se , Exception/In other Cortex-N	ms, (bedc ication Set D Regist Oper Instr tation em B oftwa terrup	Dver led s on So evelo cers, , ation ructio ov us, I ov us, I fure In ot H	(9) view yster oftwa (9) opma Gene Mo on So rervia Exter (9) nterf andlo	o ms are ent era ode ets ew rna
To cr metho UNIT - I Introduction embedded sy Architecture Communicati UNIT - II Background o Thumb-2 and Purpose Regi Exceptions an Assembly B Pipeline, Bloo PPB and DAI UNIT - III Overview, T Standard), U Software Inte	reate effective software models for embedded systems, utilization example 1 EMBEDDED CONCEPTS to embedded systems, Application Areas, Categories of enstem architecture, Specialties of embedded systems, recent of embedded systems, Hardware architecture, Software architecture, Software, Development and debugging Tools. ARM ARCHITECTURE AND OVERVIEW OF CORT of ARM Architecture, Architecture Versions, Processor Namin Instruction Set Architecture. Overview of Cortex-M3. Corte isters, Stack Pointer, Link Register, Program Counter, Spect nd Interrupts, Vector. Tables, Stack Memory Operations, R asics, Instruction List, Instruction Descriptions. Cortex-N cortex-M3/M4 PROGRAMMING ypical Development Flow, Using C, CMSIS (Cortex Mic sing Assembly Exception Programming: Using Interrupts rupts, Vector Table Relocation. Memory Protection Unit and	mbedded syste at trends in en hitecture, Appl TEX ng, Instruction a x-M3 Basics: F cial Registers, eset Sequence. M3 Implement Code Bus, Syst errocontroller Se , Exception/In other Cortex-N	ms, (bedc ication Set D Regist Oper Instr tation em B oftwa terrup	Dver led s on So evelo cers, , ation ructio ov us, I ov us, I fure In ot H	(9) view yster oftwa (9) opma Gene Mo on So rervia Exter (9) nterf andlo	ent era eets ew rna

(9)

UNIT - V UNIFIED MODELING LANGUAGE

The compilation process – libraries – porting kernels – C extensions for embedded systems – emulation and debugging techniques – RTOS – System design using RTOS.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Demonstrate basic concepts of embedded systems.	Understand
CO2	Build ARM architecture.	Understand
CO3	Understand C language and assembly programming.	Apply
CO4	Build and compile Object orientation for programming and C++.	Apply
CO5	Create software modeling.	Apply

TEXT BOOKS:

1.	David Seal 'ARM Architecture Reference Manual', Addison Wesley, England; Morgan Kaufmann Publisher, 2001.
2.	Andrew N Sloss, Dominic Symes, Chris Wright, 'ARM System Developer's Guide – Designing and
	Optimizing System Software', Elsevier, 2006.

REFERENCES:

1.	Cortex-M series-ARM Reference Manual.
2.	Ajay Deshmukh, 'Microcontroller -Theory & Applications', Tata McGraw Hill.
3.	Joseph Yiu, 'The Definitive Guide to the ARM Cortex-M3', Elsevier Inc., Second Edition, 2010.
4.	Marwedel P, 'Embedded System Design', 2021.

Mapping of COs with POs and PSOs

COs/ POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	2	3	1	-	2			
CO2	3	-	3	-	2			
CO3	-	-	2	-	2			
CO4	-	-	3	-	2			
CO5	2	-	3	-	2			
Avg.	2.3	3	2.4	-	2			
1- Low,	2- Medium, 3- Hig	1	•	•	•			

ET24E04	4 SYSTEM DESIGN USING MICROCONTROLLER Category	L	Т	Р	C	
E124E04	SISTEM DESIGN USING MICROCONTROLLER	PEC	3	0	0	3
	(Common to ET & PE)					
exposure to p interfacing, su and communi control techni	SITE: Id be familiar with memory structures, addressing modes, a rogramming in Assembly and C for microcontrollers. A bas ach as ADC/DAC, Flash and EEPROM, along with experience cation protocols like UART, is essential. Additionally, a gra ques, and real-time data acquisition systems is necessary to fa on of control systems using both PIC and ARM microcontrolle	ic understand e in handling sp of signal g cilitate the pra	ling o I/O p genera	of pe orts, ation	riph , tim , mo	eral ers, otor
 micro To ga variou To ex PIC n To m micro 	CS: nderstand the architecture, memory organization, and controllers. in proficiency in programming PIC microcontrollers using <i>A</i> as embedded applications. plore the utilization of I/O ports, data conversion techniques, a nicrocontroller-based systems. aster the implementation of timer programming for time-se controllers. velop practical experience in embedded system design through	Assembly and and RAM & R nsitive applic	C la OM ation	alloc s us	ages cation	for n in PIC
	AB development environment for PIC microcontrollers.	gir nanus-on j			(9)	
	Memory organization – Addressing modes – Instruction set –	PIC program	ning	in A		hlv
	t, Data Conversion, RAM & ROM Allocation, Timer program					
UNIT - II	ARM ARCHITECTURE				(9)	
	- Memory organization – Addressing modes – The ARM Progerrupts – Coprocessors – Interrupt Structure.	grammer's mo	odel –	- Reg	giste	rs –
UNIT - III	PERIPHERALS OF PIC AND ARM MICROCONTRO	LLER			(9)	
	AC and Sensor Interfacing – Flash and EEPROM memories. A SRAM –Timer – UART – Serial Communication with PC – A				EPR	ЭМ
UNIT – IV	ARM MICROCONTROLLER PROGRAMMING				(9)	
ARM General example of Fi	Instruction set – Thumb instruction set – Introduction to Date Iters.	SP on ARM -	– Imp	olem	entat	tion
UNIT - V	DESIGN WITH PIC AND ARM MICROCONTROLLE	RS			(9)	
DC/AC appli	tation – Generation of Gate signals for converters and Inverters ances – Measurement of frequency – Standalone Data on – Simple ASM/C programs – Loops – Look up table – Block	Acquisition	Syste	em -	- A]	RM
		TOTA	L: 45	5 PE	RIO	DS

COURSE OUTCOMES: At the end of the course, the students will be able to: COs **Course Outcome Cognitive Level CO1** Describe the basics and requirements of processor functional blocks. Understand **CO2** Observe the specialty of RISC processor Architecture. Apply Incorporate I/O hardware interface of processor-based automation for **CO3** Apply consumer applications with peripherals. **CO4** Incorporate the I/O software interface of a processor with peripherals. Apply **CO5** Elaborate the recent trends in commercial embedded processors Apply **TEXT BOOKS:** 1. Steve Furber, 'ARM system on chip architecture', Addison Wesley, 2010. Andrew N. Sloss, Dominic Symes, Chris Wright, John Rayfield 'ARM System Developer's Guide 2. Designing and Optimizing System Software', Elsevier, 2007. **REFERENCES:** Muhammad Ali Mazidi, Rolin D. Mckinlay, Danny Causey 'PIC Microcontroller and Embedded 1. Systems using Assembly and C for PIC18', Pearson Education, 2008. 2. John Iovine, 'PIC Microcontroller Project Book', McGraw Hill, 2000. 3. ARM Architecture Reference Manual, LPC213x User Manual. Mapping of COs with POs and PSOs COs/ **PO2 PO3 PSO1** PSO₂ **PO1** POs 2 2 **CO1** _ _ -**CO2** 3 2 1 _ -2 **CO3** 1 _ ___ _ **CO4** 1 2 _ _ _ **CO5** 2 2 _ _ _ 2 2 Avg. 1 --

1- Low, 2- Medium, 3- High

ET24E05	INTELLIGENT CONTROL AND AUTOMATION	Category	L	Т	Р	C
E124E05	INTELLIGENT CONTROL AND AUTOMATION	PEC	3	0	0	3
essential. Und analyzing and networks and	SITE: ground in control systems theory, including classical and derstanding of linear algebra, differential equations, and sy designing control algorithms. Familiarity with artificial intell fuzzy logic, will aid in grasping advanced control strategies. ols like MATLAB and programming languages such as Pyte	ystem dynam igence concer Additionally	ics is ots, su , exp	s cru uch a erien	cial s neu ce w	fo ıra /itl
implementatio						
netwo	lidate and understand the fundamental architectures, principorks and fuzzy logic systems.					
limita • To en	pply and implement Genetic Algorithms (GA) while unders tions. lighten and critically evaluate hybrid control schemes, focusi ffectiveness.	-				
To in accuraTo d	terpret and understand the significance of automation con- acy, and productivity across various industries. evelop intelligent controllers tailored for automation ap ability and performance.			-		
UNIT - I	ARTIFICIAL NEURAL NETWORK AND FUZZY LOO	GIC			(9)	
Fuzzy Logic & identification	Igorithm (BPA) ANNs for identification, ANNs for control, an Control: Introduction, fuzzy sets, fuzzy logic, fuzzy logic control, Adaptive Fuzzy Control Design.	-			odell	
UNIT - II	GENETIC ALGORITHM				(9)	
typical contro	of Genetic algorithm and detail algorithmic steps – Hybrid g of problems using genetic algorithm. Concept on some other plony search, and Particle Swarm Optimization					
UNIT - III	HYBRID CONTROL SCHEMES				(9)	
	and rule base using ANN – Neuro-fuzzy systems – ANFIS ule base using Genetic Algorithm and Particle Swarm Optimized		on of	merr	bers	hij
UNIT – IV	AUTOMATION				(9)	
Basic Elemen	o Automation – Automation in Production System, Principles ats of an Automated System, Advanced Automation Function omation – Computer vision for automation – PLC and SCAD Industry 4.0.	ions, Levels	of A	utom	ation	1 -
UNIT - V	INTELLIGENT CONTROLLER FOR AUTOMATION APPLICATION				(9)	
	of intelligent controllers in industrial monitoring, optimization concept for electrical vehicles – Intelligent controller and auto					ce
		TOTA	L: 4	5 PE	RIO	D

	SE OUTCOMES:	he students will be	able to:		
At the end of the course, the students will be able to: COs Course Outcome					Cognitive Level
CO1	Describe the b		Understand		
CO2	Design and im	plement GA algorith	ms and know their l	imitations.	Apply
CO3	Explain and ev	aluate hybrid contro	l schemes.		Apply
CO4	Interpret the si	gnificance of Autom	nation concepts.		Apply
COS	5 Develop the in	telligent controller for	or automation applic	cations.	Apply
ГЕХТ	BOOKS:				
1.		sett, 'Fundamentals arson Education, 200		orks, Architectu	rre, Algorithms, ar
2.	Timothy J.Ross, '	Fuzzy Logic with En	gineering Application	ons', Wiley, Thir	d Edition, 2010.
REFEI	RENCES:				
1.	David E. Goldberg Education, 2009.	g, 'Genetic Algorithn	ns in Search, Optimiz	zation, and Mach	ine Learning', Pearso
2.	Miller, W.T. Sutto	on, R.S. and Webrose	e, P.J., 'Neural Netw	orks for Control'	, MIT Press, 1996.
3.	Chanchal Dey and Press, 2022.	l Sunit Kumar Sen, '	Industrial Automatic	on Technologies'	, First Edition, CRC
4.	Jovan Pehcevski,	'Intelligent Control a	and Automation', Ba	rnes and Noble,	2022.
		Mapping of (COs with POs and 1	PSOs	
COs/ POs	PO1	PO2	PO3	PSO1	PSO2
CO1	1	1	1	-	2
CO2	2	2	3	-	2
CO3	3	2	2	-	2
CO4	3	2	2	-	2
CO5	3	-	3	-	2
Avg.	2.4	1.75	2.2	_	2

	RENEWABLE ENERGY AND GRID		Т	Р	С	
ET24E06	RENEWABLE ENERGY AND GRID INTEGRATION	PEC	3	0	0	3
is essential. Us storage system comprehendin	ITE: I knowledge of electrical engineering principles, including cinderstanding of renewable energy technologies, such as solar ns. Familiarity with grid operation, control systems, and g integration challenges. Additionally, a grasp of environmenhance the understanding of the broader impact of renewable	, wind, hydro power electr ental science	powe onics and	r, an s wil	d ene 1 aid	rgy in
 To equences To control To determent 	S: ovide knowledge about stand-alone and grid-connected renew hip with the required skills to derive the criteria for designing y applications. nprehend the various operating modes of wind electrical gene sign different power converters namely AC to DC, DC to DC able energy systems. welop maximum power point tracking algorithms.	power conver	ters f ar ene	for re ergy	syste	ms.
UNIT - I	INTRODUCTION				(9)	
renewable end converters for converters, the	o renewable energy systems, environmental aspects of electricergy penetration to grid. Grid Codes in India and other control renewable energy integration to grid – Qualitative ana ee-phase AC voltage controllers – AC-DC-AC converters, Futrix converters.	untries. Basic lysis – Boos	e pow stand	ver el 1 bu	lectro ck-bo	onic Dost
UNIT - II	PHOTO VOLTAIC ENERGY CONVERSION SYSTEM	AS			(9)	
characteristics system, Grid	Photo Voltaic (PV) effect, Solar Cell, Types, Equivalen (I/V and P/V) for variation of insolation, temperature and connected PV system, Design of PV system-load calcula rter, battery sizing.	shading effec	t, Sta	nd-a	lone	PV
UNIT - III	WIND ENERGY CONVERSION SYSTEMS				(9)	
strategies, Pov – Induction G	Power contained in wind, Efficiency limit in wind, types of ver curve, and Operating area, Types of wind generators syste enerator and Permanent Magnet Synchronous Generator (PM system, Self-excited operation of Induction Generator and V	em based on e SG), Grid con	lectri	cal n ed Si	nachi	nes
UNIT – IV	MPPT TECHNIQUES IN SOLAR AND WIND SYSTE	MS			(9)	
Case studies o	f PV – Maximum Power Point Tracking (MPPT) and Wind H	Energy system	1.			

(9)

UNIT - V HYBRID STORAGE SYSTEMS AND GRID MANAGEMENT

Energy Storage systems, Need for Hybrid Systems, Features of Hybrid Systems, Range and types of Hybrid systems (Wind-Diesel, PV-Diesel and Wind-PV).

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

COs		Course O	outcome		Cognitive Level
CO1	Relate the pow grid impact and	er generation of diffe l grid codes.	erent renewable ener	rgy sources to	Understand
CO2	Elucidate the d	esign principles of so	olar energy manager	nent systems.	Apply
CO3	Explicate the p	ower conversion sys	tem of wind generat	cors.	Apply
CO4	Describe the di	fferent Maximum Po	ower Point Tracking	Techniques.	Apply
CO5	Build a grid- management sy		tand-alone renew	able energy	Apply
TEXT I	BOOKS:				
1.	Bhadra, S.N., Kast	ha, D., Banerjee S, '	Wind Electrical Sys	tems', Oxford U	University Press, 2009.
2.				,	ectronics for Renewable nd John Wiley and Sons
REFER	RENCES:				
1.	Rashid. M.H., 'Pov	wer Electronics Hand	dbook', Academic P	Press, 2001.	
2.	Rai. G.D, 'Non-co	nventional Energy S	ources', Khanna Pu	blishers, 1993.	
3.	Gray, L. Johnson,	Wind Energy System	m', Prentice Hall Li	nc, 1995.	
4.	Khan, B.H., 'Non- Delhi, 2018.	Conventional Energ	y sources', Tata Mo	cGraw-Hill Pub	lishing Company, New
<u> </u>		Mapping of C	COs with POs and l	PSOs	
COs/ POs	PO1	PO2	PO3	PSO1	PSO2
CO1	1	2	1	-	2
CO2	1	1	2	-	2
CO3	2	-	1	-	2
CO4	1	2	1	-	2
CO5	3	3	2	-	2
Avg.	1.6	2	1.4	-	2
1- Low,	2- Medium, 3- Hig	h			

ET24E07	ELECTRIC VEHICLES AND POWER	Category	L	Т	Р	С
E124EV/	MANAGEMENT	PEC systems work. Familiowledge about batter egulations, and policitions architecture. W) and their architectures. W) and their architectures. Marage technologies that IANICS IN COMPONENTS PHEV) – Power train ES ant operation of DC do throl operation – Swite and safety impacts – The IS oton Exchange Member PHEV (1990) – Power train	3	0	0	3
integration, ch cycles, and life	ITE: Thow electric drive trains, batteries, and charging system arging infrastructure, and smart grid technologies. Knowledg ecycle management. Awareness of safety standards, regulation stations. Skills in analyzing usage data, energy consumptions.	e about batter ons, and polic	ry tyj ies re	pes, c elated	charg l to E	ing EVs
OBJECTIVE	8:					
 Tor Tor Tor Tor Tor 	ecognize the concept of electric vehicles and its operations. ealize an overview of Electric Vehicle (EV) and their architect ecognize an overview of Hybrid Electric vehicle (HEV) and the ecognize the need for energy storage in hybrid vehicles. provide knowledge about various possible energy storage tertic vehicles.	heir architect		n be	usec	l in
UNIT - I	ELECTRIC VEHICLES AND VEHICLE MECHANICS	5			(9)	
	les (EV), Hybrid Electric Vehicles (HEV), Engine ratings – C gine vehicles – Fundamentals of vehicle mechanics.	omparisons o	f EV	with	inter	rnal
UNIT - II	ARCHITECTURE OF EV's AND POWER TRAIN CO	MPONENTS	5		(9)	
	f EVs and HEV_{s} – Plug-in hybrid electric vehicles (PHEV) elutches, transmission and brakes.	– Power trair	1 con	ipone	ents	and
UNIT - III	POWER ELECTRONICS AND MOTOR DRIVES				(9)	
motor and Per	components – Power electronic switches – Four quadrant oper manent Magnet Synchronous Motor-based vector control op drives – EV motor sizing.					
UNIT - IV	BATTERY ENERGY STORAGE SYSTEM				(9)	
•	 Different types – Battery Parameters – Battery life and safettery for large vehicles. 	ety impacts –	Batte	ery n	iodel	ing
UNIT - V	ALTERNATIVE ENERGY STORAGE SYSTEMS				(9)	
	b fuel cell – Types, operation, and characteristics – Proton Ex ility – Hydrogen storage systems – Supercapacitors for transp	÷			EM) f	fuel
		TOTA	L: 4	5 PE	RIO	DS

COUR	RSE OUTCOMES:				
At the	end of the course, t	he students will be	able to:		
CO	s	Course C	Dutcome		Cognitive Level
CO	1 Describe the co	oncept of electric veh	hicles and energy sto	orage systems.	Understand
CO	2 Explore the wo electric vehicle	orkings and compone es.	ents of electric vehic	les and hybrid	Understand
CO	3 Discuss the pri	nciples of power con	nverters and electric	cal drives.	Understand
CO	4 Describe the supercapacitor	operation of storages.	e systems such as	batteries and	Understand
CO	5 Explore the va hydrogen stora	rious energy storage ge.	e systems based on	fuel cells and	Understand
TEXT	BOOKS:				
1.	Iqbal Hussain, 'Elec Group, Second Edit		icles: Design Funda	amentals', CRC	Press, Taylor & Francis
2.	Ali Emadi, Mehrda Inc., Special 63 Ind		liller, 'Vehicular El	lectric Power Sy	stems', Marcel dekker
REFE	RENCES:				
1.		imin Gao, Sebastian Fundamentals, Theo	•		ric, Hybrid Electric and
2.	C.C. Chan and K.7 2001.	C. Chau, 'Modern E	lectric Vehicle Tec	chnology', OXF	ORD University Press
3.	Wie Liu, 'Hybrid H Edition, 2017.	Electric Vehicle Sys	tem Modeling and	Control', John	Wiley & Sons, Second
4.	J. G. Cowan, 'Powe	r Management of El	ectrical Vehicles,'	McGraw-Hill, 1s	t Edition, 2020.
		Mapping of C	COs with POs and	PSOs	
COs/ POs	PO1	PO2	PO3	PSO1	PSO2
CO1	3	3	3	-	2
CO2	3	3	3	-	2
CO3	3	3	3	-	2
CO4	3	3	3	-	2
CO5	3	3	3		2
Avg.	3	3	3	-	2
1- Lov	v, 2- Medium, 3- Hig	h	•		•

ET24E08	IINMANNED AEDIAL VEHICLE	Category	L	Т	Р	C
E I 24E08	UNMANNED AERIAL VEHICLE	PEC	3	0	0	3
(cameras, sen regulations of	f the UAV's components, including its flight system, GPS, sors, etc.), UAV's intended use (e.g., hobbyist, commercia' the operating country. Selection of a UAV suitable for the ne, a commercial-grade model, or a specialized UAV.	l, or military) and	the	spec	cific
 To im To ex To em To kn 	derstand basic UAV concepts and components. part UAV design principles. plore UAV hardware structure. phasize communication protocols and control strategies. ow the importance of UAVs in various real-time application systems.	s and the prod	cess (of de	velop	oing
UNIT - I	INTRODUCTION TO UAV				(9)	
	l background – History of UAV – Classification – Socie erial System (UAS) components – Models and prototy					
UNIT - II	THE DESIGN OF UAV SYSTEMS				(9)	
Characteristic	to design and selection of the system – Aerodynamics is s of aircraft types – Design standards – Regulatories and reg res – Specifications. HARDWARE FOR UAVS					
Real-Time En Power Supply	nbedded Processors for UAVS – sensors – Servos – Accele – Integration, installation, configuration, and testing – MEM utopilot – AGL.				uato	
UNIT - IV	COMMUNICATION PAYLOADS AND CONTROLS				(9)	
•	lemetry – tracking – Aerial photography – Controls – PID feed ms – Memory system – Simulation – Ground test – Analysis				eque	ency
UNIT - V	THE DEVELOPMENT OF UAV SYSTEMS				(9)	
	vigation – Ground control software – System ground testing – no UAVS – Case study: Agriculture – health – surveying – Di					
		ТОТА	L: 4	5 PE	CRIC	DDS

COU	RSE OUTCOMES:				
At the	end of the course, t	he students will be	able to:		
CO	s	Course	Outcome		Cognitive Leve
CO	1 Identify and d systems.	escribe various har	dware components	used in UAV	Understand
CO	2 Determine prevenicles.	liminary design re	equirements for un	manned aerial	Apply
CO	3 Design and dev	velop a UAV system	n based on specified	requirements.	Apply
CO	4 Identify and invehicle.	ntegrate various su	bsystems of an un	manned aerial	Apply
CO	5 Design micro limitations.	aerial vehicle	systems, consider	ring practical	Apply
ТЕХТ	BOOKS:				
1.	Austin, 'Unmanned	Aircraft Systems U	JAV Design, Develo	opment and Deple	oyment', Wiley, 2010.
2.	Paul G Fahlstrom, 7	Thomas J Gleason,	'Introduction to UA	V Systems', UAV	V Systems, Inc, 1998.
REFE	RENCES:				
1.	Dr. Armand J. Chap Company, 2001.	out, 'Design of Unn	nanned Air Vehicle	Systems', Lockhe	eed Martin Aeronautic
2.	Kimon P. Valavani Autonomy', Spring		nmanned Aerial Vel	nicles: State of th	ne Art and the Road to
3.	Robert C. Nelson, '	Flight Stability and	Automatic Control ²	, McGraw-Hill, I	inc, 1998.
4.	Correll, N., Hayes, Control, Decision M				us Robots: Mechanics
COs/		Mapping of	COs with POs and	PSOs	
POs	PO1	PO2	PO3	PSO1	PSO2
CO1	1	3	2	-	2
CO2	3	3	3	-	2
CO3	3	3	3	-	2
CO4	-	-	2	-	2
CO5	3	-	3	-	2
Avg.	2.5	3	2.6	-	2
1- Lov	v, 2- Medium, 3- Hig	h		•	1

ET24E00	DED DAGED EVETEM DEGLCN	Category	L	Т	Р	С
ET24E09	DSP BASED SYSTEM DESIGN	PEC	3	0	0	3
Proficiency in commonly use	SITE: g of signal processing concepts, including sampling, Fou linear algebra, calculus, and complex numbers. Knowled ed in DSP, such as C/C++ or MATLAB. Familiarity with ors, and FPGA systems. Basics of analog and digital circuit de	lge of progra h DSP hardw	mmi	ng la	ngua	iges
To exjTo farTo far	S: derstand various representation methods of the DSP system. plore and recognize various DSP algorithms for real-time sys niliarize the various architectures of DSP system. niliarize DSP architectures for interfacing with DSP systems pose students to the knowledge of interfacing DSP systems w	and program			dwa	re.
UNIT - I	REPRESENTATION OF DSP SYSTEM				(9)	
small code si diagrams, sig	nd Multicore, Architectural requirement of DSPs – High the ze, embedded applications. Representation of digital signa gnal flow graphs, data-flow graphs, dependence graph throughput – Parallelism and pipelining.	al processing	syste	ems	– Bl	ock
UNIT - II	DSP ALGORITHMS				(9)	
DCT, decimat	ns – Convolution, Correlation, FIR/IIR filters, FFT, adaptive f tor, expander, and filter banks. DSP applications. Computed applications, numerical representation of signals – Word le ultiplier.	tational chara	cteri	stics	of I	OSP
UNIT - III	SYSTEM ARCHITECTURE				(9)	
data addressin for external int of MIPS, inst	Basic architectural features, DSP computational building block g capabilities, address generation unit, programmability and p terfacing. VLIW architecture. Basic performance issues in pip ruction level parallelism, dynamic scheduling, dynamic har dy of fixed point and floating-point DSP architectures.	program exect pelining, simp	ution le im	, and	feati nenta	ures tion
UNIT - IV	ARCHITECTURE ANALYSIS ON PROGRAMMABL	E HARDWA	RE		(9)	
structures, arc minimal filteri	asic DSP Architectures on programmable hardware. Algorit hitectures for real and complex fast Fourier transforms, 1 ng algorithm. FPGA: Architecture, different sub-systems, des SP algorithms onto FPGA.	D/2D Convol	utior	ns, W	Vinog	grad
UNIT - V	SYSTEM INTERFACING				(9)	
	Digital Signal Processing algorithms suitable for parallel archit cing: Introduction, synchronous serial interface code, a codec					
		ТОТА	L: 4	5 PF	ERIC	DDS

At the	end of the course,	the students will be	able to:		
CO	5	Course (Dutcome		Cognitive Level
CO	L Evaluate DSP	systems using variou	us methods.		Understand
CO2	2 Design algorit	hms suitable for diff	erent DSP application	ons.	Apply
CO.	3 Explain variou	is architectures of D	SP systems.		Understand
CO	4 Implement DS	SP systems in program	mmable hardware.		Apply
CO	5 Interface DSP	systems with variou	s peripherals.		Apply
TEXT	BOOKS:				
1.	Chassaing, 'Digit Interscience Publi	al Signal Processing cation, 2017.	and Application w	rith C6713 and C6	5416 DSK', A Wile
2.	Peter Pirsch John,	'Architectures for D	Digital Signal Proces	sing', Weily, 2007	7.
REFE	RENCES:				
1.	Sen M Kuo, Woor Hall, 2002.	n Seng S Gan, 'Digita	al Signal Processors	', Upper Saddle Ri	ver, Pearson /Prentie
2.		vaz, 'Digital Signa cademic Press, 2008.		em Design: Laby	/IEW-Based Hybr
3.	Keshab K Parhi, Student Edition, 1	VLSI Digital Signal 999.	Processing System	s: Design and Imp	plementation', Wile
4.	Smith, S. W. 'D Edition, Elsevier,	igital Signal Process 2003.	ing: A Practical Gu	ide for Engineers	and Scientists', Fin
		Mapping of (COs with POs and	PSOs	
COs/ POs	PO1	PO2	PO3	PSO1	PSO2
CO1	-	3	-	-	2
CO2	3	3	3	-	2
CO3	-	3	-	-	2
CO4	3	-	3	-	2
CO5	2		3	-	2
	1	1	1	1	1

ET3/E10		Category	L	Т	Р	С
ET24E10	AUTOMOTIVE EMBEDDED SYSTEM	PEC	3	0	0	3
programming languages, as	TTE: erstanding of electrical circuits and electronic component and embedded systems principles is often required. Proficient they are commonly used for embedded systems development ers and working with embedded software.	cy in C and C	C++ 1	orogr	amm	ing
OBJECTIVE • To ex • To ex • To un • To im	S: pose the students to the fundamentals and building of Electro plore the functional components and circuits for vehicles. derstand the programmable controllers used in vehicle manag- part the logic of automation and commercial techniques for v	gement system vehicle comm	ns. unica			
• To int	Troduce the embedded systems concepts for E-vehicle system BASIC OF ELECTRONIC ENGINE CONTROL SYST		•		(9)	
Automotive r requirements f Introduction to	Automotive systems, fuel economy, air-fuel ratio, emission linicrocontrollers – Electronic control Unit – Hardware a for Automotive applications – Open-source ECU – RTOS – C O AUTOSAR and Introduction to Society SAE – Functional of automotive system components.	nd software oncept for En	selec gine i	tion mana	and igem	37 ent;
UNIT - II	SENSORS AND ACTUATORS FOR AUTOMOTIVES				(9)	
	sors – Sensor's interface to the ECU, Conventional sensors – Lidar Sensor – Smart sensors – MEMs/NEMs sensors					
UNIT - III	VEHICLE MANAGEMENT SYSTEMS				(9)	
electronic igni suspension – E for interfacing system, Power	gine control – Engine mapping, air/fuel ratio spark timing tion – Adaptive cruise control – Speed control – Anti-locki Electronic steering, Automatic wiper control – Body control sy with EMS, ECU. Energy management system for electric management system – Electrically assisted power steering so ollision avoidance.	ng braking sy vstem; vehicle vehicles – Ba	stem syste ttery	– El em sc man	lectro chem agen	onic atic nent
UNIT - IV	ONBOARD DIAGNOSTICS AND TELEMATICS				(9)	
communicatio communicatio	nosis of vehicles – System diagnostic standards and re- n protocols Bluetooth, CAN, LIN, FLEXRAY, MOST, KWP2 ns – Navigation – Connected Cars technology – Tracking – S lisplay and Virtual Instrumentation, multimedia electronics	2000 and recented and recented and recented and recently for dates and the second seco	nt trei .ta co	nds ir mmu	n veh inica	icle tion
UNIT - V	ELECTRIC VEHICLES				(9)	
	les – Components – Plug-in Electrical Vehicle – Charging wered vehicles – Autonomous vehicles.	g station – A	ggreg	gators	s – F	Fuel
		ТОТА	L: 4	5 PE	CRIO	DS

Г

POs PO1 PO2 PO3 PS01 PS02 C01 - 2 1 - 2 C02 2 3 2 - 2 C03 3 3 3 - 2 C04 3 3 3 - 2 C05 3 3 3 - 2	COUR	SE OUTCOMES:				
COI Insight into the significance of the role of embedded systems for automotive applications. Understand CO2 Illustrate the need, selection of sensors and actuators, and interfacing with ECU. Apply CO3 Develop the Embedded concepts for vehicle management and control systems. Apply CO4 Demonstrate the need for Electrical Vehicles and able to apply the embedded system technology for various aspects of EVs. Apply CO5 Describe the embedded systems design and its application in automotive systems. Apply TEXT BOOKS: I. William B. Ribbens, 'Understanding Automotive Electronics', Elsevier Hand Book, 2012. 2. Ali Emedi, Mehrdedehsani, John M Miller, 'Vehicular Electric power system - land, Sea, Air and Space Vehicles', Marcel Decker, 2004. REFERENCES: I. Vlacic, L. Parent, M. Harahima, F. 'Intelligent Vehicle Technologies', SAE International, 2001. 2. Jack Erjavec, Jeff Arias, 'Alternate Fuel Technology-Electric, Hybrid, and Fuel Cell Vehicles', Cengage, 2012. 3. Ronald K.Jurgen Chiltons, 'Electronic Engine Control Technology Guide to Fuel Injection' SAE International, Second Edition, 2002. 4. Tom Denton, 'Automotive Electricals / Electronics System and Components', Third Edition, 2004. CO2 2 3 2 2 CO3 <th>At the</th> <th>end of the course, tl</th> <th>ne students will be a</th> <th>able to:</th> <th></th> <th></th>	At the	end of the course, tl	ne students will be a	able to:		
CO1 automotive applications. Onderstand CO2 Illustrate the need, selection of sensors and actuators, and interfacing with ECU. Apply CO3 Develop the Embedded concepts for vehicle management and control systems. Apply CO4 Demonstrate the need for Electrical Vehicles and able to apply the embedded system technology for various aspects of EVs. Apply CO5 Describe the embedded systems design and its application in automotive systems. Apply TEXT BOOKS: I William B. Ribbens, 'Understanding Automotive Electronics', Elsevier Hand Book, 2012. 2. Ali Emedi, Mehrdedehsani, John M Miller, 'Vehicular Electric power system - land, Sea, Air and Space Vehicles', Marcel Decker, 2004. REFERENCES: I Vlacic, L. Parent, M. Harahima, F. 'Intelligent Vehicle Technologies', SAE International, 2001. 2. Jack Erjavec, Jeff Arias, 'Alternate Fuel Technology-Electric, Hybrid, and Fuel Cell Vehicles', Cengage, 2012. 3. Ronald K Jurgen Chiltons, 'Electronic Engine Control Technology Guide to Fuel Injection' SAE International, Second Edition, 2002. 4. Tom Denton, 'Automotive Electricals / Electronics System and Components', Third Edition, 2004. CO3 3 3 - 2 CO4 - 2 - 2 2 Co5	COs		Course Ou	ıtcome		Cognitive Level
CO2 with ECU. Apply CO3 Develop the Embedded concepts for vehicle management and control systems. Apply CO4 Demonstrate the need for Electrical Vehicles and able to apply the embedded system technology for various aspects of EVs. Apply CO5 Describe the embedded systems design and its application in automotive systems. Apply FEXT BOOKS: Image: Number of Control Systems design and its application in Space Vehicles', Marcel Decker, 2004. Apply REFERENCES: Image: Number of Control System of Control System - Iand, Sea, Air and Space Vehicles', Marcel Decker, 2004. Referentional, Second Edition, 2002. 1. Vlacic, L. Parent, M. Harahima, F. 'Intelligent Vehicle Technologies', SAE International, 2001. Image: Number of Control Technology Guide to Fuel Injection' SAE International, Second Edition, 2002. 4. Tom Denton, 'Automotive Electricals / Electronics System and Components', Third Edition, 2004. CO5 PO1 PO2 PO3 PSO1 PSO2 CO3 3 3 3 - 2 CO3 3 3 - 2 2 1. Vlacic, L. Parent, M. Harahima, F. 'Intelligent Vehicle Technology Guide to Fuel Injection' SAE International, Second Edition, 2002. - 1 - 2	CO1	•	v	role of embedded	l systems for	Understand
CO3 systems. I C I Apply C04 Demonstrate the need for Electrical Vehicles and able to apply the embedded system technology for various aspects of EVs. Apply C05 Describe the embedded systems design and its application in automotive systems. Apply C05 Describe the embedded systems design and its application in automotive systems. Apply FEXT BOOKS: I William B. Ribbens, 'Understanding Automotive Electronics', Elsevier Hand Book, 2012. Ali Emedi, Mehrdedehsani, John M Miller, 'Vehicular Electric power system - land, Sea, Air and Space Vehicles', Marcel Decker, 2004. REFERENCES: I Vlacic, L. Parent, M. Harahima, F. 'Intelligent Vehicle Technologies', SAE International, 2001. 2. Jack Erjavec, Jeff Arias, 'Alternate Fuel Technology-Electric, Hybrid, and Fuel Cell Vehicles', Cengage, 2012. 3. Ronald K.Jurgen Chiltons, 'Electronic Engine Control Technology Guide to Fuel Injection' SAE International, Second Edition, 2002. 4. Tom Denton, 'Automotive Electricals / Electronics System and Components', Third Edition, 2004. C05 PO1 PO2 PO3 PSO1 PSO2 C01 - 2 1 - 2 C03 3 3 3 - 2 C04 <td< td=""><td>CO2</td><td></td><td>d, selection of sense</td><td>ors and actuators, a</td><td>nd interfacing</td><td>Apply</td></td<>	CO2		d, selection of sense	ors and actuators, a	nd interfacing	Apply
CO4 embedded system technology for various aspects of EVs. CO5 Describe the embedded systems design and its application in automotive systems. Apply FEXT BOOKS: 1. William B. Ribbens, 'Understanding Automotive Electronics', Elsevier Hand Book, 2012. 2. Ali Emedi, Mehrdedehsani, John M Miller, 'Vehicular Electric power system - land, Sea, Air and Space Vehicles', Marcel Decker, 2004. REFERENCES: 1. Vlacic, L. Parent, M. Harahima, F. 'Intelligent Vehicle Technologies', SAE International, 2001. 2. Jack Erjavec, Jeff Arias, 'Alternate Fuel Technology-Electric, Hybrid, and Fuel Cell Vehicles', Cengage, 2012. 3. Ronald K.Jurgen Chiltons, 'Electronic Engine Control Technology Guide to Fuel Injection' SAE International, Second Edition, 2002. 4. Tom Denton, 'Automotive Electricals / Electronics System and Components', Third Edition, 2004. Mapping of COs with POs and PSOs COs/ PO1 PO2 PO3 PSO1 PSO1 Que the state of	CO3	-	bedded concepts for	vehicle managemen	nt and control	Apply
Apply Apply TEXT BOOKS: 1. William B. Ribbens, 'Understanding Automotive Electronics', Elsevier Hand Book, 2012. 2. Ali Emedi, Mehrdedehsani, John M Miller, 'Vehicular Electric power system - land, Sea, Air and Space Vehicles', Marcel Decker, 2004. REFERENCES: 1. Vlacic, L. Parent, M. Harahima, F. 'Intelligent Vehicle Technologies', SAE International, 2001. 2. Jack Erjavec, Jeff Arias, 'Alternate Fuel Technology-Electric, Hybrid, and Fuel Cell Vehicles', Cengage, 2012. 3. Ronald K.Jurgen Chiltons, 'Electronic Engine Control Technology Guide to Fuel Injection' SAE International, Second Edition, 2002. 4. Tom Denton, 'Automotive Electricals / Electronics System and Components', Third Edition, 2004. Mapping of COs with POs and PSOs COs PO3 PSO1 PSO2 COs Olspan= 2 Olspan= 2 CO3 3 CO4 CO5 Olspan= 2 Olspan= 2 CO4 Ols	CO4					Apply
1. William B. Ribbens, 'Understanding Automotive Electronics', Elsevier Hand Book, 2012. 2. Ali Emedi, Mehrdedehsani, John M Miller, 'Vehicular Electric power system - land, Sea, Air and Space Vehicles', Marcel Decker, 2004. REFERENCES: 1. Vlacic, L. Parent, M. Harahima, F. 'Intelligent Vehicle Technologies', SAE International, 2001. 2. Jack Erjavec, Jeff Arias, 'Alternate Fuel Technology-Electric, Hybrid, and Fuel Cell Vehicles', Cengage, 2012. 3. Ronald K.Jurgen Chiltons, 'Electronic Engine Control Technology Guide to Fuel Injection' SAE International, Second Edition, 2002. 4. Tom Denton, 'Automotive Electricals / Electronics System and Components', Third Edition, 2004. Mapping of COs with POs and PSOs Cos PO3 PSO1 PO3 PSO1 PO3 PSO1 PO3 PSO1 PO3 PSO1 PO3 PSO2 CO3 S CO3 S CO4	CO5			design and its a	pplication in	Apply
2. Ali Emedi, Mehrdedehsani, John M Miller, 'Vehicular Electric power system - land, Sea, Air and Space Vehicles', Marcel Decker, 2004. REFERENCES: 1. Vlacic, L. Parent, M. Harahima, F. 'Intelligent Vehicle Technologies', SAE International, 2001. 2. Jack Erjavec, Jeff Arias, 'Alternate Fuel Technology-Electric, Hybrid, and Fuel Cell Vehicles', Cengage, 2012. 3. Ronald K.Jurgen Chiltons, 'Electronic Engine Control Technology Guide to Fuel Injection' SAE International, Second Edition, 2002. 4. Tom Denton, 'Automotive Electricals / Electronics System and Components', Third Edition, 2004. Mapping of COs with POs and PSOs COs PO1 PO2 PO3 PSO1 PSO2 CO3 3 3 - 2 CO4 3 3 - 2 CO5 3 3 - 2 CO5 3 3 - 2 Avg. 2.75 2.8 2.4 - 2	ТЕХТ	BOOKS:				
Space Vehicles', Marcel Decker, 2004. REFERENCES: 1. Vlacic, L. Parent, M. Harahima, F. 'Intelligent Vehicle Technologies', SAE International, 2001. 2. Jack Erjavec, Jeff Arias, 'Alternate Fuel Technology-Electric, Hybrid, and Fuel Cell Vehicles', Cengage, 2012. 3. Ronald K.Jurgen Chiltons, 'Electronic Engine Control Technology Guide to Fuel Injection' SAE International, Second Edition, 2002. Mapping of COs with POs and PSOs COs/ PO1 PO2 PO3 PSO1 PSO1 PSO1 PSO2 CO2 2 3. 3 CO3 3 3 CO3 3 3 3. 3 - 2 CO4 3 3 3 - 2 Avg. 2.75 2.8 2.4 - 2	1.	William B. Ribben	s, 'Understanding A	utomotive Electron	ics', Elsevier Ha	nd Book, 2012.
1.Vlacic, L. Parent, M. Harahima, F. 'Intelligent Vehicle Technologies', SAE International, 2001.2.Jack Erjavec, Jeff Arias, 'Alternate Fuel Technology-Electric, Hybrid, and Fuel Cell Vehicles', Cengage, 2012.3.Ronald K.Jurgen Chiltons, 'Electronic Engine Control Technology Guide to Fuel Injection' SAE International, Second Edition, 2002.4.Tom Denton, 'Automotive Electricals / Electronics System and Components', Third Edition, 2004.Mapping of COs with POs and PSOsCOs/ PO1PO2PO3PS01PS02C01-21-2C02232-2C03333-2C04333-2C05333-2Avg.2.752.82.4-2	2.				ectric power syste	em - land, Sea, Air and
2.Jack Erjavec, Jeff Arias, 'Alternate Fuel Technology-Electric, Hybrid, and Fuel Cell Vehicles', Cengage, 2012.3.Ronald K.Jurgen Chiltons, 'Electronic Engine Control Technology Guide to Fuel Injection' SAE International, Second Edition, 2002.4.Tom Denton, 'Automotive Electricals / Electronics System and Components', Third Edition, 2004.Mapping of COs with POs and PSOsCOs/ POsPO1PO2PO3PS01PS02CO1-21-2CO2232-2CO3333-2CO4333-2Avg.2.752.82.4-2	REFEI	RENCES:				
Cengage, 2012.3.Ronald K.Jurgen Chiltons, 'Electronic Engine Control Technology Guide to Fuel Injection' SAE International, Second Edition, 2002.4.Tom Denton, 'Automotive Electricals / Electronics System and Components', Third Edition, 2004.Mapping of COs with POs and PSOsCOs/ POsPO1PO2PO3PSO1PSO2COs/ POsPO1PO2PO3PSO1PSO2CO1-21-2CO2232-2CO4333-2CO4333-2Avg.2.752.82.4-2	1.	Vlacic, L. Parent, N	M. Harahima, F. 'Int	elligent Vehicle Te	chnologies', SAH	E International, 2001.
International, Second Edition, 2002.4.Tom Denton, 'Automotive Electricals / Electronics System and Components', Third Edition, 2004.Mapping of COs with POs and PSOsCOs/ POsPO1PO2PO3PS01PS02CO1-21-2CO2232-2CO333-2CO4333-2CO5333-2Avg.2.752.82.4-2	2.		Arias, 'Alternate Fu	uel Technology-Ele	ctric, Hybrid, an	d Fuel Cell Vehicles',
Mapping of COs with POs and PSOs COs/ POs PO1 PO2 PO3 PS01 PS02 C01 - 2 1 - 2 C02 2 3 2 - 2 C03 3 3 - 2 2 C04 3 3 3 - 2 C05 3 3 3 - 2 Avg. 2.75 2.8 2.4 - 2	3.	-		Engine Control Teo	chnology Guide	to Fuel Injection' SAE
COs/ POs PO1 PO2 PO3 PS01 PS02 CO1 - 2 1 - 2 CO2 2 3 2 - 2 CO3 3 3 3 - 2 CO4 3 3 3 - 2 CO5 3 3 3 - 2 Avg. 2.75 2.8 2.4 - 2	4.	Tom Denton, 'Auto	omotive Electricals /	Electronics System	and Components	s', Third Edition, 2004.
POsPO1PO2PO3PS01PS02C01-21-2C02232-2C03333-2C04333-2C05333-2Avg.2.752.82.4-2			Mapping of C	COs with POs and 1	PSOs	
CO2 2 3 2 - 2 CO3 3 3 3 - 2 CO4 3 3 3 - 2 CO5 3 3 3 - 2 Avg. 2.75 2.8 2.4 - 2	COs/ POs	PO1	PO2	PO3	PSO1	PSO2
CO3 3 3 3 - 2 CO4 3 3 3 - 2 CO5 3 3 3 - 2 Avg. 2.75 2.8 2.4 - 2	CO1	-	2	1	-	2
CO4 3 3 3 - 2 CO5 3 3 3 - 2 Avg. 2.75 2.8 2.4 - 2	CO2	2	3	2	-	2
CO5 3 3 - 2 Avg. 2.75 2.8 2.4 - 2	CO3	3	3	3	-	2
Avg. 2.75 2.8 2.4 - 2	CO4	3	3	3	-	2
	CO5	3	3	3	-	2
I- Low, 2- Medium, 3- High	Avg.	2.75	2.8	2.4	-	2
	1- Low	, 2- Medium, 3- High	1			

ET24E11	COMPUTER VISION	Category	L	Т	Р	С
E124E11	COMPUTER VISION	PEC	3	0	0	3
particularly po and frameworl or scikit-learn. searching). OBJECTIVE • To in • To in • To in • To n • To n	languages commonly used in computer vision, such as Pytho opular due to its extensive libraries (e.g., OpenCV, scikit-im cs related to computer vision and machine learning, such as C Basic understanding of data structures (e.g., arrays, lists, tree	n, C++, or MA hage). Familia OpenCV, Tens es) and algorit n Computer V d algorithms. ects of Comp	ATLA urity sorFlo hms /isior	with ow, I (e.g., n. with	libra YTO sort	ries rch, ing, ges.
UNIT - I	INTRODUCTION TO COMPUTER VISION				(9)	
processing – C in computer v and goals – Ir	processing – Various fields that use image processing – Fun omponents of an image processing system. Applications of co ision. Introduction to computer vision and basic concepts of nage formation and radiometry – Geometric transformation ruction from a series of projections.	mputer vision	-Re ation:	cent intro	resea oduct	arch tion
UNIT - II	IMAGE PROCESSING CONCEPTS AND IMAGE FEA	ATURES			(9)	
 Mathematica Colour feature 	ing concepts: Fundamentals – Image transforms – Image filter al morphology – Image segmentation. Image descriptors and es – Edge detection – Object boundary and shape represent togram-oriented gradients – Scale-invariant feature transform	features: Texation – Intere	ture	desc	ripto	rs –
UNIT - III	IMAGE PROCESSING WITH OPEN CV				(9)	
images - const	OpenCV and Python: setting up OpenCV– Image basics i ructing basic shapes in OpenCV. Image processing in OpenC and building histograms – Thresholding techniques.					
UNIT - IV	OBJECT DETECTION				(9)	
 Model arch surveillance – 	pes – The importance of object detection. The working: input itecture overview – Object detection on the edge. Use Self-driving cars. Embedded boards: Connecting cameras processing images and videos.	cases and aj	oplica	ation	s: vi	deo
UNIT - V	APPLICATIONS AND CASE STUDIES				(9)	
estimation and	Machine learning algorithms and their applications in medica object tracking – Face and facial expression recognition – In ject tracing – Eye tracking – Handwriting recognition with h	mage fusion.				
		ΤΟΤΑ	L: 4	5 PE	ERIO	DS

COURSE OUTCOMES: At the end of the course, the students will be able to: COs **Course Outcome Cognitive Level** Discuss the major concepts and techniques in computer vision and image **CO1** Understand processing. **CO2** Infer known principles of the human visual system. Apply Apply **CO3** Establish a thorough knowledge of open CV. Apply **CO4** Develop real-life Computer vision applications. **CO5** Build design of a Computer Vision System for a specific problem. Apply **TEXT BOOKS:** Rafael C Gonzalez and Richard E Woods, 'Digital Image Processing', Pearson Education Limited, 1. Fourth Edition (Global Edition), 2018. Manas Kamal Bhuyan, 'Computer Vision and Image Processing - Fundamentals and Applications', 2. CRC Press, 2020. **REFERENCES:** Alberto Fernandez Villan, 'Mastering OpenCV 4 with Python', Packet Publishing, 2019. 1. 2. Adrian Rosebrock, 'Practical Python and Open CV: Case Studies', PyImageSearch, Third Edition, 2016. David L. Poole and Alan K. Mackworth, 'Artificial Intelligence: Foundations of Computational 3. Agents', Cambridge University Press, 2017. 4. Jan Erik Solem, 'Programming Computer Vision with Python: Tools and algorithms for analyzing images', O'Reilly Media, 2012. Mapping of COs with POs and PSOs COs/ **PO1 PO2 PO3 PSO1** PSO₂ POs **CO1** 2 3 2 2 _ 2 2 **CO2** 2 2 **CO3** 3 3 3 2 _ **CO4** 3 3 2 3 _ **CO5** 3 3 3 2 _ 2.6 2.6 2 2.8 Avg. -

1- Low, 2- Medium, 3- High

ET24E12	MULTIMEDIA COMMUNICATION	Category	L	Т	Р	С
E124E12	MULTIMEDIA COMMUNICATION	PEC	3	0	0	3
Understanding Fundamentals Electronics or	SITE: dge of programming languages such as C, C++, or Python. D g of signals, systems, and basic concepts of digital si : Basics of computer networks, including protocols, archi Communication Systems: Understanding of basic electronic required, particularly for hardware-oriented courses.	gnal process tectures, and	sing. netv	Net vork	work des	ing ign.
To apTo adTo de	S: lighten multimedia communication models. ply multimedia transport techniques in wireless networks. dress security issues in multimedia networks. monstrate real-time multimedia network applications. plore different network layer-based applications.					
UNIT - I	INTRODUCTION TO MULTIMEDIA COMMUNICAT	TIONS			(9)	
	multimedia information representation, multimedia netword networking terminology, network QoS and application QoS and video.					
UNIT - II	COMPRESSION TECHNIQUES FOR TEXT AND IMA	AGE			(9)	
	ge compression, compression principles, text compression age compression using T2 and T3 coding, image compression					ZW,
UNIT - III	COMPRESSION TECHNIQUES FOR AUDIO AND VI	DEO			(9)	
	deo compression, audio compression – Principles, DPCM, ing, code-excited LPC, Perceptual coding, MPEG and Dolby c principles.					
UNIT - IV	STANDARDS AND FRAMEWORK				(9)	
UNII - IV		ADEC 4 and	D			C
Video compre	ssion standards: H.261, H.263, MPEG, MPEG 1, MPEG 2, Mardization process of multimedia content description, MPEG					<i>.</i>
Video compre						.cs,
Video compre MPEG 7 stand UNIT - V Notion of syn	lardization process of multimedia content description, MPEG	21 multimed	ia fra ation,	mew Intro	ork. (9) oduci	

COURSE OUTCOMES: At the end of the course, the students will be able to: COs **Course Outcome Cognitive Level** Deploy the right multimedia communication models. **CO1** Apply Apply QoS to multimedia network applications with efficient routing **CO2** Apply techniques. Solve the security threats in multimedia networks. **CO3** Apply **CO4** Develop real-time multimedia network applications. Apply **CO5** Improve synchronization and manage the multimedia systems. Understand **TEXT BOOKS:** Jerry D. Gibson, 'Multimedia Communications', Department of Electrical Engineering Southern 1. Methodist University, Texas, 2019. Mario Marques da Silva, 'Multimedia Communications and Networking', Taylor and Francis 2. Group, 2012. **REFERENCES:** 1. Fred Halsall, 'Multimedia Communications', Pearson Education, 2001. Raif Steinmetz, Klara Nahrstedt, 'Multimedia: Computing, Communications and Applications', 2. Pearson Education, 2002. Mapping of COs with POs and PSOs COs/ **PO1 PO2 PO3** PSO1 PSO2 POs 2 2 **CO1** 1 1 2 2 CO₂ 1 1 _ **CO3** 3 1 2 _ _ **CO4** 1 2 _ _ _ 2 1 2 **CO5** 2 2.25 1 1 Avg. -1- Low, 2- Medium, 3- High

ET7/E12	EMBEDDED NETWORKING AND AUTOMATION	Category	L	Т	Р	С
ET24E13	OF ELECTRICAL SYSTEM	PEC	3	0	0	3
Microcontroll including how systems, inclu	onics: Understanding of electronic components, circuits, er/Microprocessor Fundamentals: Knowledge of microco v to program and interface with them. Embedded Systems ding familiarity with real-time operating systems (RTOS) and tworks: Understanding of networking concepts, including pr	ontrollers or E Prior exposed hardware-so	mica sure f ftwar	ropro to en e inte	nbed erfaci	ors, ded ing.
 To int To in To de 	CS: vestigate the fundamental building blocks of a digital instrument roduce wired, WSN for configuring metering network. vestigate grid automation. liberate networking configuration to develop PAN. nfer the functions of digital instrument power quality monitor					
UNIT - I	BUILDING SYSTEM AUTOMATION				(9)	
Acceleromete acquisition – u	s and Characteristics: Sensing Voltage, Current, flux, r – Data acquisition system – Signal conditioning circuit design C for automation and protection of electrical appliances – Pro-	gn – uC Based	1 & P	C ba	sed o	
and interface.	Actuators: Stepper motors, Relays – System automation with		-			lers
	Actuators: Stepper motors, Relays – System automation with EMBEDDED NETWORKING OF INSTRUMENT CLU	n multi-chann	-			lers
and interface. UNIT - II Embedded Ne – RS 232C – E available sens		n multi-chann J STER – Compariso luction to WS sient MAC pro	el Ins n of 1 N – C	trum bus p comn ls – S	(9) (9) protoc hercia	lers tion cols ally C –
and interface. UNIT - II Embedded Ne – RS 232C – E available sens Data Centric	EMBEDDED NETWORKING OF INSTRUMENT CLU stworking: Introduction – Cluster of instruments in the system Embedded ethernet – MOD bus and CAN bus, LIN bus – Introd or nodes – Zigbee protocol – Network Topology Energy effic	n multi-chann J STER – Compariso luction to WS sient MAC pro	el Ins n of 1 N – C	trum bus p comn ls – S	(9) (9) protoc hercia	lers tion cols ally C –
and interface. UNIT - II Embedded Ne – RS 232C – E available sens Data Centric applications. UNIT - III Substation aut Substation aut IEC 61850 – C	EMBEDDED NETWORKING OF INSTRUMENT CLU etworking: Introduction – Cluster of instruments in the system Embedded ethernet – MOD bus and CAN bus, LIN bus – Introd or nodes – Zigbee protocol – Network Topology Energy effic routing Applications of sensor networks – Database perspec	MU, RTU, IE MU, RTU, IE MU, RTU, IE	el Ins on of l N – C otoco or net Ds, B terop	bus p comn ls – S worl	(9) protoc nerci SMA cs – (9) for sn ility	lers tion cols ally C – IoT nart and
and interface. UNIT - II Embedded Ne – RS 232C – E available sens Data Centric applications. UNIT - III Substation aut Substation aut IEC 61850 – C	EMBEDDED NETWORKING OF INSTRUMENT CLU etworking: Introduction – Cluster of instruments in the system Embedded ethernet – MOD bus and CAN bus, LIN bus – Introd or nodes – Zigbee protocol – Network Topology Energy effic routing Applications of sensor networks – Database perspect AUTOMATION OF SUBSTATION comation – Distribution SCADA system principles – Role of Pattomation – Introduction to the role of IEC 61850, IEEEC37 Challenges of substations in smart grid – Challenges of energy	MU, RTU, IE MU, RTU, IE MU, RTU, IE	el Ins on of l N – C otoco or net Ds, B terop	bus p comn ls – S worl	(9) protoc nerci SMA cs – (9) for sn ility	lers tion cols ally C – IoT nart and

UNIT - V **SMART METERS FOR PQ MONITORING** (9) Power quality issues of grid-connected renewable energy sources - Smart meters for power quality monitoring and control - Power quality issues - Surges - Flicker - Interharmonics - Transients - Power Quality Benchmarking – Power Quality Meters – Meter data management in smart grid – Communication enabled Power Quality metering. **TOTAL: 45 PERIODS COURSE OUTCOMES:** At the end of the course, the students will be able to: **Course Outcome** COs **Cognitive Level** Validate criteria of choice of sensors, and components to build **CO1** Apply meters. Deliberate the demand for BUS communication protocols is **CO2** Understand introduced. **CO3** Discuss the needs and standards in substation automation. Understand Deployment of PAN for metering networked commercial **CO4** Apply applications. Realize the improved employability and entrepreneurship capacity due to knowledge upgradation on recent trends in embedded **CO5** Understand networked communications. **TEXT BOOKS:** 1. Krzysztof Iniewski, 'Smart Grid, Infrastructure & Networking', TMcGH, 2012. Robert Faludi, 'Building Wireless Sensor Networks', O'Reilly, 2011. 2. **REFERENCES:** 1. Robert Wilson, 'Control and automation of electrical power distribution systems', James Northcote-Green, CRC, Taylor and Francis, 2006. 2. Mohammad Ilyas and Imad Mahgoub, 'Handbook of sensor Networks: Compact wireless and wired sensing systems', CRC Press, 2005. 3. Shih-Lin Wu, Yu-Chee Tseng, 'Wireless Ad Hoc Networking, PAN, LAN, SAN', Auerbach Publication, 2012. Sanjay Gupta, 'Virtual Instrumentation, LABVIEW', TMH, New Delhi, 2003. 4. Mapping of COs with POs and PSOs COs/ **PO1** PSO2 **PO2 PO3 PSO1** POs 3 2 **CO1** 1 3 1 2 3 **CO2** 1 1 **CO3** 3 1 2 3 1 **CO4** 2 2 3 1 _ **CO5** 2 2 3 1 1 2.2 1 2 3 1 Avg. 1 - Low, 2 - Medium, 3 - High

	OM & DO OX/ODDA DOCIAN	Category	L	Т	Р	С
ET24E14	SMART SYSTEM DESIGN	PEC	3	0	0	3
Desire interface Python, or Jav AI) and Mace equired, part Mathematics: and linear alg systems, inclue DBJECTIVE • To rea • To ex • To im	stems: Knowledge of embedded systems, including microcorn ng techniques. Programming Skills: Proficiency in program a, especially for writing code that interfaces with hardware corn nine Learning (ML): For advanced smart systems, knowledg icularly in applications involving automation, pattern rec Proficiency in mathematical concepts, particularly those relate ebra. Sensor Technologies: Understanding of various sensors ding data acquisition and processing.	nming langua nponents. Art e of AI/ML t cognition, or ted to algorith and their app applications. s.	ages tificia techn deci hms, plicat	like Il Inte iques sion- optin	C, C ellige may mak nizati	++ nce be ing ion
	niliarize the design and development of embedded system-ba		esign			
UNIT - I	INTRODUCTION		U		(9)	
Types – Ope Microcontroll UNIT - II	and Actuators – Communication protocols used in smart syste n-source Analytics Platform for embedded systems (IFT ers – Embedded system for Smart card design and developme HOME AUTOMATION	TT & Thing nt – Recent tr	g spe rends	ak) ·	– Sn (9)	nart
	ation – Design Considerations: Control Unit, Sensing Requi tem Architecture – Essential Components – Linux and Raspb n.					
UNIT - III	SMART APPLIANCES AND ENERGY MANAGEMEN	ЛТ			(9)	
appliances in Meters: Signi	gement: Demand-side Load Management: Energy schedu energy management – Embedded and Integrated Platforms for "icance, Architecture and Energy Measurement Technique – Security Considerations.	or Energy Ma	nage	ment	-Sn	nart
UNIT - IV	SMART WEARABLE DEVICES				(9)	
	smart wearables in healthcare and activity monitoring – Fund					
of body sense protocol. Case	rs, Hardware platform, OS and Software platform – Select Study: Design of a wearable, collecting heart-beat, temperatu hone application.					
of body sense protocol. Case	Study: Design of a wearable, collecting heart-beat, temperatu					
of body sense protocol. Case using a smart UNIT - V Robots and C	Study: Design of a wearable, collecting heart-beat, temperatu hone application.	are and monit	oring	heal	th sta (9)	atus

COURSE OUTCOMES:

COUR	SE OUTCOMES:				
At the	end of the course, th	he students will be	able to:		
COs		Course O	Outcome		Cognitive Level
CO1	Recognize the developments.	concepts of smart	t system design a	nd its present	Understand
CO2		erent embedded of developing solutions			Understand
CO3	Acquire know Smart system d	ledge of different esign.	platforms and Infr	astructure for	Apply
CO4	Infer about sma	art appliances and er	nergy management	concepts.	Understand
CO5		rove Employability a pgradation on embe			Apply
TEXT	BOOKS:				
1.	Thomas Braunl, 'E	mbedded Robotics'	, Springer, 2003.		
2.		, Neumann, Peter, ergy Management',		tefan, 'Embedd	led Systems for Smart
REFE	RENCES:				
1.	Raj Kamal, 'Embe	dded Systems - Arcl	nitecture, Programn	ning and Design	', McGraw-Hill, 2008.
2.	Nilanjan Dey, Ama CRC press, 2016.	artya Mukherjee, 'E	mbedded Systems a	and Robotics wi	th Open-Source Tools',
3.	Karim Yaghmour,	'Embedded Android	d', O'Reilly, 2013.		
4.	Steven Goodwin, '	Smart Home Autom	ation with Linux ar	nd Raspberry Pi	', Apress, 2013.
		Mapping of (COs with POs and	PSOs	
COs/ POs	PO1	PO2	PO3	PSO1	PSO2
CO1	-	3	2	2	2
CO2	2	-	-	2	2
CO3	-	-	-	2	2
CO4	-	-	-	2	2
CO5	-	-	-	2	2
Avg.	2	3	2	2	2

1- Low, 2- Medium, 3- High

ET24E15	EMDEDDED COMPLETINC	Category L		T P		С
ET24E15	EMBEDDED COMPUTING	PEC	3	0	0	3
hardware-soft Understanding Operating Sys	ITE: stems: Prior coursework or experience with embedded system ware interfacing and real-time operating systems (RT of basic computer architecture, including memory hierarchy, stems: Basic knowledge of operating systems, particularl h are often used in embedded computing.	OS). Compu data paths, an	iter nd ins	Arch struct	itect	ure: sets.
 To im To dev To im To inv 	S: pose the students to the fundamentals of Network communication part the fundamentals of Java, Internet, and Java cards. velop a distributed embedded system with Java. part the smart card and apps development. rolve discussions/practice in familiarizing the concepts acquire proved employability skills.		-	ofth	e sub	ject
UNIT - I	NETWORK INFRASTRUCTURE				(9)	
	Fransmission facilities – Open Interconnection standards – work management – Network Security – Cluster computers.	Networking	devi	ces]	Netw	ork
UNIT - II	JAVA TECHNOLOGY FOR EMBEDDED SYSTEMS				(9)	
databases – Ad	s of Java – IO streaming – Object serialization – Networking – dvantages and limitations of the Internet – Web architecture for bedded systems.					
UNIT - III	SMART CARD TECHNIQUES				(9)	
	asics – Java card technology overview – Java card Types – ers – Contactless cards – Smart card operating systems – Sma					
UNIT - IV	ANDROID FRAMEWORK				(9)	
	– Access to Hardware – Framework development – Peer-to- n and architecture – Case study.	Peer commur	icati	on –	Andı	roid
UNIT - V	DEVELOPING DISTRIBUTED REAL-TIMI APPLICATIONS	E SYST	EM		(9)	
Developing M applications.	ATLAB Real-Time Targets – Using the xPC Target – Buildin	g various dist TOTA				

COURSE OUTCOMES:

	end of the course, t	ne students win s						
COs		Course O	utcome		Cognitive Level			
CO1			internet-based communism of the system		Understand			
CO2	Interpret the soft computing.	tware and hardw	vare architecture for	or distributed	Understand			
CO3	Develop a solution	n for smart cards.			Apply			
CO4	Develop Apps bas	ed on Android SDF	Κ.		Apply			
CO5	Deliberate recen environment.	t trends in th	e embedded systen	n computing	Understand			
TEXT	BOOKS:							
1.	Wolfgang Rankl a Third Edition, 200	00	ng, 'Smart Card Ha	ndbook', John V	Viley & Sons Limited			
2.	Reto Meier, 'Profe	essional Android ap	plication developme	nt', Wiley Publis	shing, Inc., 2009.			
REFEI	RENCES:							
1.	Joshua, 'Android l	nacker's Handbook	', John Wiley & Son	s, 2014.				
2.	Dietel & Dietel, 'J	AVA how to progr	am', Prentice Hall, 1	999.				
3.	Sape Mullender, '	Distributed System	s', Addison-Wesley,	1993.				
4.		nd Applications', C			Distributed Real-Timook Number-13: 978-1			
		Mapping of	COs with POs and	PSOs				
COs/ POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	2	-	1	2	2			
CO2	2	3	2	2	2			
CO3	3	1	2	2	2			
CO4	3	1	2	2	2			
CO5	2	1	2	2	2			
	2.4	1.5	1.8	2	2			
Avg.	2.4	1.5	1.0	4	-			

ET24E16	EMBEDDED SYSTEMS SECURITY	Category L		Т	Р	С
	ENIBEDDED SISTEMIS SECURITI	PEC	3	0	0	3
embedded syst (RTOS), is ess	anding of embedded systems security requires several prerequisitem design, including knowledge of microcontrollers, processors ential. Familiarity with programming languages commonly used so crucial, as is an understanding of hardware-software interaction.	, and real-time in embedded	e ope syste	rating ms, s	g syst such a	ems ls C
OBJECTIVES • To intr • To imp • To imp • To mal	*	on protocols. curity.	epts.			
UNIT - I	BACKGROUND AND INTRODUCTION				(9)	
Security Attack Attack Surface and the Divisio	Network Security Concepts: Computer Security Concepts – Testing Services – Security Mechanisms – Fundamentals and Attack Trees – A Model for Network Security. Introduction Algorithm – The Euclidean Algorithm – Modular Arithmetic – ms – Testing for Primality – The Chinese Remainder Theorem –	of Security I in to Number ' – Prime Numl	Desig Theoi pers -	n Pri y: Di - Ferr	nciple visib	es – lity
UNIT - II	SYMMETRIC CIPHERS				(9)	
Techniques. Bl Data Encryptic	yption Techniques: Symmetric Cipher Model – Substitution ock Ciphers and the Data Encryption Standard (DES): Tradition on Standard – A DES Example – Strength of DES. Advanced H ES Structure – AES Transformation Functions – AES Key Expan.	nal Block Cipl Encryption Sta	her Sandar	tructu 1: Fir	ire – nite F	The ield
UNIT - III	EMBEDDED SYSTEMS SECURITY				(9)	
Operating Syst and Capabilitie		ty Requiremer Remote Mana	nts – A	Acces	s Cor	trol
Integrity of the	EMBEDDED CRYPTOGRAPHY AND DATA PROTECT	ION			(9)	
UNIT - IV	PROTOCOLS					

UNIT -	V PRACTICA	L EMBEDDED SYS	STEM SECURITY			(9)
Socket l	c Communications Pr Layer – Embedded Se ing Cryptographic Al	curity – Wireless – A	Application-Layer and	l Client/Server P	rotocols –	Choosing and
				,	TOTAL:	45 PERIODS
	SE OUTCOMES:					
COs	end of the course, the	Course Out			Cogni	tive Level
CO1		•		1		lerstand
CO2	Recognize the major concepts and techniques related to cryptography.Demonstrate thorough knowledge of the aspects of embedded System					lerstand
CO3	Security.	0 0	*	-	Unc	lerstand
CO4	Delivers insight into the role of security aspects during data transfer and communication.					lerstand
CO5	Applying the securit		A	pply		
TEXT I	BOOKS:					
1.		'Cryptography and l Limited, Eighth Editio		rinciples and Pr	actice', G	lobal Edition
2.		er and Mike Kleid d Secure Software an		•	stems Sec	urity-Practica
DEFER		a Secure Software an	a Systems Developin	lent, 2012.		
	RENCES:					
1.	Timothy Stapko, N Resource-Constrain	fewnes (an imprint of ed Systems', 2008.	of Elsevier), 'Practic	al Embedded S	ecurity-Bu	ilding Secure
2.		er and Mike Kleidern Elsevier Science and			Building	a Trustworthy
3.		er and Mike Kleiderr tware and Systems D		•	•	l Methods for
4.	Jonathan Katz and Cambridge Universi	Yehuda Lindell, 'Intro ty Press, 2007.	oduction to Modern	Cryptography: P	rinciples a	nd Protocols'
				~~~		
COs/			COs with POs and P			
POs	PO1	PO2	PO3	PSO1		PSO2
CO1	3	-	3	2		-
CO2	3	-	3	2		-
CO3	3	-	3	2		-
<b>CO4</b>	3	-	3	2		-
CO5	3	-	3	2		-
Avg.	3	-	3	2		-
1 - Low	, 2 - Medium, 3 - Higl	n			<b>I</b>	

ET24E17	MACHINE LEARNING AND DEEP LEARNING		L	Т	Р	С
1.1241.17	MACHINE LEARNING AND DEEL LEARNING	PEC	3	0	0	3
					•	
foundation in s vectors, matric (probability dis	<b>TTE:</b> y engage with a course in Machine Learning and Deep Learning everal key areas. Proficiency in mathematics is essential, includ ces, and eigenvalues), calculus (differentiation and integration atributions, Bayesian inference, and statistical metrics). Students so Python, and familiar with machine learning libraries.	ing linear alge a), and probat	bra ( bility	under and	rstano statis	ling stics
OBJECTIVES	5:					
<ul><li>To ena</li><li>To intr</li><li>To acq</li></ul>	ke the students realize the learning problem and algorithms. ble the students by providing insight into neural networks. oduce the students to the machine learning fundamentals and sig- uire knowledge about pattern recognition.	nificance.				
• To app	ly deep learning algorithms for solving real-life problems.					
UNIT - I	LEARNING PROBLEMS AND ALGORITHMS				(9)	
Various paradi	gms of learning problems, Supervised, Semi-supervised and Uns	upervised algo	rithm	s.		
UNIT - II	NEURAL NETWORKS				(9)	
Backpropagation associative, Ko	<ul> <li>alti-layer neural network, Linear Separability, Hebb Net, on Training Algorithms for Pattern Association – Hebb rule and D honen Self Organizing Maps, Examples of Feature Maps, Learnin nann Machine Learning.</li> <li>MACHINE LEARNING – FUNDAMENTALS &amp; FEATUR OF THE DESTROY OF A CLASSIFICATION OF THE DESTROY OF THE DESTROY.</li> </ul>	elta rule, Heter ng Vector Qua	ro ass	ociat	ive, A	Auto
training, testing and variance. F	SELECTIONS & CLASSIFICATIONS mples: The confusion matrix, Accuracy, Precision, Recall, F1-S g, validation, cross-validation, overfitting, under-fitting the data, e eature Selection, normalization, dimensionality reduction, Classi Binary classification, multi-class classification, clustering.	arly stopping,	regula	arizat	siona ion, t	oias,
UNIT - IV	DEEP LEARNING: CONVOLUTIONAL NEURAL NETW	VORKS			(9)	
	networks, Activation functions, backpropagation in CNN, over the content of the c	•	tch 1	norm	alizat	ion,
UNIT - V	DEEP LEARNING: RNNS, AUTOENCODERS AND GAN	S			(9)	
	e of RNN Cell, LSTM and GRU, Time distributed layers, Autoencoders, Denoising autoencoders, Variational autoenco GANs.					
		ТОТ	AL:	45 PI	ERIC	DDS

COs	end of the course, the	Course Ou			Cognitive Level
C01	Categorize various m				Understand
CO2		trast the types of	of neural network	architectures,	Apply
CO3	Apply pattern associa	ation techniques usin	ng neural networks.		Apply
CO4	Elaborate on variou architectures of conv	e	elated to pattern re works.	cognition and	Apply
CO5	Integrate classification such as RNN, Autoen		vanced neural networ	k architectures	Apply
<b>TEXT</b> 1.	BOOKS: Jang, J. S. R., Sun, C.		•	Computing: A Com	nputational Approach
2.	Learning and Machine Deep Learning, Ian 9780262035613, 2016	Good fellow, 'Y	<u> </u>	Aaron Courville	', MIT Press, ISBN
REFEI	RENCES:				
1.	Shai Shalev-Shwartz Press. 2017.	and Shai Ben-Davi	d 'Understanding M	achine Learning',	Cambridge Universit
2.	Jang, J.S.R, Sun, C.T, River, NJ: Prentice Ha		o-Fuzzy and Soft Com	nputing - A Compu	utational', Upper Saddl
3.	Vinod Chandra S.S, An First Edition, 2012.	hand Hareendran S. '	Approach to Learning	g and Machine Inte	elligence', PHI learning
4.	Christopher Bishop, 'F	Pattern Recognition	and Machine Learnin	g', Springer, 2006	
	T	Mapping of	COs with POs and P	PSOs	I
<u> </u>		PO2	PO3	PSO1	PSO2
COs/ POs	PO1	102			
	<b>PO1</b> 3	-	3	2	2
POs		-	3 3	2 2	2 2
POs CO1	3	-			
POs CO1 CO2	3 3	-	3	2	2
POs CO1 CO2 CO3	3 3 3		3 3	2 2	2 2