DEPARTMENT OF INFORMATION TECHNOLOGY

M.Tech.- INFORMATION TECHNOLOGY

CURRICULUM & SYLLABI

Regulations 2020

(Applicable to candidates admitted in the academic year 2020 - 2021 onwards)

K.S.R. College of Engineering(Autonomous)

(Approved by AICTE, Accredited by NAAC with A++ grade & Affiliated to Anna University)

K.S.R.KalviNagar, Tiruchengode-637215 Namakkal (Dt), Tamilnadu, India

Email: info@ksrce.ac.in Website: www.ksrce.ac.in

K.S.R. COLLEGE OF ENGINEERING: TIRUCHENGODE - 637 215 (Autonomous) <u>DEPARTMENT OF INFORMATION TECHNOLOGY</u>

(REGULATIONS 2020)

Vision of the Institution

IV We envision to achieve status as an excellent Educational Institution in the global knowledge hub, making self-learners, experts, ethical and responsible engineers, technologists, scientists, managers, administrators and entrepreneurs who will significantly contribute to research and environment friendly sustainable growth of the nation and the world.

Mission of the Institution

- IM 1 To inculcate in the students self-learning abilities that enable them to become competitive and considerate engineers, technologists, scientists, managers, administrators and entrepreneurs by diligently imparting the best of education, nurturing environmental and social needs.
- **IM 2** To foster and maintain mutually beneficial partnership with global industries and Institutions through knowledge sharing, collaborative research and innovation.

Vision of the Department / Programme: Information Technology

DV	To produc	e excellent	and	competent	software	professional,	researchers	and
	responsible	engineers, v	who ca	an significant	ly contribut	te to environme	ent friendly so	cietal
	industry thr	ough quality	educa	tion.				

Mission of the Department / Programme: Information Technology

DM1	To make the students competitive and efficient in technical field through technological transformations in Information Technology, by providing them advanced curriculum, infrastructure and nurturing human values.
DM2	To provide an excellent forum for higher studies that leads to careers as Computer and IT professionals in the widely diversified domains of industry, government and academia.

Programme Educational Objectives (PEOs) of M.Tech. - Information Technology

PEO 1	Evaluate Solutions: Incorporate with necessary background and significantly contribute to contemporary research in information technology to investigate complex problems.
PEO 2	Novelty in Technology: Apply and disseminate intellectual ideas related to IT field and advance in their profession.
PEO 3	Successful Career: Enhancing the abilities for successful teaching/research careers in industry or academia.

Programme Outcomes (POs) of M.Tech./Information Technology (Regulations 2020)

M.Tech. Information Technology graduates will be able to:

PO1	An ability to independently carry out research /investigation and development work to solve practical problems.
PO2	An ability to write and present a substantial technical report/document.
PO3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.
PSO1	Research Culture: Integrate and administrate the design and solutions through IT in software industry, society and R&D activities.
PSO2	Core Values: Contribute core universal values and social good in the community.

KS Colleg Engine	R ge of eering		K.S.R. COLLEGE OF ENGINEERING (Approved by AICTE& Affiliated to A K.S.R. Kalvi Nagar, Tiruchengo	Anna Ui	niversi			(CURRICULUM PG R - 2020		
Depa	irtment	D	epartment of Information Technology								
Programme M.Tech – Information Technology											
			SEMESTER – I								
SI.No.	Cours	e	Course Name	Но	urs/W		Credit		kimum M		
THEOF	Code			L	T	Р	C	CA	ES	Total	
1.	IT2011	1	Advanced Data Structures	3	0	0	3	30	70	100	
2.	IT2011	2	Research Methodology and IPR	2	0	0	2	30	70	100	
3.			Professional Elective I	3	0	0	3	30	70	100	
4.			Professional Elective II	3	0	0	3	30	70	100	
PRAC	TICAL										
5.	IT2012	1	Advanced Data Structures Laboratory	0	0	4	2	50	50	100	
6. IT20122 XML and Web Services Laboratory 0 0 4 2									50	100	
			Total	11	0	8	15		600		

		SEMESTER - II								
SI.No.	Course	Course Name		Hou	rs/ We	ek	Credit	Maximum Marks		
	Code	oourse name		L	Т	Ρ	C	CA	ES	Total
THEOF	RY						1			
1.	IT20211	Advanced Algorithms		3	0	0	3	30	70	100
2.	IT20212	Soft Computing		3	0	0	3	30	70	100
3.	MA20231	Operations Research		3	0	0	3	30	70	100
4.		Professional Elective III		3	0	0	3	30	70	100
5.		Professional Elective IV		3	0	0	3	30	70	100
PRAC	TICAL									
6.	IT20221	Advanced Algorithms Laboratory		0	0	4	2	50	50	100
7.	IT20222	Software Development Laboratory		0	0	4	2	50	50	100
8.	IT20223	Mini Project with Seminar		2	0	0	2	50	50	100
		То	tal	17	0	8	21		800	

Collec Engine			K.S.R. COLLEGE OF ENGINEERING (A Approved by AICTE& Affiliated to Anr K.S.R. Kalvi Nagar, Tiruchengode	na U	Inive	ersity			CURRICULUM PG R - 2020			
Depa	Department Department of Information Technology											
Programme M.Tech – Information Technology												
	SEMESTER – III											
SI.No.	Cours	se	Course Name		Но	urs/ \	Neek	Credit	Ma	ximum	Marks	
51.NO.	Code	9	Course Name		Г	Т	Р	С	CA	ES	Total	
THEOF	RY											
1.			Professional Elective V		3	0	0	3	30	70	100	
2.			Professional Elective VI		3	0	0	3	30	70	100	
3.			Audit Course		2	0	0	0	50	50	100	
			PRACTICAL									
4.	IT2032	21	Project Phase – I		0	0	20	10	50	50	100	
	Total 8 0 20 16 400											

		SEMESTER - IV							
SI.No.	Course	Course Name	Но	urs/ \	Week	Credit	Max	ximum	Marks
51.NO.	Code	Course Name	L	Т	Р	C	CA	ES	Total
PRACT	ICAL								
1.	IT20421	Project Phase – II	0	0	32	16	50	50	100
		Total	0	0	32	16		100	

College Enginee	of		K.S.R. COLLEGE OF ENGINEERING (Approved by AICTE& Affiliated to Ar K.S.R. Kalvi Nagar, Tiruchengod	ina Un	iversit			C	CURRICULUM UG R - 2020				
Depai	Department Department of Information Technology												
Progra	amme		M.Tech – Information Technology										
	List of Electives												
			PROFESSIONAL ELECTIVES – I and II	SEME	STER	– I)							
SI.No.	Course		Course Name	Course Name Hours/ Week Credit Maximum Marks									
•	Code			L	Т	Р	C	CA	ES	Total			
1.	IT20161	A	dvanced Computer Architecture	3	0	0	3	30	70	100			
2.	IT20162	A	d-Hoc and Sensor Networks	3	0	0	3	30	70	100			
3.	IT20163	S	oftware Engineering Methodologies	3	0	0	3	30	70	100			
4.	IT20164	D	ata Science	3	0	0	3	30	70	100			
5.	IT20165	S	cientific Computing	3	0	0	3	30	70	100			
6.	IT20166	D	igital Image Processing	3	0	0	3	30	70	100			
7.	IT20167	Х	ML and Web Services	3	0	0	3	30	70	100			
8.	IT20168	D	istributed Systems	3	0	0	3	30	70	100			
9.	IT20169	М	ultimedia Communications	3	0	0	3	30	70	100			
10.	IT20171	In	formation Retrieval Techniques	3	0	0	3	30	70	100			

		PROFESSIONAL ELECTIVES – III and IV	(SEM	ESTER	R – II)				
SI.No.	Course	Course Name	Ηοι	Hours/ Week			Мах	imum N	/larks
01.110.	Code		L	Т	Р	С	CA	ES	Total
1.	IT20261	Data Warehousing and Data Mining	3	0	0	3	30	70	100
2.	IT20262	Network Management	3	0	0	3	30	70	100
3.	IT20263	Multicore Architecture	3	0	0	3	30	70	100
4.	IT20264	Knowledge Discovery	3	0	0	3	30	70	100
5.	IT20265	Data Security and Access Control	3	0	0	3	30	70	100
6.	IT20266	Digital Forensics	3	0	0	3	30	70	100
7.	IT20267	Agent Based Intelligent Systems	3	0	0	3	30	70	100
8.	IT20268	Big Data and Analytics	3	0	0	3	30	70	100
9.	IT20269	Ontology and Semantic Web	3	0	0	3	30	70	100
10.	IT20271	Object Oriented Analysis and Design	3	0	0	3	30	70	100

		PROFESSIONAL ELECTIVES – V and VI	(SEME	STER	– III)					
SI.No.	Course	Course Name	Ηοι	urs/ W	eek	Credit	Max	Maximum Marks		
01.110.	Code		L	Т	Ρ	C	CA	ES	Total	
1.	IT20361	Human Resource Management	3	0	0	3	30	70	100	
2.	IT20362	Distributed Databases	3	0	0	3	30	70	100	
3.	IT20363	Service Oriented Architecture	3	0	0	3	30	70	100	
4.	IT20364	Cloud Computing	3	0	0	3	30	70	100	
5.	IT20365	Internet of Things	3	0	0	3	30	70	100	
6.	IT20366	GPU Computing	3	0	0	3	30	70	100	
7.	IT20367	Business Analytics	3	0	0	3	30	70	100	
8.	IT20368	Cost Management of Engineering Projects	3	0	0	3	30	70	100	

	AUDIT COURSE (SEMESTER – III)										
SI.No.	Course	Course Name	Hours/Week Credit Maximu L T P C CA E 2 0 0 0 50 5 2 0 0 0 50 5 2 0 0 0 50 5 2 0 0 0 50 5			um Marks					
•	Code		L	T	Р		CA	ES	Total		
1.	IT203A1	English for Research Paper Writing	2	0	0	0	50	50	100		
2.	IT203A2	Disaster Management	2	0	0	0	50	50	100		
3.	IT203A3	Mobile and Pervasive Computing	2	0	0	0	50	50	100		
4.	IT203A4	Constitution of India	2	0	0	0	50	50	100		

Total no of Credits= 68

DEPARTMENT OF INFORMATION TECHNOLOGY

M.Tech.- INFORMATION TECHNOLOGY

CURRICULUM & SYLLABI

Regulations 2020

(Applicable to candidates admitted in the academic year 2021 - 2022 onwards)

K.S.R. College of Engineering(Autonomous)

(Approved by AICTE, Accredited by NAAC with A++ grade & Affiliated to Anna University)

K.S.R.KalviNagar, Tiruchengode-637215 Namakkal (Dt), Tamilnadu, India

Email: info@ksrce.ac.in Website: www.ksrce.ac.in

K.S.R. COLLEGE OF ENGINEERING: TIRUCHENGODE - 637 215 (Autonomous) <u>DEPARTMENT OF INFORMATION TECHNOLOGY</u>

(REGULATIONS 2020)

Vision of the Institution

IV We envision to achieve status as an excellent Educational Institution in the global knowledge hub, making self-learners, experts, ethical and responsible engineers, technologists, scientists, managers, administrators and entrepreneurs who will significantly contribute to research and environment friendly sustainable growth of the nation and the world.

Mission of the Institution

- IM 1 To inculcate in the students self-learning abilities that enable them to become competitive and considerate engineers, technologists, scientists, managers, administrators and entrepreneurs by diligently imparting the best of education, nurturing environmental and social needs.
- **IM 2** To foster and maintain mutually beneficial partnership with global industries and Institutions through knowledge sharing, collaborative research and innovation.

Vision of the Department / Programme: Information Technology

DV	To produce	excellent	and	competent	software	professional,	researchers	and
	responsible e	engineers, v	vho ca	an significant	ly contribut	te to environme	ent friendly so	cietal
	industry throu	ugh quality o	educa	tion.				

Mission of the Department / Programme: Information Technology

DM1	To make the students competitive and efficient in technical field through technological transformations in Information Technology, by providing them advanced curriculum, infrastructure and nurturing human values.
DM2	To provide an excellent forum for higher studies that leads to careers as Computer and IT professionals in the widely diversified domains of industry, government and academia.

Programme Educational Objectives (PEOs) of M.Tech. - Information Technology

PEO 1	Evaluate Solutions: Incorporate with necessary background and significantly contribute to contemporary research in information technology to investigate complex problems.
PEO 2	Novelty in Technology: Apply and disseminate intellectual ideas related to IT field and advance in their profession.
PEO 3	Successful Career: Enhancing the abilities for successful teaching/research careers in industry or academia.

Programme Outcomes (POs) of M.Tech./Information Technology (Regulations 2020)

M.Tech. Information Technology graduates will be able to:

PO1	An ability to independently carry out research /investigation and development work to solve practical problems.
PO2	An ability to write and present a substantial technical report/document.
PO3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.
PSO1	Research Culture: Integrate and administrate the design and solutions through IT in software industry, society and R&D activities.
PSO2	Core Values: Contribute core universal values and social good in the community.

KS Colleg Engine			K.S.R. COLLEGE OF ENGINEERING (Approved by AICTE& Affiliated to A K.S.R. Kalvi Nagar, Tiruchengo	nna Ur	niversi			C	CURRICULUM PG R - 2020		
Depa	irtment	D	epartment of Information Technology								
Progr	ramme	М	.Tech – Information Technology								
			SEMESTER – I								
SI.No.	Course)	Course Name	Ho	urs/W		Credit	-	imum N		
	Code				T	Р	C	CA	ES	Total	
THEOR				T							
1.	IT20111		Advanced Data Structures	3	0	0	3	40	60	100	
2.	IT20112		Research Methodology and IPR	2	0	0	2	40	60	100	
3.			Professional Elective I	3	0	0	3	40	60	100	
4.			Professional Elective II	3	0	0	3	40	60	100	
PRAC	TICAL				1	1	1 1			1	
5.	IT20121		Advanced Data Structures Laboratory	0	0	4	2	60	40	100	
6.	IT20122 XML and Web Services Laboratory 0 0 4 2								40	100	
			Total	11	0	8	15		600		

		SEMESTER	- 11							
SI.No.	Course	Course Name		Hou	rs/ We	ek	Credit		mum N	
	Code			L	Т	Ρ	C	CA	ES	Total
THEOF	RY									
1.	IT20211	Advanced Algorithms		3	0	0	3	40	60	100
2.	IT20212	Soft Computing		3	0	0	3	40	60	100
3.	MA20231	Operations Research		3	0	0	3	40	60	100
4.		Professional Elective III		3	0	0	3	40	60	100
5.		Professional Elective IV		3	0	0	3	40	60	100
PRAC	TICAL									
6.	IT20221	Advanced Algorithms Laboratory		0	0	4	2	60	40	100
7.	IT20222	Software Development Laboratory		0	0	4	2	60	40	100
8.	IT20223	Mini Project with Seminar		2	0	0	2	60	40	100
			Total	17	0	8	21		800	•

Colleg Engine			K.S.R. COLLEGE OF ENGINEERIN Approved by AICTE& Affiliated to K.S.R. Kalvi Nagar, Tirucheng	Anna	Univ	ersity			CURRICULUM PG R - 2020			
Department Department of Information Technology												
Prog	Programme M.Tech – Information Technology											
			SEMESTER –	III								
SI.No.	Cours	se	Course Name		Но	urs/ \	Neek	Credit	Ma	ximum	Marks	
51.NO.	Code		Course Name		L	Т	Р	С	CA	ES	Total	
THEOF	RY											
1.			Professional Elective V		3	0	0	3	40	60	100	
2.			Professional Elective VI		3	0	0	3	40	60	100	
3.			Audit Course		2	0	0	0	40	60	100	
			PRACTICAL	-								
4.	IT2032	21	Project Phase – I		0	0	20	10	60	40	100	
				Total	8	0	20	16		400		

		SEMESTER - IV							
	Course	Course Nome	Но	urs/ \	Week	Credit	Max	ximum	Marks
SI.No.	Code	Course Name	L	Т	Р	С	CA	ES	Total
PRACT	ICAL								
1.	IT20421	Project Phase – II	0	0	32	16	60	40	100
		Total	0	0	32	16		100	

College	e of		K.S.R. COLLEGE OF ENGINEERING (Approved by AICTE& Affiliated to Ar K.S.R. Kalvi Nagar, Tiruchengod	na Un	iversit			C	CURRICULUM UG R - 2020		
Depar	rtment		Department of Information Technology								
Progra	amme		M.Tech – Information Technology								
			List of Electives								
			PROFESSIONAL ELECTIVES – I and II	SEME	STER	– I)					
SI.No.	Course		Course Name	Но	urs/W	1	Credit		timum N		
0	Code			L	Т	Р	C	CA	ES	Total	
1.	IT20161	Ad	dvanced Computer Architecture	3	0	0	3	40	60	100	
2.	IT20162	A	d-Hoc and Sensor Networks	3	0	0	3	40	60	100	
3.	IT20163	So	oftware Engineering Methodologies	3	0	0	3	40	60	100	
4.	IT20164	Da	ata Science	3	0	0	3	40	60	100	
5.	IT20165	So	cientific Computing	3	0	0	3	40	60	100	
6.	IT20166	Di	gital Image Processing	3	0	0	3	40	60	100	
7.	IT20167	XI	ML and Web Services	3	0	0	3	40	60	100	
8.	IT20168	Di	stributed Systems	3	0	0	3	40	60	100	
9.	IT20169	М	ultimedia Communications	3	0	0	3	40	60	100	
10.	IT20171	In	formation Retrieval Techniques	3	0	0	3	40	60	100	

		PROFESSIONAL ELECTIVES – III and IV	(SEM	ESTER	R – II)						
SI.No.	Course	Course Name	Hours/ Week			Credit	Max	Maximum Marks			
51.140.	Code		L	Т	Ρ	C	CA	ES	Total		
1.	IT20261	Data Warehousing and Data Mining	3	0	0	3	40	60	100		
2.	IT20262	Network Management	3	0	0	3	40	60	100		
3.	IT20263	Multicore Architecture	3	0	0	3	40	60	100		
4.	IT20264	Knowledge Discovery	3	0	0	3	40	60	100		
5.	IT20265	Data Security and Access Control	3	0	0	3	40	60	100		
6.	IT20266	Digital Forensics	3	0	0	3	40	60	100		
7.	IT20267	Agent Based Intelligent Systems	3	0	0	3	40	60	100		
8.	IT20268	Big Data and Analytics	3	0	0	3	40	60	100		
9.	IT20269	Ontology and Semantic Web	3	0	0	3	40	60	100		
10.	IT20271	Object Oriented Analysis and Design	3	0	0	3	40	60	100		

		PROFESSIONAL ELECTIVES – V and VI	(SEME	STER	– III)					
SI.No.	Course	Course Name	Ηοι	urs/ W	eek	Credit	Max	laximum Marks		
01.110.	Code		L	Т	Ρ	C	CA	ES	Total	
1.	IT20361	Human Resource Management	3	0	0	3	40	60	100	
2.	IT20362	Distributed Databases	3	0	0	3	40	60	100	
3.	IT20363	Service Oriented Architecture	3	0	0	3	40	60	100	
4.	IT20364	Cloud Computing	3	0	0	3	40	60	100	
5.	IT20365	Internet of Things	3	0	0	3	40	60	100	
6.	IT20366	GPU Computing	3	0	0	3	40	60	100	
7.	IT20367	Business Analytics	3	0	0	3	40	60	100	
8.	IT20368	Cost Management of Engineering Projects	3	0	0	3	40	60	100	

		AUDIT COURSE (SEMESTER	R – III)						
SI.No.	Course	Course Name	Ηοι	urs/ W	eek	Credit		imum N	
onito.	Code		L	Т	Р	C	CA	ES	Total
1.	IT203A1	English for Research Paper Writing	2	0	0	0	60	40	100
2.	IT203A2	Disaster Management	2	0	0	0	60	40	100
3.	IT203A3	Mobile and Pervasive Computing	2	0	0	0	60	40	100
4.	IT203A4	Constitution of India	2	0	0	0	60	40	100

Total no of Credits= 68

K.S.R. COLLEGE OF ENGINEERING (Autonomous)					20			
	<u>SEMESTER - I</u>							
IT20111 ADVANCED DATA STRUCTURES L T P 3 0 0								
Prerequisite:								
CO1: Implement the sym CO2: Summarize the cor CO3: Develop and analy CO4: Design algorithms f	cessful completion of the course, the student will be able to bol table using hashing techniques. acept of skip lists. ze algorithms for red-black trees, B-trees and Splay trees. or text processing applications. ata structures and develop algorithms for computational geom	AI U Aj C	Cognit nalyze nderst oply reate oply)	evel			
UNIT – I DICTIO	NARIES AND HASHING				[9]			
Hash Function – Collision Re	ionary Abstract Data Type – Implementation of Dictionaries. Hashi solution Techniques in Hashing – Separate Chaining – Open Add Hashing – Rehashing – Extendible Hashing							
UNIT – II SKIP LI	STS				[9]			
Probabilistic Analysis of Skip	nizing Data Structures and Algorithms – Search and Update Op Lists – Deterministic Skip Lists	erations	on Sł	•				
UNIT – III TREES					[9]			
UNIT – IV TEXT P Text Processing: Sting Oper Pratt Algorithm – Standard T Common Subsequence Prob UNIT – V COMPU Computational Geometry: Or	AVL Trees – Red Black Trees – 2-3 Trees – B-Trees–Splay Tree ROCESSING ations – Brute-Force Pattern Matching – The Boyer-Moore Algori Fries – Compressed Tries – Suffix Tries – The Huffman Coding J lem (LCS) – Applying Dynamic Programming to the LCS Problem TATIONAL GEOMETRY ne Dimensional Range Searching – Two Dimensional Range Sea ning a Priority Search Tree – Priority Range Trees – Quad trees – k	Algorithm arching -	ı – Th	e Lon	gest [9]			
			tal = 4	5 Per	iods			

Reference Books :

- 1 Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, 4th Edition, Pearson, 2014
- 2 M T Goodrich, Roberto Tamassia, Algorithm Design, John Wiley, 2002
- 3 Alfred V. Aho and John E. Hopcroft, Jeffrey D. Ullman, Data Structures and Algorithms, Pearson Education, Reprint 2006
- 4 Robert Sedgewick and Kevin Wayne, Algorithms, Pearson Education, 4th Edition, 2010

K.S.R. COLLEGE OF ENGINEERING (Autonomous)							
	SEMESTER – I						
		L	Т	Р	С		
IT20112	RESEARCH METHODOLOGY AND IPR	2	0	0	2		
Prerequisite:							
Course Outcomes : On s	uccessful completion of the course, the student will be able to	C	ognit	ive Le	vel		
	cept of research problem	Aı	nalyze				
	alyze literature study		reate				
CO3: Develop writing of	•	-	reate				
CO4: Identify intellectua CO5: Make use of Pate			oply ndersta	and			
	EARCH PROBLEM	01	IUEISI		[9]		
	blem – Sources of research problem – Criteria Characteristics of a						
Errors in selecting a resear	rch problem – Scope and objectives of research problem – Appr lem – Data collection – Analysis – Interpretation – Necessary instru	oaches of	invest				
UNIT – II LITEF	RATURE STUDIES				[9]		
Effective literature studies ap	pproaches – Analysis Plagiarism – Research ethics						
UNIT – III TECH	INICAL WRITING				[9]		
-	 How to write report – Paper – Developing a Research Propo and assessment by a review committee 	sal – Forr	nat of	rese	arch		
UNIT – IV INTEL	LLECTUAL PROPERTY				[9]		
technological research - In	perty: Patents – Designs – Trade and Copyright – Process of Pa nnovation – Patenting – Development – International Scenario: In cedurefor grants of patents – Patenting underPCT	-					
UNIT V PATE	ENT RIGHTS				[9]		
Patent Rights: Scope of P	Patent Rights - Licensing and transfer of technology - Patent info	ormation a	nd dat	tabase	∋s –		
•	 New Developments in IPR: Administration of Patent System – New de outer Software etc – Traditional knowledge Case Studies – IPR and II⁻ 	•	s in IPI	R – IF	Rof		
	-	Tof	al = 4	5 Peri	ods		
Reference Books :							
1 Stuart Melville and Wa	avne Goddard. Research Methodology: An introduction for science	& engineer	ina stu	idents			

- 1 Stuart Melville and Wayne Goddard, Research Methodology: An introduction for science & engineering students, 2011
- 2 Wayne Goddard and Stuart Melville, Research Methodology: An Introduction, 2nd edition, 2006

K.S.R. COLLEGE OF ENGINEERING (Autonomous) R 20 <u>SEMESTER – I</u>						
IT2012	1 ADVANCED DATA STRUCTURES LABORATORY	L O	Т 0	Р 4	C 2	
Prereq	uisite:					
CO1:	e Outcomes : On successful completion of the course, the student will be able to Demonstrate and Implement the different queue operations by using the arrays and linked list	Un	ogniti Idersta	and	vel	
CO2: CO3: CO4: CO5:	Explain heap construction and implement the heap operations Construct AVL tree and perform the various rotation on AVL tree for balancing Design and develop various sorting algorithms Illustrate dynamic programming and backtracking FEXPERIMENTS:	Evaluate Apply Create Understand				
	1. Circular Queue					
	2. Min Heap					
	3. Heaps					
	4. Leftist Heap					
	5. AVL Tree					
	6. B-Tree					
	7. Trees					
	8. Quick Sort					
	9. 0/1 Knapsack using Dynamic Programming					
	10. Graph Coloring using Backtracking					

Total = 45 Periods

K.S.R. COLLEGE OF ENGINEERING (Autonomous) R SEMESTER - I							2020
			XML AND WEB SERVICES LABORATORY	L	т	Р	С
20122			XINL AND WEB SERVICES LABORATORY	0	0	4	2
erequis	site	:					
D1: D D2: B D3: D D4: D D5: E	Deve Build Deve Desi Exte	elop web d dynami elop onlir ign a XM	On successful completion of the course, the student will be able to pages using markup languages and design by Cascading Style Sheets to pages and perform validation using java script ne applications using ASP/JSP and perform session management L document and parse these document using DOM/SAX parsers applications using open source software NTS:	Ap Cr Ap Cr	c ognit oply reate oply reate nderst		vel
1		Creation	of HTML pages with frames, links, tables and other tags				
2) 	Usage o	f internal and external CSS along with HTML pages				
3	8.	Client si	de Programming				
		i.	Java script for displaying date and comparing two dates				
		ii.	Form Validation including text field, radio buttons, check boxes, list box and o	other	contr	ols	
4	.	Usage o	f ASP/JSP objects Response, Request, Application, Session, Server, ADO etc	;			
		i. 	Writing online applications such as shopping, railway/air/bus ticket reserv of ASP/JSP pages	ation	syst	em wi	th set
-							
-		•					
D4: D D5: E ST OF E 1 2 3	0esi Exte EXF	ign a XM end web a PERIMEN Creation Usage o Client si i. Usage o i. i. Writing S	L document and parse these document using DOM/SAX parsers applications using open source software NTS: In of HTML pages with frames, links, tables and other tags of internal and external CSS along with HTML pages de Programming Java script for displaying date and comparing two dates Form Validation including text field, radio buttons, check boxes, list box and o of ASP/JSP objects Response, Request, Application, Session, Server, ADO etc Writing online applications such as shopping, railway/air/bus ticket reserv	Cr Ur other	eate nderst	ols	th

- 7. Creation of XML document for a specific domain
- 8. Writing DTD or XML schema for the domain specific XML document
- 9. Parsing an XML document using DOM and SAX Parsers
- 10. Sample web application development in the open source environment

Total = 45 Periods

•

.

	K.S.R. COLLEGE OF ENGINEERING (Autonomous) SEMESTER - II			R 2	020
IT2021 [,]	ADVANCED ALGORITHMS	L	Т	Ρ	С
		3	0	0	3
Prereq	uisite:				
Course	Outcomes : On successful completion of the course, the student will be able to	С	ogniti	ive Le	evel
CO1:	Analyze the complexity/performance of different algorithms	Ar	alyze		
CO2:	Determine the appropriate data structure for solving a particular set of problems.	Ev	aluate	;	
CO3:	Categorize the different problems in various classes according to their complexity.	Ar	alyze		
CO4:	Develop the recent activities in the field of the advanced data structure.	Cr	eate		
CO5:	Identify the concepts of Linear Programming	Ap	ply		
UNIT –	I SORTING AND GRAPH				[9]

Review of various sorting algorithms - Topological sorting Graph: Definitions and Elementary Algorithms: Shortest path by BFS - Shortest path in edge - Weighted case (Dijkasra's) - Depth first search and computation of strongly connected components - Emphasis on correctness proof of the algorithm and time/space analysis - Example of amortized analysis

UNIT – II MATROIDS AND GRAPH MATCHING

Matroids: Introduction to greedy paradigm - Algorithm to compute a maximum weight maximal independent set -Application to MST - Graph Matching: Algorithm to compute maximum matching - Characterization of maximum matching by augmenting paths - Edmond's Blossom algorithm to compute augmenting path

FLOW NETWORKS AND MATRIX COMPUTATIONS UNIT – III

Flow-Networks: Maxflow mincut theorem - Ford Fulkerson Method to compute maximum flow - Edmond Karp maximum – Flow algorithm – Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm – Inverse of a triangular matrix - Relation between the time complexities of basic matrix operations - LUP - Decomposition [9]

SHORTEST PATH IN GRAPHS UNIT – IV

Shortest Path in Graphs: Floyd - Warshall algorithm and introduction to dynamic programming paradigm - More examples of dynamic programming - Modulo Representation of integers/polynomials: Chinese Remainder Theorem -Conversion between base representation and modulo representation - Extension to polynomials - Application: Interpolation problem - Discrete Fourier Transform (DFT): In complex field - DFT in modulo ring - Fast Fourier Transform algorithm. Schonhage - Strassen Integer Multiplication Algorithm

UNIT – V LINEAR PROGRAMMING

Linear Programming: Geometry of the feasibility region and Simplex algorithm – NP completeness: Examples – Proof of NP- hardness and NP- completeness - One or more of the following topics based on time and interest Approximation algorithms - Randomized Algorithms - Interior Point Method - Advanced Number Theoretic Algorithm

Total = 45 Periods

[9]

[9]

[9]

References

- 1 Cormen, Leiserson, Rivest, Stein, Introduction to Algorithms, 4th Edition
- 2 Aho, Hopcroft, Ullman, The Design and Analysis of Computer Algorithms

K.S.R. COLLEGE OF ENGINEERING (Autonomous)					20
	<u>SEMESTER – II</u>				
IT	20212 SOFT COMPUTING	L 3	Т 0	P 0	C 3
Prereq	uisite:				
	• Outcomes : On successful completion of the course, the student will be able to Identify and describe soft computing techniques and their roles in building intelligent machines		gniti aluate	ive Le	vel
CO2:	Apply fuzzy logic and reasoning to handle uncertainty and solve various engineering problems	Арр	oly		
CO4:	Build genetic algorithms to combinatorial optimization problems Evaluate and compare solutions by various soft computing approaches for a given problem Explain Matlab / Python Libraries	Create em Evaluate Understand			
UNIT –	I INTRODUCTION TO SOFT COMPUTING AND NEURAL NETWORKS				[9]
	on of Computing: Soft Computing Constituents – From Conventional AI to Computational In g Basics	tellig	ence:	Mach	nine
UNIT –	•				[9]
Reasor	Sets– Operations on Fuzzy Sets – Fuzzy Relations – Membership – Functions: Fuzzy ing – Fuzzy Inference Systems – Fuzzy Expert Systems – Fuzzy Decision Making	Rul	es a		
Networ	e Learning Using Neural Network – Adaptive Networks – Feed forward Networks – Supervis ks – Radial Basis Function Networks: Reinforcement Learning – Unsupervised Learning Ne e Resonance architectures – Advances in Neural networks			ng Ne etwork	
Introdu	ction to Genetic Algorithms (GA) – Applications of GA in Machine Learning : Machine Lea dge acquisition	arnin	g Ap		
					[9]
Introdu and fuz learning	JNIT - V MATLAB/PYTHON LIB [9] Introduction to Matlab / Python – Arrays and array operations – Functions and Files – Study of neural network toolbox and fuzzy logic toolbox – Simple implementation of Artificial Neural Network and Fuzzy Logic – Recent Trends in deep earning – various classifiers – Neural networks and genetic algorithm – Implementation of recently proposed soft computing techniques				

References

1 Jyh Shing Roger Jang, Chuen Tsai Sun, EijiMizutani, Neuro:Fuzzy and Soft Computing, 2nd Edition ,Prentice Hall of India.

Total = 45 Periods

2 George J, Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, 4 th Edition Prentice Hall.

K .S.R. COLLEGE OF ENGINEERING (Autonomous)

R2020

SEMESTER - II

			L	Т	Р	С
	MA20231	OPERATIONS RESEARCH	3	0	0	3
Οοι	Irse Outcomes :	Upon Completion of the course, the students should be able to :		Cogni	tive Le	evel
CO1	Develop the l engineering f	inear Programming concepts during the uncertain situations in	Ap	oly		
CO2 CO3 CO4 CO5	Obtain the op Develop integ Obtain the op	timal solutions in Transportation and Assignment problems. ger values by solving Integer Programming Problems. timal solutions in dynamic Programming Problems and its applications. poncepts of stock control by maximizing the profit.	Cre Eva	aluate eate aluate dersta	nd	
	U U	LINEAR PROGRAMMING	011	นษารเล	lu	[9]
		uphical method - Simplex method – Big M Method - Dual Simplex Method				[•]
UNIT	- 11	TRANSPORTATION AND ASSIGNMENT PROBLEMS				[9]
feasib Solutio	le solution by on by MODI Met ems - Travelling S	(Minimizing and Maximizing Problems) – Balanced and unbalanced F N-W Corner Rule – Least cost and Vogel's approximation methods – hod – Assignment Models (Minimizing and Maximizing Problems) – Ba Salesman problem INTEGER PROGRAMMING	- Che	eck fo	r optim	nality –
Formu	lation of Integer	Programming problems – Gomory's cutting plane methods – Branch and B	3oun	d Tech	niques	3
UNIT	- IV	DYNAMIC PROGRAMMING				[9]
	cteristics of Dyn us method of sol	amic Programming- Bellman's principle of optimality - Concepts of c ution	lynan	nic pro	ogramr	ning –
UNIT	- V	INVENTORY MODEL				[9]
		Deterministic inventory models – EOQ and EBQ models with and witho breaks – Probabilistic inventory model (excluding proof)	ut sh	nortage	∌s – Q	uantity
			Т	otal =	45 Pe	riods
Refere	ence Books :					
1	P.K.Gupta & Ma	n Mohan, Operations Research, Sultan Chand & Sons, New Delhi, Twelth	editi	on, 20	13	
2	N. D. Vohra, Q	uantitative Techniques in Management, Tata Mcgraw Hill, New Delhi, 2014	1			

- 3 Gupta P.K, Hira D.S, Problem in Operations Research, S.Chand and Co,New Delhi, 2015
- 4 Taha, H.A., Operations Research, Pearson Education, New Delhi, 2013

K.S.R. COLLEGE OF ENGINEERING (Autonomous) R2						
		<u>SEMESTER - II</u>				
IT20221		ADVANCED ALGORITHMS LABORATORY	L		Ρ	С
_			0	4	2	
Prerequ			_			
		nes : On successful completion of the course, the student will be able to		ogniti		evel
CO1: CO2:		nstrate and Implement the bellman algorithm linear modulo operation and design the algorithm	•.	ndersta oply	and	
CO2:		uct Dijikstra algorithm		eate		
CO4:	Design	and develop various sorting algorithms	Cı	eate		
CO5:		te searching algorithms	Uı	nderst	and	
LIST	-	PERIMENTS:				
	1.	Implementation of Bellman Ford algorithm				
	2.	Implementation of Linear Modular Equvation				
	3.	Implementation of Mone Carlo Algorithm				
	4.	Implementation of Searching algorithms for menu based programs				
	5.	Implementation of Prims algorithm				
	6.	Implementation of Dijikstra algorithm				
	7.	Implementation of Sorting algorithms				
	8.	Implementation of Warshall's algorithm				
	9.	Write a menu driven program for DFS and BFS				
	10.	Implementation of Euclidean algorithm				
			Total =	45 Pe	riods	

K.S.R. COLLEGE OF ENGINEERING (Autonomous)						
	<u>SEMESTER - II</u>	L	т	Р	С	
IT20222	SOFTWARE DEVELOPMENT LABORATORY					
Prerequ	isite:	U	U	7	2	
CO1: CO2: CO3:	Outcomes : On successful completion of the course, the student will be able to Discuss the various types of case tools available Apply the modelling technique to develop the system Explain the code generation process	Cr Ap Un	ogniti eate ply dersta		vel	
LIST	 OF EXPERIMENTS: Practicing the different types of case tools such as (Rational Rose & other Open for all the phases of Software development life cycle Data modeling Semantic data modeling Source code generators Re-engineering Experimenting CASE Environments a. Toolkits b. Language-centered c. Integrated d. Fourthgeneration e. Process-centered Implementation of the following using CASE Workbenches: 	Sourc	e) us	ed		
	a. Business planning and modeling b. Analysis and design					
	c. User-interface development					

- d. Programming
- e. Verification and validation
- f. Maintenance and reverse engineering
- g. Configuration management
- h. Projectmanagement

Total = 45 Periods

K.S.R. COLLEGE OF ENGINEERING (Autonomous)					
	<u>SEMESTER - II</u>		_	_	
	MINI PROJECT WITH SEMINAR	L	I	Р	С
IT2022	3	2	0	0	2
Prereq	uisite:				
Course	e Outcomes : On successful completion of the course, the student will be able to	C	Cognit	tive L	evel
CO1:	Utilize various technical resources available from multiple fields	Ap	ply		
CO2:	Analyze the importance of intonation, word and sentence stress for improving communicative	Ar	alyze		
CO3:	Identify and overcome problem sounds	'	ply		
CO4: CO5:	Illustrate their technical knowledge to enhance the leadership skills Build report and present oral demonstrations		ndersta reate	and	
000.	Duilu report and present oral demonstrations	U	eale		

Guidelines:

- 1. The students have to refer the journals, conference proceedings which are published recently.
- 2. By mutual discussions with the faculty, the student can choose a topic in specific area.
- 3. The student has to give a seminar on their project related topic on every week.
- 4. The student has to submit a technical report having 30 50 pages to the corresponding faculty one week before the final presentation.

Total = 45 Periods

	K.S.R. COLLEGE OF ENGINEERING (Autonomous)						
	<u>SEMESTER - III</u>						
	PROJECT PHASE - I	L	Т	Ρ	С		
IT2032	1	0	0	20	10		
Prereq	uisite:						
	Course Outcomes : On successful completion of the course, the student will be able to			Cognitive Level			
CO1:	Formulate a real world problem, identify the requirement and develop the design solutions	Cr	eate				
CO2:	Identify technical ideas, strategies and methodologies		nalyze	Э			
CO3:	Utilize the new tools, algorithms, techniques that contribute to obtain the solution of the project.	Αp	oply				
CO4:	Test and validate through conformance of the developed prototype and analysis the cost effectiveness	Cr	eate				
CO5:	Build report and present oral demonstrations	Cr	eate				
<u>Gui</u>	delines:						
	• Each student will undertake a sizeable project involving survey of literature.						

- •
- The student should have to develop new techniques and to implement the systems. The student should have to write the reports under the guidance of faculty members. •

			R2	020	
	<u>SEMESTER – IV</u>				
IT2042	PROJECT PHASE - II	L	Т	Ρ	С
		0	0	32	16
Prereq	uisite:				
Cours CO1:	e Outcomes : On successful completion of the course, the student will be able to Analyze the real world problems		ogni alyze	tive L	evel
CO2: CO3:	Identify the requirement and develop the design solutions. Utilize the new tools, algorithms, techniques that contribute to obtain the solution of the project.		alyze eate		
CO4:	Test and validate through conformance of the developed prototype and analysis the cost effectiveness	Cr	eate		
CO5: <u>Gui</u>	Build report and present oral demonstrations delines:	Cr	eate		
	• Each student will undertake a sizeable project involving survey of literature.				

- The student should have to develop new techniques and to implement the systems. The student should have to write the reports under the guidance of faculty members. •
- •

K.S.R. COLLEGE OF ENGINEERING (Autonomous)					
	<u>SEMESTER – I</u>				
IT20 [,]	ADVANCED COMPUTER ARCHITECTURE	L	Т	Ρ	С
1120	(Professional Electives – I and II)	3	0	0	3
Course Outcomes : On successful completion of the course, the student will be able to		Cogni	.evel		
CO1:	Discuss the fundamental concepts of computer architecture	Create			
CO2:	Identify the concepts and challenges of instruction level parallelism	Apply			
CO3:	Discuss the data level parallelism	Create			
CO4:	Outline the Memory types and Hierarchy design	Understa	nd		
CO5:	Examine about Multiprocessor and Multicore architecture	Analyze			
UNIT – I	FUNDAMENTALS OF COMPUTER DESIGN			[9	9]

Introduction- Classes of Computers - Defining computer architecture - Measuring and reporting performance - Quantitative principles of computer design - Instruction set principles - Classifying Instruction set architectures - Memory addressing -Addressing modes - Type and size of operands - Pipelining concepts

UNIT – II INSTRUCTION LEVEL PARALLELISM

Concepts and challenges - Overcoming data hazards with dynamic scheduling using Tomasulo's approach - Dynamic scheduling examples and algorithms - Hardware based speculation - Static scheduling - High performance instruction delivery - Limitations of Instruction level parallelism

UNIT – III DATA LEVEL PARALLELISM

Introduction - Vector architecture - Vector execution time - Vector length registers - Vector mask registers and memory bank - SIMD instruction set extension for multimedia - Graphics processing units - Detecting and enhancing loop level parallelism

UNIT – IV MEMORY HIERARCHY DESIGN

Introduction - Review of caches - Cache performance - Reducing cache miss penalty - Reducing miss rate - Miss rate via parallelism - Reducing hit time - Main memory organization for improving performance - Memory technology - Types of storage devices - Virtual memory - Protection and examples of virtual memory

UNIT – V MULTIPROCESSORS AND MULTICORE ARCHITECTURES

Introduction - Multiprocessor architecture - Issues and approach - Centralized shared memory architecture - Limitations in symmetric shared - Memory multiprocessors - Performance of symmetric shared - Memory multiprocessors - Distributed shared – Memory – Synchronization – Models of memory consistency

References

- John L, Hennessey and David A, Patterson, Computer Architecture A guantitative approach, Morgan Kaufmann 1 Elsevier, 5th Edition, 2012
- William Stallings, Computer Organization and Architecture Designing for Performance, Pearson Education, 8th 2 Edition, 2010

Total = 45 Periods

[9]

[9]

[9]

[9]

K.S.R. COLLEGE OF ENGINEERING (Autonomous)					
	<u>SEMESTER - I</u>				
IT20	AD-HOC AND SENSOR NETWORKS (Professional Electives – 1 and II)	L 3	Т 0	P 0	C 3
Prere	quisite:				
Cour	e Outcomes : On successful completion of the course, the student will be able to	C	ogniti	ive Le	evel
CO1.	Analyze the function design issues and classification of MAC protocols that have been proposed for ad hoc networks	An	alyze		
CO2	networks	Un	dersta	and	
CO3.	Compile the principles ,architecture and MAC protocol of wireless sensor networks (WSNs)	Cre	eate		
CO4. CO5.	51 0		eate Idersta	and	
UNIT	- I AD-HOC MAC				[9]
	luction – Issues in Ad-Hoc Wireless Networks – MAC Protocols – Issues – Classifications of channel MAC & Power control MAC protocol	of M	IAC p	rotoco	ols –
UNIT					[9]
Tree	IS – Classifications of routing protocols – Hierarchical and Power aware – Multicast routing – based – Mesh based – Ad Hoc Transport Layer Issues – TCP Over Ad Hoc – Feedback cit link – TCP BuS – Ad Hoc TCP and Split TCP				
•	- III WSN - MAC				[9]
	luction – Sensor Network Architecture – Data Dissemination – Gathering MAC Protocols – d TDMA/FDMA and CSMA based MAC	Sel	f-orga		
UNIT	- IV WSN ROUTING, LOCALIZATION & QOS				[9]
Issue	s in WSN routing – OLSR – AODV Localization – Indoor and Sensor Network Localization – Q	oS in	WSN	1	
	ssity for Mesh Networks – MAC enhancements – IEEE 802.11s Architecture – Opportu guration and Auto configuration – Capacity Models – Fairness – Heterogeneous Mesh Networ			ting –	
INCIN		Tota	al = 4	5 Peri	iods
Refer	ences				
2	Eeng Zhao and Leonidas Guibas, Wireless Sensor Networks, Morgan Kaufman Publishers, C.Siva Ram Murthy and B.Smanoj, Ad Hoc Wireless Networks – Architectures and Protocols, Education, 2011				

Ζ Education, 2011

C.K.Toh, Ad Hoc Mobile Wireless Networks, 3rd Edition, Pearson Education, 2011
 Thomas Krag and Sebastin Buettrich, Wireless Mesh Networking, O'Reilly Publishers, 2007

K.S.R. COLLEGE OF ENGINEERING (Autonomous)					20	
<u>SEMESTER - I</u>						
IT201	63 SOFTWARE ENGINEERING METHODOLOGIES (Professional Electives – 1 and II)	L 3	Т 0	P 0	C 3	
Prerequisite:						
Course CO1: CO2: CO3: CO4:	Outcomes : On successful completion of the course, the student will be able to Elaborate the various traditional software development life cycle models Apply the behaviour of executable and non-executable testing with real word example Discuss the behaviour of object oriented and reusability	Cri Ap Cri	ognit i eate oply eate nalyze		vel	
CO5:	Simplify the design principles and get the outline of the object oriented analysis and design Illustrate about the implementation phase and maintenance phase		ndersta			
UNIT –	SOFTWARE LIFE CYCLE				[9]	
•	of Software Engineering – Historical – Economic and Maintenance Aspects – Software Pro odels – Tools	ocess	– Sof	tware	Life	
UNIT –		_			[9]	
	 Non-Execution based Testing – Execution based Testing – Testing versus Correct ed and Real Time Software 	ness F	roofs	– Tes	sting	
UNIT –	II OBJECT ORIENTATION				[9]	
Modules	 Objects – Reusability – Portability and Interoperability – Planning and Estimation ANALYSIS AND DESIGN 				[9]	
Require	ments Phase – Specification Phase – Object Oriented Analysis Phase – Design Phase				•••	
UNIT –	V IMPLEMENTATION AND INTEGRATION				[9]	
Impleme	entation Phase – Integration Phase – Maintenance Phase					
		Tot	al = 4	5 Peri	ods	
Referen						
	ger S.Pressman, Software Engineering - A practitioner's Approach, McGraw-Hill Internati	onal E	dition	, Seve	enth	

1 Edition , 2009

2 Ian Sommerville, Software Engineering, Pearson education Asia, Ninth edition, 2010

K.S.R. COLLEGE OF ENGINEERING (Autonomous)				R 20	20
<u>SEMESTER - I</u>					
IT20164	DATA SCIENCE (Professional Electives – I and II)	L 3	Т 0	P 0	C 3
Prerequisite:					
Course Outcomes : Or	n successful completion of the course, the student will be able to	C	ogniti	ive Le	evel
	ey concepts in data science- including their real-world applications and the / data scientists	Cr	eate		
CO3: Analyze the co	ection and management scripts using MongoDB oncept of Data Analysis		ply alyze		
	and Visual encoding Techniques pout applications of Data Science		ply dersta	and	
UNIT – I INT	TRODUCTION TO CORE CONCEPTS AND TECHNOLOGIES				[9]
Introduction – Terminolo	ogy – Data science process – Data science toolkit – Types of data – Exam	ple appl	icatior	ns	
Introduction – Sources o Using multiple data sour		age and	mana	ageme	
Introduction – Terminolo	ATA ANALYSIS ogy and concepts – Introduction to statistics – Central tendencies and dis and arithmetic – Samples/CLT– Basic machine learning algorithms – Line			/arian	
UNIT IV DA Introduction - Types of	ATA VISUALISATION data visualization – Data for visualization – Data types – Data encodings icodings – Visual encodings	s – Retir	nal va		[9] s –
UNIT – V AP	PPLICATIONS				[9]
Applications of Data Science – Technologies for visualization – Bokeh (Python) Recent trends in various data collection and analysis techniques – Various visualization techniques – Application development methods of used in data science Total = 45 Periods					се
References					
1 Cathy O'Neil and	Rachel Schutt. "Doing Data Science", Straight Talk From The Frontline,	⊢irst E	dition	, U'R	eilly,

- 1 Cathy O'Neil and Rachel Schutt. "Doing Data Science", Straight Talk From The Frontline, First Edition, O'Reilly, 2013.
- ² Jure Leskovek, Anand Rajaraman and Jeffrey Ullman," Mining of Massive Datasets. v2.1",Cambridge University Press

	K.S.R. COLLEGE OF ENGINEERING (Autonomous)			R 20	20
	SEMESTER – I				_•
	SCIENTIFIC COMPUTING		т	Р	С
IT20165	(Professional Electives – I and II)	L 3	Т 0	г 0	3
Prerequisite:	, ,				
Course Outcomes : On s	uccessful completion of the course, the student will be able to	С	ogniti	ive Le	evel
CO1: Analyze the vario	bus modeling technique available	Ar	nalyze		
	oximation in the scientific computing	Ur	ndersta	and	
CO3: Discuss the optir	nization and its dimensions		reate		
	arious methods to find out the roots of the equation		nalyze		
	tial difference equation along with integration	Ev	/aluate		
UNIT – I INTR	ODUCTION TO SYSTEM MODELING				[9]
Modelling and general s	ystems theory - Concepts of simulation - Types of simulation -	Experi	menta	l des	ign
consideration – Compariso	on and selection of simulation languages - Development of simulation	n mod	els us	sing a	any
one of the languages for	some problems - stochastic simulation - R andomness and random	numb	ers –	Rand	om
number generators - soft	ware for generating random numbers				
UNIT – II APPF	ROXIMATIONS IN SCIENTIFIC COMPUTING				[9]
General Strategy – Appr	oximations in Scientific Computation – Mathematical Software – Ma	athema	atical 3	Softwa	are
Libraries - Scientific Com	puting Environments – Extended Arithmetic Packages				
UNIT – III OPTI	MIZATION				[9]
Optimization Problems -	- Existence and Uniqueness – Convexity – Optimization in	One	Dime		
Multidimensional Unconstr	ained Optimization - Constrained Optimization - Linear Programming				
UNIT – IV ROO	TS OF EQUATION LINEAR ALGEBRAIC EQUATION AND INTERPOL	ATION	I		[9]
Graphical Method - Iterat	tive Methods – Newton Raphson Method – Break Even Analysis – G	Gauss	Elimi	natior	1 –
Solution Of Linear System	s By Gaussian – Gauss Jordan – Jacobi And Gauss Seidel Methods	s – Mat	rix Inv	ersior	า –
Gauss – Jordan Method	- Least Square Regression - Newton's Divided - Difference Interpo	lating	Polyno	omials	- ذ
Lagrange's polynomials -	Newton's Forward and Backward Difference Formula - Stirling's a	and Be	essel's	Cent	tral
Difference Formula	-				
UNIT – V NUM	ERICAL ORDINARY AND PARTIAL DIFFERENTIATION AND INTEGR	ATION			[9]
	Runge – Kutta Methods – Boundary – Value and Eigen value				
	iptic Equation – Parabolic Equations – Numerical Integration: Trapezo				
	Point Gaussian Quadrature Formula – Double Integral Using Trape			•	
	Tome Substant Quadratato Formata - Boasto mitograf Obing Hapo.	Loradin	2.10 01		

References

Rule

Total = 45 Periods

- 1 Jerry Banks and John Carson, Discrete Event System Simulation, 5th Edition, PHI, 2012
- 2 Steven C, Chapra Raymond P Canale, Numerical Methods for Engineering, Second Edition, McGraw-Hill
- 3 Sastry S S, Introductory Methods of Numerical Analysis, Fourth Edition, Prentice Hall India, 2006

K.S.R. COLLEGE OF ENGINEERING (Autonomous) R 20					20	
<u>SEMESTER – I</u>						
IT20166 DIGITAL IMAGE PROCESSING (Professional Electives – I and II)					C 3	
Prerequisite:						
Course Outcomes : On succe	Course Outcomes : On successful completion of the course, the student will be able to				vel	
CO1: Explain digital image µ images	processing fundamentals- sampling and quantization concepts for 2D	Un	dersta	and		
CO2: Build image enhancem	1		ply			
	es in the areas of image enhancement-restoration segmentation		eate			
	mage processing techniques for real time applications Image Processing to real-world applications		aluate ply)		
UNIT – I FUNDAME	ENTALS OF IMAGE PROCESSING				[9]	
	e Processing Systems – Image Acquisition – Sampling and Qua nentals and Models – File Formats – Image operations – Arithmet					
UNIT – II IMAGE EN	HANCEMENT				[9]	
Spatial Domain Gray level Transformations – Histogram Processing – Spatial Filtering – Smoothing and Sharpening – Frequency Domain: Filtering in Frequency Domain – DFT (Discrete Fourier Transform) – FFT (Fast Fourier Transform) – DCT (Discrete Cosine Transform) – Smoothing and Sharpening filters – Homomorphism Filtering						
UNIT – III IMAGE SE	GMENTATION AND FEATURE ANALYSIS				[9]	
Detection of Discontinuities – Ec	dge Operators – Edge Linking and Boundary Detection – Thresholdin Watersheds – Motion Segmentation – Feature Analysis and Extraction	-	Regio			
UNIT – IV MULTI RE	SOLUTION ANALYSIS AND COMPRESSIONS		_		[9]	

 UNIT - IV
 MULTI RESOLUTION ANALYSIS AND COMPRESSIONS
 [9]

 Multi Resolution Analysis: Image Pyramids – Multi resolution expansion – Wavelet Transforms – Image Compression:
 Fundamentals – Models – Elements of Information Theory – Error Free Compression – Lossy Compression – Compression Standards
 Compression Standards

UNIT – V APPLICATIONS OF IMAGE PROCESSING

Image Classification – Image Recognition – Image Understanding – Video Motion Analysis – Image Fusion – Steganography – Digital Compositing – Mosaics – Color Image Processing

Total = 45 Periods

[9]

References

- Rafael C,Gonzalez and Richard E, Woods, Digital Image Processing, 4th Edition, Pearson Education, 2011 Milan Sonka, Vaclav Hlavac and Roger Boyle, Image Processing, Analysis and Machine Vision, 2nd Edition,
- ² Thomson Learning, 2007
- 3 Anil K Jain, Fundamentals of Digital Image Processing, Pearson Education, 2011

K.S.R	COLLEGE OF ENGINEERING	G (Autonomous)			R 20	20
	<u>SEMESTER – I</u>					
	XML AND WEB SERVIC	ES	L	Т	Ρ	С
IT20167	(Professional Electives – I	and II)	3	0	0	3
Prerequisite:						
Course Outcomes : On successful co	mpletion of the course, the s	tudent will be able to	Co	ogniti	ive Le	evel
CO1: Discuss the basics of XML Te				eate		
CO2: Outline the basic concepts of			-	dersta		
CO3: Determine the web services b CO4: Illustrate the use of XML in e-k				aluate dersta		
CO5: Importance of usage of XML a				aluate		
UNIT - I XML TECHNOLO	•					[9]
XML – benefits – Advantages of XML e standards – DTD (Document Type (Document Object Model) – SAX (sim Language) – XFORMS – XHTML – V UNIT – II ARCHITECTING V Business motivations for web services motivations – Limitations of CORBA and	Declaration) – XML Schemas ole API for XML) – Ppresenta 'oice XML VEB SERVICES – B2B (Business to Business)	 – XML Files – XML protection technologies – XSL (– B2C (Business to Custor) 	ocessi XML mer)	ing – Style – Te	DOI shee	VI et [9] al
Implementation view - Web services te	•••		;es –	Deplo	oymer	nt
view from application server to peer to p		runtime				
Transport protocols for web services - Protocol) – Describing web services manipulating WSDL – Web service per and Integration Consortium) – Anaton Web service inspection – Ad-Hoc Disc UNIT – IV IMPLEMENTING X B2B – B2C Applications – Different typ – Rosetta Net Applied XML in vertical	 WSDL (Web Service De blicy – Discovering web service y of UDDI (Universal Descrip covery – Securing web services (ML IN E-BUSINESS es of B2B interaction – Compo industry – Web services for the ENT MANAGEMENT in web content – Resource 	scription Language) – Ana ces – UDDI (Universal Des tion – Discovery and Integra nents of e- business XML s mobile devices	atomy acriptic ation (ystem	of V on- D Consc ns – (Acce VSDL viscov ortium ebXM	. – ery)) – [9] [9]
			Tota	al = 4:	5 Peri	iods
Reference Books :						
1 Ron schmelzer et al, XML and We	b Services, Pearson Education	, 3 rd Edition, 2011				
 Sandeep Chatterjee and James Prentice Hall, 3rd Edition, 2009 Frank P, Coyle, XML, Web Service 			cť s	Guide	9,	

、

K.S.R. COLLEGE OF ENGINEERING (Autonomous)					20		
	<u>SEMESTER – I</u>						
IT20168	DISTRIBUTED SYSTEMS	L	Т	Ρ	С		
	(Professional Electives – I and II)	3	0	0	3		
Prerequisite:							
	es : On successful completion of the course, the student will be able to		ognit		evel		
	e the distributed system architecture		nalyze				
	s the design trends in distributed system network virtualization		eate eate				
	emote method invocation and objects		oply				
	strate about Parallel Database Systems		nderst	and			
UNIT– I	DISTRIBUTED DATABASE MANAGEMENT SYSTEM ARCHITECTURE				[9]		
Overview of data	processing – What is a DDBS – Advantages and disadvantages of DDB abase and computer network concepts Transparencies in a distributed DBMS lobal directory issues						
UNIT – II	DISTRIBUTED DATABASE DESIGN				[9]		
security – Sema of query processi	n strategies – Distributed design issues – Fragmentation – Data allocation View ntic Integrity Control Objectives of query processing – Characterization of query ing – Query decomposition – Localization of distributed data				ers		
UNIT – III	DISTRIBUTED QUERY OPTIMIZATION				[9]		
query optimization transactions – Concurrency con	g query optimization – Centralized query optimization – Ordering of fragment qu on algorithms The transaction concept – Goals of transaction management – Taxonomy of transaction models Concurrency control in centralized data trol in DDBSs – Distributed concurrency control algorithms – Deadlock managem	Charac abase s	teristic	cs of			
UNIT – IV	RELIABILITY				[9]		
Reliability issues	in DDBSs - Types of failures - Reliability techniques - Commit protocols - Rece	overy pr	otocol	S			
UNIT – V	PARALLEL DATABASE SYSTEMS				[9]		
Parallel architect	ures – Parallel query processing and optimization – Load balancing						
		Tot	al = 4	5 Per	iods		
Reference Book	S :						
1 11 7 0		4					

- 1 M T Ozsu and P Valduriez, Principles of Distributed Database Systems, Prentice Hall, 2011
- 2 D Bell and J Grimson, Distributed Database Systems, Addison Wesley, 1992

	K.S.R. COLLEGE OF ENGINEERING (Autonomous)			R 202	20		
	SEMESTER – I						
		LTP					
IT2	0160	3	0	г 0	C 3		
Prerequ		U	Ū	Ū	U		
Course	C	ogniti	ive Le	vel			
CO1:	Show the various standards and compression techniques used in multimedia communication		dersta				
CO2:	Utilize the knowledge about multimedia operating system and file system used in multimedia communication	Ap	ply				
CO3:	Analyze various routing and communication protocols used in multimedia system		alyze				
CO4:	Propose the concepts about various synchronization models and multimedia objects in distributed environment	Cre	eate				
CO5:	Outline about recent tools used for multimedia application and development	Un	dersta	and			
UNIT –	I DATA COMPRESSION VIDEO AND ANIMATIONS				[9]		
Archited UNIT – Network Routing Commu UNIT – Speech Multiple Multiple UNIT – Hyperte Issues Synchro	Basic concepts – Computer based animation – Data compression: JPEG – MPEG 2- 4- 7 – CD ROM Extended Architecture – Communications Architecture – Basic sound concepts (music, speech, images and graphics) UNIT – II MULTIMEDIA OPERATING SYSTEM AND FILE SYSTEM [9] Network Essentials: Terminology – Network Types And Components – TCP/IP Overview And Protocols – IP Routing – DHCP – Host Name Resolution – Access Methods – Real time – Process Scheduling – Inter process Communication – Server Architecture – Disk Management – File system: Multimedia File system – Synchronization UNIT – III NETWORK AND COMMUNICATION SYSTEM [9] Speech code for Multimedia Telecommunication transmitting – Control Protocol for Multimedia Communication – Multiplexing Protocol for Low bit rate – Multimedia Communication Protocol Support for QoS – Transport of Multimedia – Session Management – MBone Application [9] Hypertext and Hypermedia – Multimedia and Hypermedia Information coding Expert Group – General Design Issues – Video – Audio User Interface – Reference Model for Multimedia Synchronization – Case Studies:						
Hardwa Process Editing	Preparation – Composition – Media Integration – Media Communication – Consumption – re: Memory And Storage Devices – Input Devices – Output Devices – Software: Text B sing – Painting And Drawing Tools– 3d Modeling And Animation Tools– Image Editin Tools – Animation – Video And Digital Movie Tools – Case Studies: Graphics and Image sop – Macromedia Fireworks – Maya – 3DS MAX	Editir ng T Edi	ng Ar ools– iting -	nment nd Wo Sou	ord Ind Ibe		
Referer							
	If Steinmetz, Klara Nahrstedt, Multimedia Computing Communications and Applications, Pear ucation,2011	son					

- 2 Atul Puri, Tsuhan Chen, Multimedia Systems Standards and Networks, Marcel Dekker Inc,2005
- 3

Frank P, Coyle, XML- Web Services and the Data Revolution, Pearson Education, 2011

	K.S.R. COLLEGE OF ENGINEERING (Autonomous)			R 20	20
	<u>SEMESTER – I</u>				
170	INFORMATION RETRIEVAL TECHNIQUES	L	Т	Ρ	С
112	0171 (Professional Electives – I and II)	3 0 0			3
Prereq	iisite:				
Course	Outcomes : On successful completion of the course, the student will be able to	С	ognit	ive Le	evel
CO1:	Explain the basics of the information retrieval technique	Ev	aluate	9	
CO2:	Discuss the retrieval process by using the query method	Cr	eate		
CO3:	Examine the text operation process along with the user interface	An	alyze		
CO4:	Analyze the various multimedia information retrieval techniques	An	alyze		
CO5:	Develop the applications of the information retrieval techniques	Ap	ply		
UNIT –	BASICS OF RETRIEVAL TECHNIQUES				[9]
Relevar UNIT –	ges – Key Word based Querying – Pattern Matching – Structural Queries – Query ce Feedback – Local and Global Analysis – Text and Multimedia languages	·		– Us	[9] ser [9]
Boolear Comput	er Interaction – Access Process – Starting Points – Query Specification – Context – I nt – Interface for Search	ation	– Hu	man	
UNIT –					[9]
Data Mo	odels – Query Languages – Spatial Access Models – Generic Approach – One Dimensional onal Color Images – Feature Extraction	Time	Serie		
UNIT –	-				[9]
Searchi IR syst	ng the Web – Challenges – Characterizing the Web – Search Engines – Browsing – Meta sea ems – Online Public Access Catalogs – Digital Libraries – Architectural Issues – Docu entations and Access – Prototypes and Standards			nline	[]
-		Tot	al = 4	5 Peri	iods
Referer	ces :				
1 Ri	cardo Baeza, Yate, Berthier Ribeiro, Neto, Modern Information Retrieval, Addison Wesley,	2011			
~		T I · (00	

- 2 G G Chowdhury, Introduction to Modern Information Retrieval, Neal Schuman Publishers, Third edition, 2010
- 3 Daniel lurafsky and James H Martin, Speech and Language Processing, Pearson Education, International Edition, 2008
- 4 David A, Grossman, Ophir Frieder, Information Retrieval: Algorithms, and Heuristics, Second Edition, Springer, 2008

K.S.R. COLLEGE OF ENGINEERING (Autonomous)					20
	<u>SEMESTER – II</u>				
172	0261 DATA WAREHOUSING AND DATA MINING	L	Т	Ρ	С
112	(Professional Electives – III and IV)	3	0	0	3
Prerequ	uisite:				
Course	Outcomes : On successful completion of the course, the student will be able to	C	ognit	ive Le	vel
CO1: CO2:	Elaborate the concepts of Data Warehousing architecture and implementation Apply the association rules for mining applications	Create Apply			
CO3:	Discuss on appropriate Classification techniques for various problems		eate		
CO4:	Construct the suitable Clustering methods for mining applications	Apply			
CO5:	Illustrate various data mining techniques on complex data objects	Ur	nderst	and	
UNIT –	I DATA WAREHOUSING				[9]
Introduc	tion to Data Warehousing – Data warehousing Components – Data warehouse	Archite	cture	– Da	ita
Wareho	use Schemas - Online Analytical Processing (OLAP) - OLAP and Multidimensiona	I Data Ar	nalysis	– Da	ıta
Wareho	using to Data Mining				
UNIT –	II DATA MINING				[9]
Data M	lining – Data Mining Functionalities – Data Pre-processing – Data Cleaning –	Data In	tegrat	ion a	nd

D Transformation - Data Reduction - Data Discretization and Concept Hierarchy Generation - Association Rule Mining - Efficient and Scalable Frequent Item Set Mining Methods - Mining Various Kinds of Association Rules -Association Mining to Correlation Analysis – Constraint Based Association Mining [9]

UNIT – III **CLASSIFICATION**

Classification and Prediction - Issues Regarding Classification and Prediction - Classification by Decision Tree Induction - Bayesian Classification - Rule Based Classification - Classification by Back propagation - Support Vector Machines - Associative Classification - Lazy Learners - Other Classification Methods - Prediction -Accuracy and Error Measures - Evaluating the Accuracy of a Classifier or Predictor - Ensemble Methods - Model Section

UNIT – IV CLUSTERING

Cluster Analysis - Types of Data in Cluster Analysis - A Categorization of Major Clustering Methods -Partitioning Methods - Hierarchical methods - Density-Based Methods - Grid Based Methods - Model Based Clustering Methods - Clustering High Dimensional Data - Constraint Based Cluster Analysis - Outlier Analysis

UNIT – V **TRENDS IN DATA MINING**

Mining Object - Spatial, Multimedia, Text and Web Data - Multidimensional Analysis and Descriptive Mining of Complex Data Objects - Spatial Data Mining - Multimedia Data Mining - Text Mining - Mining the World Wide Web Data mining tools – DB Miner – WEKA

Reference Books :

Jiawei Han and Micheline Kamber, Data Mining Concepts and Techniques, 3rd Edition, Elsevier, Reprinted 2011 1

- 2 Alex Berson and Stephen J Smith, Data Warehousing, Data Mining & OLAP, Tata McGraw – Hill Edition, 13th Reprint 2010
- K P Soman, Shyam Diwakar and V Ajay, Insight into Data Mining Theory and Practice, Easter Economy Edition, 3 Prentice Hall of India, 2006
- G K Gupta, Introduction to Data Mining with Case Studies, Easter Economy Edition, Prentice Hall of India, 2009 Λ

Total = 45 Periods

[9]

[9]

K.S.R. COLLEGE OF ENGINEERING (Autonomous)								
	<u>SEMESTER – II</u>							
	NETWORK MANAGEMENT	L	Т	Ρ	С			
112	0262 (Professional Electives – III and IV)	3	0	0	3			
Prereq	uisite:							
Course	Outcomes : On successful completion of the course, the student will be able to	Co	ogniti	ve Le	vel			
CO1:	Apply the knowledge in fundamental concepts and basic taxonomy and terminology used in computer networks	Ap	ply					
CO2: CO3:	Discover about IEEE 802-11 LAN system architecture and MAC management concepts Identify the necessity of transport layer in IEEE 802-11 standard	Ana Apj	alyze ply					
CO4: CO5:	Build the skills in IP layer- sub netting and routing mechanisms in network Summarize about various tools and models used for measure the network performance	Ap _j Un	ply dersta	and				
UNIT –	I NETWORKING BASICS				[9]			
Networking basics – LANs and WANs – Network hardware components – Server-based networks – Peer-to-peer networks – Specialized servers – Combination networks – Network packets – Addressing packets – Multiplexing – Protocols – The OSI reference model – Internet Protocol Stack UNIT – II MAC MANAGEMENT [9] Asynchronous and Synchronous transmission – MAC protocol – Controlled & contention-based – IEEE 802-11 LANs – System architecture – physical layer – Media Access Control – MAC management – Error Detection and Correction Techniques – CRC and Linear Block Codes – Transmission Protocols – Retransmission techniques –								
UNIT – Introduc Respon UNIT – IP Laye	Token ring – FDDI [9] UNIT – III TCP [9] Introduction to TCP – Packet format – Sliding window protocol – Establishing and Closing TCP connection – Response to Congestion and variance in delay – TCP performance – Reserved and available port numbers [9] UNIT – IV IP DATAGRAMS [9] IP Layers and functions – Congestion control – X.25 – Internetworking concepts and X.25 architectural models – Naming addressing and routing using IP – Unreliable connectionless delivery – Datagram's – Routing IP datagram's							
UNIT – Traffic				wardir				

Reference Books :

routing

- 1 Fitzgerald and Dennis, Business Data Communications and Networking, John Wiley and Sons, Delhi, 2011
- 2 William Stallings, Data and Computer Communications, Eighth edition, Prentice Hall, New Delhi, 2009
- 3 James F Kurose, et al, Computer Networking: A Top, Down Approach Featuring the Internet, Fourth edition, Addison Wesley, 2008

Total = 45 Periods

4 Achyut S Godbole, Data Communications and Networks, Tata Mc, Graw Hill, Seventh reprint, 2007

K.S.R. COLLEGE OF ENGINEERING (Autonomous)						
	<u>SEMESTER – II</u>					
	MULTI CORE ARCHITECTURE	L	Т	Р	С	
	IT20263 (Professional Electives – III and IV)	3	0	0	3	
Prer	equisite:					
Cou	rse Outcomes : On successful completion of the course, the student will be able to	С	ogniti	ive Le	vel	
CO	1: Explain the basics of computer architecture concepts	Ur	ndersta	and		
CO	2: Discuss the pipeline processing process and its principles	Cr	eate			
CO			nalyze			
CO	<i><i><i>J</i>¹</i></i>		oply			
CO		Cr	reate			
UNI	FUNDAMENTAL CONCEPT OF COMPUTER ARCHITECTURE				[9]	
level	lamental Concept of Computer Architecture – Introduction to Parallel Processing – Basic cons s of Parallelism – Classification of Parallel architecture – Basic parallel Techniques – F Juages and Parallel architecture					
UNI	- II PIPELINED PROCESSOR			I	[9]	
pipe	duction to ILP Processors – Pipelined Processor – Basic concept – Design space of pipe ined instruction processing – Pipelined instruction processing in Pentium – Case study – c principles – Trace 200 family case Study					
	– III SUPERSCALAR PROCESSOR				[9]	
	duction – Parallel decoding – Instruction issue – Shelving – Register renaming – Parallel ex case study – SIMD architecture – Introduction – Design space – Coarse grained SIMD archite		n – Po	ower F	PC	
	- IV INTRODUCTION TO MIMD ARCHITECTURE				[9]	
/ XA	Introduction – Word length – Vectorization – Pipelining – Parallel computing streams – Cray family – Convex C4 / XA system – Introduction to MIMD architecture – Coarse gain multi computers – Intel paragon homogeneous architecture – Power plus hybrid architecture					
UNI	T – V CACHE MEMORY				[9]	
Enco	duction – Dynamic interconnection networks – Cache coherence – Uniform Memory Access ore multi max machine case study – Non Uniform Memory Access (NUMA) machines – V y – Cache Only Memory Architecture (COMA) machine with examples					
		Tot	al = 4	5 Peri	ods	
Refe	rence Books :					
1	Dezso Sima, Peter Karsuk, Terence Fountain, Advanced Computer Architectures, A De ApproachII, Pearson Education, 2011	sign Sj	oace			

- ApproachII, Pearson Education, 2011
 J L Hennessy and D A Patterson, Computer Architecture: A Quantitative Approach, Morgan Kaufmann publishers, 2011
- 3 Richard Y, Kain, Advanced Computer Architecture: A System Design Approach, PHI Learning, 2010

K.S.R. COLLEGE OF ENGINEERING (Autonomous)							
	<u>SEMESTER – II</u>						
IT20264	KNOWLEDGE DISCOVERY L T P						
1120204	(Professional Electives – III and IV)	3	0	0	3		
Prerequisite:							
Course Outcom	es : On successful completion of the course, the student will be able to		Cogni	itive Le	evel		
	bout various knowledge representation methods		aluate)			
	on Knowledge Representation the evaluation of Decision Trees		eate oply				
,	Classification Rules		nalyze				
,	he concept of Clustering		ememt	ber			
UNIT – I	INTRODUCTION KDD AND DATA MINING				[9]		
Data Mining and	Machine Learning – Machine Learning and Statistics – Generalization as Search –	Data	Mining) and E	Ethics		
UNIT – II	KNOWLEDGE REPRESENTATION				[9]		
	Decision Trees – Classification Rules – Association Rules – Rules involving Relat	ions -	- Tree	s for			
Numeric Predictio	ns – Neural Networks – Clusters EVALUATION OF LEARNED RESULTS				[9]		
••••	Divide and Conquer– Calculating Information – Entropy – Pruning– Estimating Erro	or Rat	es – T	he C4-			
	ng and Testing – Predicting Performance – Cross Validation						
UNIT – IV	CLASSIFICATION	robob	:::		[9]		
	es – Inferring Rudimentary Rules – Covering Algorithms for Rule Construction – Pl Association Rules – Item Sets – Rule Efficiency	lopap	inty ivi	easure	101		
UNIT – V	CLUSTERING				[9]		
Numeric Predictions – Linear Models for Classification and Numeric Predictions – Numeric Predictions with Regression Trees – Evaluating Numeric Predictions – Artificial Neural Networks – Perceptions – Multilayer Networks – The Back propagation Algorithm – Iterative Distance based Clustering – Incremental Clustering – The EM Algorithm							
		٦	Fotal :	= 45 Pe	eriods		
Doforonoo Dook							

Reference Books :

- ¹ Maimon and oded(et al), Data mining and knowledge discovery handbook
- ² Data Cleansing: A Prelude to knowledge Discovery

K.S.R. COLLEGE OF ENGINEERING (Autonomous)					20			
	<u>SEMESTER – II</u>							
IT.	IT20265 DATA SECURITY AND ACCESS CONTROL L T P C							
114	(Professional Electives – III and IV)	3	0	0	3			
Prereq	uisite:							
Course	Outcomes : On successful completion of the course, the student will be able to	Сс	ogniti	ive Le	vel			
CO1:	Develop classical models and algorithms	Cre	eate					
CO2:	Analyze the data and identify the problems		alyze					
CO3:	Choose the relevant models	Ap						
CO4:	Apply the algorithms	Ap	-					
CO5:	Predict the strengths and weaknesses of various access control models and to analyze their behaviour	Cre	eate					
					1			
UNIT –					[9]			
– Mode – Mand	tion to Access Control – Purpose and fundamentals of access control – Brief history – Policies Is of Access Control and Mechanisms – Discretionary Access Control (DAC) – Non Discretion atory Access Control (MAC) – Capabilities and Limitations of Access Control Mechanisms: A nd Limitations – Capability List and Limitations	ary	Acces	ss Co	ntrol			
ÙNIT –	II ROLE-BASED ACCESS CONTROL (RBAC)				[9]			
Role Ba	sed Access Control (RBAC) and Limitations - Core RBAC - Hierarchical RBAC - Statically C	onst	raine	d RBA	- AC			
Dynami	cally Constrained RBAC – Limitations of RBAC – Comparing RBAC to DAC and MAC Access	cont	rol po	licy				
UNIT –					[9]			
	ntegrity model - Clark Wilson model - Domain type enforcement model - Mapping the ent							
	view – Role hierarchies – Inheritance schemes – Hierarchy structures and inheritance forms -							
	Temporal Constraints in RBAC – MAC AND DAC – Integrating RBAC with enterprise IT infrast = RBAC for UNIX and JAVA environments – Case study: Multi line Insurance Company	Iruct	ures:	RBAU	J TOF			
UNIT –	•				[9]			
•••••	Card based Information Security – Smart card operating system – Fundamentals – Desigr	n ar	nd im					
	es – Memory organization – Smart card files – File management – Atomic operation -							
	magnitudes — Monorly organization — Contact card and a mode - ne management - Action of potential of - Contact card action - Contact							

principles – Memory organization – Smart card files – File management – Atomic operation – Smart card data transmission ATR – PPS Security techniques – User identification – Smart card security – Quality assurance and testing – Smart card life cycle – 5 phases – Smart card terminals

UNIT – V RECENT TRENDS IN DATABASE SECURITY

Recent trends in Database security and access control mechanisms – Case study of Role Based Access Control (RBAC) systems – Recent Trends related to data security management – Vulnerabilities in different DBMS

Total = 45 Periods

[9]

References

- 1 David F, Ferraiolo D Richard Kuhn, Ramaswamy Chandramouli, Role Based Access Control, 2nd Edition, 2011
- 2 http://www-smartcard-co-uk/tutorials/sct-itsc-pdf : Smart CardTutorial

K.S.R. COLLEGE OF ENGINEERING (Autonomous)				20	
<u>SEMESTER - II</u>					
DIGITAL FORENSICS	L	Т	Р	С	
IT20266 (Professional Electives – III and IV)	3	0	0	3	
Prerequisite:					
Course Outcomes : On successful completion of the course, the student will be able to	C	cognit	tive Le	vel	
CO1: Discuss relevant legislation and codes of ethics	Cre	ate			
CO2: Analyze Computer forensics and digital detective and various processes policies and procedures	Ana	alyze			
CO3: Demonstrate on E-discovery guidelines and standards E-evidence tools and environment	Unc	dersta	nd		
CO4: Recommend Email and web forensics and network forensics		luate			
CO5: Relate the tools of Mobile Forensics	Unc	dersta	nd		
UNIT – I DIGITAL FORENSICS SCIENCE				[9]	
Forensic science – Computer forensics And digital forensics – Computer Crime: Criminalistics investigative process – Analysis of cyber – Criminalistics area – Holistic approach to Cyber Forensics		it rel	ates t	o the	
UNIT – II CYBER CRIME SCENE ANALYSIS				[9]	
Discuss the various court orders etc – Methods to search and seizure electronic evidence – Ret communications – Discuss the importance of understanding what court documents would be r investigation					
UNIT – III EVIDENCE MANAGEMENT & PRESENTATION				[9]	
Create and manage shared folders using operating system – Importance of the forensic mindset – Define the workload of law enforcement – Explain what the normal case would look like – Define who should be notified of a crime – Parts of gathering evidence – Define and apply probable cause					
UNIT – IV COMPUTER FORENSICS				[9]	
Prepare a case – Begin an investigation – Understand computer forensics workstations and software – Conduct an investigation – Complete a case – Critique a case – Network Forensics: open source security tools for network forensic analysis – Requirements for preservation of network data					
UNIT – V MOBILE FORENSICS				[9]	

UNIT – V

References

- 1 John Sammons, The Basics of Digital Forensics, 2nd edition, Elsevier, 2014
- 2 John Vacca, Computer Forensics: Computer Crime Scene Investigation, First Edition, Laxmi Publications, 2015

Mobile forensics techniques - Mobile forensics tools - Legal Aspects of Digital Forensics: IT Act 2000 - Amendment of IT Act 2008 - Recent trends in mobile forensic technique and methods to search and seizure electronic evidence

Total = 45 Periods

	K.S.R. COLLEGE OF ENGINEERING (Autonomous)			R 202	20
	<u>SEMESTER - II</u>				
IT2	0267 AGENT BASED INTELLIGENT SYSTEMS (Professional Electives – III and IV)	L 3	Т 0	P 0	C 3
Prerequi	site:				
Course (Dutcomes : On successful completion of the course, the student will be able to	C	ogniti	ve Le	vel
CO1:	Discuss the basics of intelligent agent ad searching methods	Cre	eate		
CO2: CO3: CO4: CO5:	Analyze the knowledge management and agent based process event Explain the various techniques used in planning agents Categorize the rules ad responsibility of Bayesian network Outline the basics and applications of Knowledge in Learning	Ev An	alyze aluate alyze dersta		
UNIT – I	FUNDAMENTALS				[9]
Definition	s - Foundations - History - Intelligent Agents - Problem Solving - Searching - Heu	ristics	– Co	onstrai	int
Satisfacti	on Problems – Adversarial search				
UNIT – I					[9]
-	Agents – First Order Logic – Inference in FOL: Unification – Chaining – Resol	ution	Strat	egies	-
	e Representation: Objects – Events				
UNIT – I Planning	II PLANNING AGENTS Problem – State Space Search – Partial Order Planning – Graphs – Planning approach a	and an	alvsis		[9] ne
•	and Resources – Hierarchical planning – Multi Agent Planning		aryoro		
UNIT – IV				ſ	[9]
Acting u	nder uncertainty – Probability Notation – Bayes Rule and use – Bayesian Networ	rks –	Prob	babilis	tic
Reasonir	g - Time and Uncertainty – Models and Filters				
UNIT – V					[9]
•	je in Learning – Explanation based Learning – Relevance Information – Inductive Log Probabilistic Model – Reinforcement Learning	ic Pr	ogram	ıming	-
-	-	Tot	al = 4	5 Peri	ods
Reference	res				

1 Stuart Russell and Peter Norvig, Artificial Intelligence- A Modern Approach, 3rd Edition, Prentice Hall, 2018 Michael Wooldridge, An Introduction to Multi Agent System, 2nd Edition, John Wiley, 2009

2

Patrick Henry Winston, Artificial Intelligence, 3rd Edition, AW, 2009 3

K.S.R. COLLEGE OF ENGINEERING (Autonomous)			R 2020				
	<u>SEMESTER - II</u>						
ITO	D268 BIG DATA AND ANALYTICS	L	Т	Ρ	С		
112	(Professional Electives – III and IV)	3	0	0	3		
Prerequ	uisite:						
Course Outcomes : On successful completion of the course, the student will be able to				Cognitive Level			
CO1:	Determine big data and use cases from selected business domains	Eva	aluate)			
CO2:	Explain NoSQL big data management	Eva	aluate)			
CO3:	Examine the data concepts of HDFS	An	alyze				
CO4:	Organize map-reduce analytics using Hadoop	Ap	oly				
CO5:	Select Hadoop related tools such as HBase, Cassandra, Pig and Hive for big data analytics	Ap	oly				

UNIT – I INTRODUCTION TO BIG DATA

What is big data - Why big data - Convergence of key trends - Unstructured data - Industry examples of big data -Web analytics - Big data and marketing - Fraud and big data - Risk and big data - Credit risk management - Big data and algorithmic trading - Big data and healthcare - Big data in medicine - Advertising and big data - Big data technologies - Introduction to Hadoop- Open source technologies - Cloud and big data - Mobile business intelligence - Crowd sourcing analytics - Inter and trans firewall analytics

UNIT – II INTRODUCTION TO NOSQL

Introduction to NoSQL - Aggregate data models - Aggregates - Key value and document data models - Relationships - Graph databases - Schema less databases - Materialized views - Distribution models - Shading - Master slave replication - Peer peer replication - Shading and replication - Consistency - Relaxing consistency - Version stamps -Map reduce - Partitioning and combining - Composing map reduce calculations

DATA FORMAT ANALYZING WITH HADOOP UNIT – III

Data format – Analyzing data with Hadoop – Scaling out – Hadoop streaming – Hadoop pipes – design of Hadoop distributed file system (HDFS) - HDFS concepts - Java interface - Data flow - Hadoop I/O - Data integrity -Compression - Serialization - Avro file based data structures

UNIT - IV MAP REDUCE WORKFLOWS

Map Reduce workflows - Unit tests with MR Unit - Test data and local tests - Anatomy of Map Reduce job run classic Map reduce - YARN - Failures in classic Map reduce and YARN - Job scheduling - Shuffle and sort- task execution – Map Reduce types – Input formats – Output formats

UNIT – V INTRODUCTION TO HBASE

Hbase – Data model and implementations – Hbase clients – Hbase examples – Praxis – Cassandra – Cassandra data model - Cassandra examples - Cassandra clients - Hadoop integration - Pig Grunt - Pig data model - Pig Latin developing and testing Pig Latin scripts - Hive - Data types and file formats - HiveQL data definition - HiveQL data manipulation - HiveQL queries

Total = 45 Periods

References

Michael Minelli, Michelle Chambers and Ambiga Dhiraj, Big Data-Big Analytics: Emerging Business and Analytic 1 trends for todays Business, First Edition, Wiley, 2013

[9]

[9]

[9]

[9]

K.S.R. COLLEGE OF ENGINEERING (Autonomous)					
	SEMESTER - II				
ITOOOO	ONTOLOGY AND SEMANTIC WEB	L	Т	Ρ	С
IT20269	(Professional Electives – III and IV)	3	0	0	3
Prerequisite					
Course Out	omes : On successful completion of the course, the student will be able to	C	ogniti	ve Le	evel
CO1: Exp	lain the fundamentals of Ontology	Ev	aluate	;	
	ntify the languages of the semantic web and ontologies	Ap	ply		
	lyze ontology learning for semantic web		alyze		
	struct ontology using different tools	Ap			
CO5: Out	line about semantic web services with web applications	Un	dersta	and	
UNIT – I	INTRODUCTION				[9]
Components	- Types - Ontological Commitments - Ontological Categories - Philosoph	nical	Back	grour	ıd–
Sample – Kn	owledge Representation Ontologies - Top Level Ontologies - Linguistic Ontologies -	Doma	ain Or	ntolog	ies
- Semantic \	Veb – Need – Foundation – Layers – Architecture				
UNIT – II	LANGUAGES FOR SEMANTIC WEB AND ONTOLOGIES				[9]
Web Docum	ents in XML - RDF - Schema - Web Resource Description using RDF- RDF	Prop	erties		
)F – Overview – Syntax Structure – Semantics – Pragmatics – Traditional Ontology L	•			•
•	CML – Flogic Ontology Markup Languages – SHOE – OIL – DAML + OIL– OWL	0	0		
UNIT – III	ONTOLOGY LEARNING FOR SEMANTIC WEB				[9]
Taxonomy fo	r Ontology Learning - Layered Approach - Phases of Ontology Learning - Importin	ng ar	nd Pro		
	nd Documents – Ontology Learning Algorithms – Evaluation	•			Ū
	ONTOLOGY MANAGEMENT AND TOOLS				[9]
Overview – N	eed for management - Development process - Target ontology - Ontology mapping -	Skill	s ma		
system – O	ntological class - Constraints - Issues- Evolution - Development of Tools and Too	ol Sui	ites -	Onto	logy
Merge Tools	- Ontology based Annotation Tools				
UNIT – V	APPLICATIONS				[9]
Web Service	Se – Semantic Web Services – Case Study for specific domain – Security issues – Current	trend	ds		
	······································		al = 4	5 Peri	iods
References					
110101011003					

- Asuncion Gomez Perez, Oscar Corcho, Mariano Fernandez Lopez, Ontological Engineering: with examples from the areas of Knowledge Management, e,Commerce and the Semantic Web, Springer, 2010
- 2 Grigoris Antoniou, Frank van Harmelen, A Semantic Web Primer (Cooperative Information Systems, The MIT Press, 2014
- 3 Alexander Maedche, Ontology Learning for the Semantic Web, Springer, 1st edition, 2002
- 4 John Davies, Dieter Fensel, Frank Van Harmelen, Towards the Semantic Web: Ontology Driven Knowledge Management, John Wiley & Sons Ltd, 2003

K.S.R. COLLEGE OF ENGINEERING (Autonomous)					
	<u>SEMESTER - II</u>				
IT2	0271 OBJECT ORIENTED ANALYSIS AND DESIGN (Professional Electives – III and IV)	L 3	Т 0	P 0	C 3
Prerequ	uisite:				
Course	Outcomes : On successful completion of the course, the student will be able to	C	ogniti	ve Le	vel
CO1:	Explain the various system development methods available	Ev	aluate	,	
CO2:	Apply the object behaviour in the system using the UML diagrams	Ар	ply		
CO3:	Discuss the system behaviour in the design phase using the axioms		eate		
CO4:	Propose the design principles and get the outline of the system		eate		
CO5:	Illustrate the architectural analysis of the proposed system using the tools available	Un	dersta		
UNIT –	INTRODUCTION				[9]
	tion to System Concepts – Managing Complex Software- Properties – Object Oriented Syste			•	
	Basics - Systems Development Life Cycle - Rumbaugh Methodology - Brooch Method	lolog	y – J	acobs	on
Method	ology – Unified Process				
UNIT –	II INCEPTION				[9]
Unified	Approach – Unified Modelling Language – Static behaviour diagrams – Dynamic behaviour	diag	rams ·	– Obje	əct
Constra	int Language				
UNIT– I					[9]
•	n – Evolutionary Requirements – Domain Models – Operation Contracts – Requirements to		•		gn
	- Logical Architecture - Designing Objects with Responsibilities - Object Design - Design	ng fo	or Visil		
UNIT –					[9]
	s – Analysis and Design patterns – GoF Patterns – Mapping designs to code – Test E	river	ı deve	lopme	ent
	actoring – UML Tools and UML as blueprint				
UNIT –					[9]
	atterns – Applying design patterns – Architectural Analysis – Logical Architecture Refir – Persistence framework with pattern	eme	nt – I	Packa	ge
-		Tot	al = 4	5 Peri	ods
Refere	nces				
1	Craig Larman, Applying UML and Patterns – An introduction to Object Oriented Analysis	and	Desig	n and	l

- Craig Larman, Applying UML and Patterns An introduction to Object Oriented Analysis and Design and Iterative Development, 3rd Edition, Pearson Education, 2012
- 2 Fowler Martin, UML Distilled, 3rd Edition, Pearson Education, 2015
- 3 Michael Blaha and James Rumbaugh, Object oriented modeling and design with UML, 2nd Edition, Prentice Hall of India, 2009
- 4 Grady Booch, Object Oriented Analysis and Design, 2nd Edition, Pearson Education, 2008

K.S.R. COLLEGE OF ENGINEERING (Autonomous)					
	<u>SEMESTER - III</u>				
ITOOOC	HUMAN RESOURCE MANAGEMENT	L	Т	Ρ	С
IT2036 [,]	(Professional Electives – V and VI)	3	0	0	3
Prerequisite	2				
Course Out	Course Outcomes : On successful completion of the course, the student will be able to				evel
	scuss the roles and responsibilities of HR manager	Cr	eate		
	alyze the various processes in international level staff recruitment		alyze		
	plain the need of training in performance management		nderst	and	
	ccuss the benefits of compensation		eate		
	alyze the process in practicing the industrial relations and people management	An	alyze		
UNIT – I	IHRM				[9]
	HRM – Difference between domestic and International HRM – Issues and barriers to International firms – Multi Culture in Organizations	effectiv	e glob	al HR	2M –
UNIT – II	INTERNATIONAL RECRUITMENT AND STAFFING				[9]
International	Staffing – Approaches – Recruitment and Selection – Role of expatriate and non expatri	ates			
UNIT – III	TRAINING AND PERFORMANCE MANAGEMENT				[9]
	l development – Need – Cross cultural training – Expatriate training Basis – Issu performance management	es and	appr	oache	es in
UNIT – IV	COMPENSATION AND BENEFITS				[9]
Components compensatio	 Approaches to International compensation – Variables influencing compensation – n 	Issues	in In	ternati	onal
UNIT – V	INDUSTRIAL RELATIONS-AND PEOPLE MANAGEMENT PRACTICES				[9]
	ations – Key issues in International Industrial Relations – Trade unions and Internation nese – American perspectives in managing HR	al Indu	strial	relatio	ns –
		Tot	al = 4	5 Per	iods
References					
A Pete	er J Dowling and Denice E Welch, International Human Resource Management	Manac	ing p	eople	in a

- 1 Peter J Dowling and Denice E Welch, International Human Resource Management Managing people in a Multinational context, Cengage, 2009
- 2 Aswathappa Sadhna Dash ,International Human Resource Management, Text and Cases, Tata McGraw Hill, 2009

K.S.R. COLLEGE OF ENGINEERING (Autonomous)					20
	<u>SEMESTER - III</u>				
IT2	0362 DISTRIBUTED DATABASES	L	Т	Ρ	С
	(Professional Electives – V and VI)	3	0	0	3
Prerequ					
	Outcomes : On successful completion of the course, the student will be able to		-	ive Le	vel
CO1:	Analyze relational database management systems		alyze		
CO2: CO3:	Apply normalization to make efficient retrieval from database and query	Ap	ply eate		
CO3. CO4:	Discuss about Query processors Analyze about parallel Database Systems		alyze		
CO5:	Explain Distributed Object database Management systems		aluate	د	
UNIT -			Juan		[9]
-		licoti	na for		
	ted Data processing – Distributed database system (DDBMS) – Promises of DDBMSs – Comp n areas in DDBMSs – Overview of Relational DBMS – Relational Database concepts – Norm		•		
		alizai	.1011 —	integ	шу
UNIT –	Relational Data Languages – Relational DBMS II DISTRIBUTED DBMS ARCHITECTURE				
•••••	Standardization – Architectural models for Distributed DBMS – Distributed DBMS Architectural	huro	D:		[9]
	se Design: Alternative design Strategies – Distribution Design Issues – Fragmentation Allocation	n – c	semai		ลเล
UNIT –	View Management – Data security – Semantic Integrity Control III OVERVIEW OF QUERY PROCESSING				101
-	Processing: Objectives of Query Processing – Complexity of Relational Algebra operations –	Char	actori		[9]
-	processors – Layers of Query Processing: Introduction to Transaction Management: Definitio				
• •	es of Transaction – Types of transaction – Distributed Concurrency Control: Serializability The				
•	ency Control Mechanisms – Locking Based Concurrency Control Algorithms	0.9	i ante	lionij	0.
UNIT -	, , , , ,				[9]
Databas	se Servers – Parallel Architecture – Parallel DBMS Techniques – Parallel Execution Problems -	- Para	allel E		
	archical Architecture – Recent Approaches and Current Trends in improving the Performa				
Databas	Se Contraction of the second				
UNIT –	V DISTRIBUTED OBJECT DATABASE MANAGEMENT SYSTEMS				[9]
Fundam	nental Object Concepts and Object Models – Object Distribution Design – Architectura	Iss	ues -	- Obj	ect
Manage	Management - Distributed Object Storage - Object Query Processing - Transaction Management. Database				
Interope	erability: Database Integration – Query Processing				
		Tota	al = 4	5 Peri	iods
Defere	1000				

- References
 - 1 M. Tamer Ozsu Patrick Valduriez, Principles of Distributed Database Systems, Second Edition, 2011
 - 2 Stefano Ceri Giuseppe Pelagatti, Distributed Databases principles and systems , Tata McGraw Hill , 2018

K.S.R. COLLEGE OF ENGINEERING (Autonomous)					20			
	SEMESTER - III							
IT20	0363 SERVICE ORIENTED ARCHITECTURE (Professional Electives – V and VI)	L 3	Т 0	P 0	C 3			
Prerequi	isite:							
Course Outcomes : On successful completion of the course, the student will be able to				Cognitive Level				
CO1:	Discuss the fundamentals of SOA and its Architecture	Cr	eate					
CO2:	Discover the knowledge of SOA technologies SOAP, WSDL and JAX etc	Analyze						
CO3:	Build SOA Development and orchestration	Cr	eate					
CO4:	Identify the SOA security services like XML signature, WS security	Ар	ply					
CO5:	Compile Transaction processing issues and SOA in mobile research	Cr	eate					
UNIT – I	ARCHITECTURE				[9]			

UNIT – I ARCHITECTURE

Software Architecture – Types of IT Architecture – SOA – Evolution – Key components – Perspective of SOA – Enterprise wide SOA - Architecture - Enterprise Applications - Solution Architecture for Enterprise Application - Software Platforms for Enterprise Applications - Patterns for SOA - SOA Programming Models

UNIT - II SOA TECHNOLOGIES

Service Oriented Analysis and Design - Design of Activity Data - Client and Business Process Services - Technologies of SOA - SOAP - WSDL - JAX - WS - XML WS for .NET - Service integration with ESB Scenario - Business case for SOA - Stakeholder objectives - Benefits of SOA - Cost Savings

UNIT – III IMPLEMENTATION AND GOVERNANCE

Handoff in Wireless Mobile Networks - Reference Model - Handoff Schemes - Location Management In Cellular Networks - Mobility models - Location and Tracking Management Schemes - Time - Movement - Profile and Distance Based Update Strategies

UNIT – IV SECURITY SERVICES

Meta Data Management – XML Security – XML Signature – XML Encryption – SAML – XACML – XKMS – WS Security– Security in Web Service Framework – Advanced Messaging

TRANSACTIONS AND RESEARCH ISSUES UNIT - V

Transaction Processing - Paradigm - Protocols and Co-ordination - Transaction Specifications - SOA in mobile -**Research Issues**

References

- Shankar Kambhampaly, Service Oriented Architecture for Enterprise Applications, Wiley India Pvt Ltd 2008 1
- 2 Eric Newcomer Greg Lomow, Understanding SOA with Web Services, Pearson Education 2009
- Mark O' Neill Phillip Hallam Baker Sean Mac Cann Mike Shema Ed Simon Paul A.Watters and Andrew White, 3
- Web Services Security, Tata McGraw-Hill Edition 2008

[9]

- [9]

[9]

K.S.R. COLLEGE OF ENGINEERING (Autonomous))20	
	<u>SEMESTER - III</u>					
IT2	0364 CLOUD COMPUTING	L	Т	Р	С	
	(Professional Electives – V and VI)	3	0	0	3	
Prerequ	isite:					
Course Outcomes : On successful completion of the course, the student will be able to		Cognitive Level				
CO1:	Identify security aspects of each cloud model	Ap	ply			
CO2:	Develop a risk-management strategy for moving to the Cloud	Ċr	eate			
CO3:	Construct a public cloud instance using a public cloud service provider	Ap	ply			
CO4:	Apply trust-based security model to different layer	Άρ	ply			
CO5:	Create the knowledge on GRC	Cr	eate			
UNIT – I	INTRODUCTION TO CLOUD COMPUTING AND ITS ARCHITECTURE				[9]	

Online Social Networks and Applications – Cloud introduction and overview – Different clouds – Risks – Novel applications of cloud computing Requirements – Introduction to Cloud computing architecture – On Demand Computing – Virtualization at the infrastructure level – Security in Cloud computing – Environments

UNIT – II VIRTUALIZATION CLOUD COMPUTING AND DEPLOYMENT MODELS [9]

CPU Virtualization – A discussion on Hypervisors Storage Virtualization – Cloud Computing Defined – The SPI Framework for Cloud Computing – The Traditional Software Model – The Cloud Services Delivery Model – Cloud Deployment Models – Key Drivers to Adopting the Cloud – The Impact of Cloud Computing on Users – Governance in the Cloud – Barriers to Cloud Computing Adoption in the Enterprise

UNIT – III SECURITY ISSUES IN CLOUD COMPUTING AND ACCESS MANAGEMENT [9]

Infrastructure Security: The Network Level – The Host Level – The Application Level – Data Security and Storage – Aspects of Data Security – Data Security Mitigation Provider Data and Its Security – Trust Boundaries and IAM – IAM Challenges – Relevant IAM Standards and Protocols for Cloud Services – IAM Practices in the Cloud – Cloud Authorization Management

UNIT – IV SECURITY MANAGEMENT IN THE CLOUD AND ITS PRIVACY ISSUES [9]

Security Management Standards – Security Management in the Cloud – Availability Management: SaaS – PaaS – IaaS – Privacy Issues – Data Life Cycle – Key Privacy Concerns in the Cloud – Protecting Privacy – Changes to Privacy Risk Management and Compliance in Relation to Cloud Computing – Legal and Regulatory Implications – U.S. Laws and Regulations – International Laws and Regulations

UNIT – V AUDIT AND COMPLIANCE AND ADVANCED TOPICS [9]

Internal Policy Compliance – Governance Risk and Compliance (GRC) – Regulatory/External Compliance – Cloud Security Alliance – Auditing the Cloud for Compliance – Security as a Cloud – Recent Developments in Hybrid Cloud and Cloud Security

References

- 1 John Rhoton , Cloud Computing Explained: Implementation Handbook for Enterprises ,November 2009
- 2 Tim Mather, Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance (Theory in Practice) ISBN-10: 0596802765 O'Reilly Media ,September 2009

K.S.R. COLLEGE OF ENGINEERING (Autonomous)			R 2020			
	<u>SEMESTER - III</u>					
IT2	IT20365		Т	Ρ	С	
	(Professional Electives – V and VI)	3	0	0	3	
Prerequ	iisite:					
Course	Outcomes : On successful completion of the course, the student will be able to	С	ognit	ive Le	evel	
CO1:	Analyze various protocols for IoT	An	alyze			
CO2:	Develop web services to access/control IoT devices	Apply				
CO3:			Create			
CO4:	Formulate an IoT application and connect to the cloud	Create				
CO5:	CO5: Analyze applications of IoT in real time scenario		Analyze			

UNIT – I INTRODUCTION TO IoT

Internet of Things - Physical Design - Logical Design - IoT Enabling Technologies - IoT Levels and Deployment Templates – Domain Specific IoTs – IoT and M2M – IoT System Management with NETCONF – YANG – IoT Platforms **Design Methodology**

UNIT – II IoT ARCHITECTURE

M2M high level ETSI architecture - IETF architecture for IoT - OGC architecture - IoT reference model - Domain model - Information Model - Functional Model - Communication Model - IoT Reference Architecture

UNIT - III IoT PROTOCOLS

Protocol Standardization for IoT - Efforts - M2M and WSN Protocols - SCADA and RFID Protocols - Unified Data Standards - Protocols - IEEE 802.15.4 - BAC Net Protocol - Mod bus - Zig bee Architecture - Network layer -6LowPAN - CoAP - Security

UNIT-IV **BUILDING IOT WITH RASPBERRY PI & ARDUINO**

Building IOT with RASPERRY PI - IoT Systems - Logical Design using Python - IoT Physical Devices & Endpoints - IoT Device - Building blocks - Raspberry Pi Board - Linux on Raspberry Pi - Raspberry Pi Interfaces - Programming Raspberry Pi with Python - Other IoT Platforms - Arduino

CASE STUDIES AND REALWORLD APPLICATIONS UNIT – V

Real World Design Constraints - Applications - Asset Management - Industrial automation - Smart Grid - Commercial Building Automation - Smart Cities - Participatory Sensing - Data Analytics for IoT - Software and Management Tools for IoT - Cloud Storage Models and Communication APIs - Cloud for IoT - Amazon Web Services for IoT

Total = 45 Periods

References

- 1 Arshdeep Bahga Vijay Madisett, Internet of Things – A hands on approach, Universities Press, 2015
- Dieter Uckelmann Mark Harrison Michahelles Florian (Eds), Architecting the Internet of Things, Springer 2011 2

[9]

[9]

[9]

[9]

	<u>SEMESTER - III</u>				
ITOOO	GPU COMPUTING	L	Т	Ρ	С
IT2036	(Professional Electives – V and VI)	3	0	0	3
Prerequ	uisite:				
Course	Outcomes : On successful completion of the course, the student will be able to	(Cogni	tive L	əvel
CO1:	Discover concepts in parallel programming	Ar	alyze		
CO2:	Construct the programs on GPUs	Ap	ply		
CO3:	Discuss on Synchronization	Cr	eate		
CO4:	Analyze overlapping issues in GPU	Ar	nalyze		
CO5:	Discuss on Case Studies	Cr	eate		
UNIT –	I INTRODUCTION				[9]

K.S.R. COLLEGE OF ENGINEERING (Autonomous)

History - Graphics Processors - Graphics Processing Units - GPGPUs - Clock speeds - CPU / GPU comparisons -Heterogeneity - Accelerators - Parallel programming - CUDA OpenCL / OpenACC - Hello World Computation Kernels -Launch parameters - Thread hierarchy - Warps / Wavefronts - Thread blocks / Workgroups - Streaming multiprocessors -1D / 2D /3D thread mapping - Device properties - Simple Programs

MEMORY UNIT – II

Memory hierarchy – DRAM / global – Local / shared – Private / local – Textures – Constant Memory – Pointers – Parameter Passing-Arrays and dynamic Memory - Multi-dimensional Arrays - Memory Allocation - Memory copying across devices -Programs with matrices - Performance evaluation with different memories

SYNCHRONIZATION UNIT - III

Memory Consistency - Barriers (local versus global) - Atomics - Memory fence - Prefix sum - Reduction - Programs for concurrent Data Structures such as Work lists - Linked Lists - Synchronization across CPU and GPU Functions - Device functions - Host functions - Kernels functions - Using libraries (such as Thrust) and developing libraries

SUPPORT UNIT – IV

Debugging GPU Programs - Profiling - Profile tools - Performance aspects Streams - Asynchronous processing - Tasks -Task dependence - Overlapped data transfers - Default Stream - Synchronization with streams - Events - Event based -Synchronization - Overlapping data transfer and kernel execution - Pitfalls

CASE STUDIES UNIT – V

Dynamic parallelism – Unified Virtual Memory – Multi GPU processing – Peer access – Heterogeneous Processing – Image Processing – Graph Algorithms – Simulations – Deep Learning

References

- David Kirk Wen meiHwu Morgan Kaufman, Programming Massively Parallel Processors: A Hands-on 1 Approach, 2010 (ISBN: 978-0123814722)
- Shane Cook Morgan Kaufman, CUDA Programming: A Developer's Guide to Parallel Computing with GPUs, 2 2012 (ISBN: 978-0124159334)

[9]

[9]

R 2020

[9]

[9]

Total = 45 Periods

	N.O.N. ODEEEOE OF ENGINEERING (Autonomous)			11 20	20
	<u>SEMESTER - III</u>				
1700267	BUSINESS ANALYTICS	L	Т	Р	С
IT20367	(Professional Electives – V and VI)	3	0	0	3
Prerequ	isite:				
Course	Outcomes : On successful completion of the course, the student will be able to	С	ognit	ive Le	evel
CO1:	Develop the knowledge of data analytics	Cr	eate		
CO2:	Make use of Regression analysis for making decisions based on data and deep analytics	Apply			
CO3:	Make Use of technical skills in predicative and prescriptive modelling to support business decision making	Ap	ply		
CO4:	Translate data into clear actionable insights	Un	nderst	and	
CO5:	Illustrate the concept of Decision analysis	Un	nderst	and	
UNIT – I	BUSINESS ANALYTICS				[9]

K.S.R. COLLEGE OF ENGINEERING (Autonomous)

Overview of Business analytics – Scope of Business analytics – Business Analytics Process – Relationship of Business Analytics – Process and organization – Competitive advantages of Business Analytics – Statistical Tools: Statistical Notation – Descriptive Statistical methods – Review of probability distribution and data modelling sampling and estimation methods overview

UNIT – II TRENDINESS AND REGRESSION ANALYSIS

Modelling Relationships and Trends in Data – Simple Linear Regression – Important Resources Business Analytics – Personnel Data and models for Business analytics – Problem solving – Visualizing and Exploring Data – Business Analytics Technology

UNIT – III ORGANIZATION STRUCTURES OF BUSINESS ANALYTICS [9]

Organization Structures of Business analytics – Team management – Management Issues – Designing Information Policy – Outsourcing – Ensuring Data Quality – Measuring contribution of Business analytics – Managing Changes – Descriptive Analytics – Predictive analytics – Predicative Modelling – Predictive analytics – Analysis of Data Mining Methodologies – Prescriptive analytics and its step in the business analytics Process – Prescriptive Modelling – Nonlinear Optimization

UNIT – IV FORECASTING TECHNIQUES

Qualitative and Judgmental Forecasting – Statistical Forecasting Models – Forecasting Models for Stationary Time Series – Forecasting Models for Time Series with a Linear Trend Forecasting – Time Series with Seasonality – Regression Forecasting with Casual Variables – Selecting Appropriate Forecasting Models – Monte Carlo Simulation and Risk Analysis: Monte Carle – Simulation Using Analytic Solver Platform – New Product Development Model – News vendor Model – Overbooking Model – Cash Budget Model

UNIT – V DECISION ANALYSIS

Formulating Decision Problems – Decision Strategies with and without Outcome Probabilities – Decision Trees – The Value of Information Utility and Decision Making – Embedded and collaborative business intelligence – Visual data recovery – Data Storytelling and Data journalism

Total = 45 Periods

R 2020

[9]

[9]

[9]

References

- 1 Marc J. Schniederjans , Dara G.Schniederjans and Christopher M. Starkey, Business analytics Principles Concepts and Applications, Pearson FT Press , 2015
- 2 James Evans, Business Analytics , 2018

K.S.R. COLLEGE OF ENGINEERING (Autonomous)			R 2020				
	<u>SEMESTER - III</u>						
ITOOOO	COST MANAGEMENT OF ENGINEERING PROJECTS	L	Т	Ρ	С		
IT20368	(Professional Electives – V and VI)	3	0	0	3		
Prerequ	uisite:						
Course	Outcomes : On successful completion of the course, the student will be able to	С	ognit	ive Le	evel		
CO1:	Illustrate the concept of cost	Understand					
CO2:	Explain the concept of Project Commissioning	Understand					
CO3:	Make use of technical skills to find cost behaviour	Ap	ply				
CO4:	Demonstrate about Resource planning	Understand					
CO5:	Analyze Quantitative Techniques	An	alyze				
UNIT –	I COST CONCEPTS				[9]		

Cost concepts in decision making – Relevant Cost – Differential Cost – Incremental Cost and Opportunity Cost – Objectives of a Costing System – Inventory Valuation – Creation of a Database for operational control – Provision of data for Decision Making

UNIT – II PROJECT

Project: Meaning – Different types – Why to manage – Cost over Runs – Centers – Various stages of Project Execution – Conception to Commissioning – Project Execution as Conglomeration of Technical and Nontechnical activities – Detailed Engineering Activities – Pre Project Execution – Main Clearances and Documents – Project Team – Role of each member – Importance – Project Site – Data required with Significance – Project Contracts – Types and Contents – Project Execution – Project Cost Control – Bar Charts and Network Diagram – Project Commissioning – Mechanical and Process

UNIT - III COST BEHAVIOR

Cost Behaviour and Profit Planning – Marginal Costing – Distinction between Marginal Costing and Absorption Costing – Break – Even Analysis – Cost – Volume – Profit Analysis – Various Decision – Making Problems – Standard Costing and Variance Analysis – Pricing Strategies – Pareto Analysis – Target Costing – Life Cycle Costing – Costing of service sector

UNIT – IV RESOURCE PLANNING

Just in time approach – Material Requirement Planning – Enterprise Resource Planning – Total Quality Management and Theory of constraints – Activity– Based Cost Management – Bench Marking – Balanced Score Card and Value – Chain Analysis – Budgetary Control – Flexible Budgets – Performance budgets – Zero based budgets – Measurement of Divisional profitability Pricing Decisions including Transfer Pricing

UNIT – V QUANTITATIVE TECHNIQUES

Quantitative Techniques for Cost Management – Linear Programming – PERT/CPM – Transportation problems – Assignment Problems – Simulation – Learning Curve Theory

References

- 1 Charles T. Horngren and George Foster, Advanced Management Accounting
- 2 Robert S Kaplan and Anthony A. Alkinson, Management and Cost Accounting

[9]

[9]

[9]

[9]

Total = 45 Periods

KSRCE – Curriculum and Syllabi (R 2020)

	K.S.R. COLLEGE OF ENGINEERING (Autonomous))20
	<u>SEMESTER - III</u>				
IT203A1	ENGLISH FOR RESEARCH PAPER WRITING (AUDIT COURSE)	L 2	Т 0	P 0	C 0
Prerequi	site:				
Course C	Dutcomes : On successful completion of the course, the student will be able to	C	Cogni	tive L	evel
CO1:	Know how to improve the writing skills and level of readability	Un	nderst	and	
CO2:	Learn about what to write in each section	An	alyze		
CO3:	Improve skills needed when writing a title	Un	nderst	and	
CO4:	Ensure the good quality of paper at very first time submission		ply		
CO5:	Prioritize the useful phrases for Research Paper writing	Ар	ply		
UNIT – I					[6]
•	and Preparations – Word order – Breaking up long sentences – Structuring– Paragraphs a nd removing redundancy – Avoiding Ambiguity and vagueness	nd Se	entenc	ces –	Being
	Who Did What – Highlighting Your Findings – Hedging and Criticizing – Paraphrasing and er – Abstracts – Introduction – Review of the Literature – Methods – Results – Discussions k				
UNIT – III					[6]
	are needed when writing a title – Key skills are needed when writing abstract – Key skills are uction – Skills needed when writing a review of literature	e nee	ded w	vhen v	vriting
UNIT – IV					[6]
Skills are	needed when writing the methods – Skills needed when writing the results – Skills are needen n – Skills are needed when writing the conclusions	ed wh	ien wr	riting t	
UNIT – V					[6]
Useful ph	rases – how to ensure paper is as good as it could possibly the first time submission				
		Тс	otal =	30 Pe	eriods
Referenc	es				
1	Coldbort Writing for Science, Vale University Press, First Edition, 2006				

- 1 Goldbort, Writing for Science, Yale University Press, First Edition, 2006
- 2 Day R, How to write and publish a scientific paper, Cambridge University Press, First Edition, 2006
- 3 Highman N, Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book, First Edition, 1998
- 4 M Ashra Rizvi, Effective Technical Communication, Tata McGraw HILL, New Delhi, First Edition, 2005

K.S.R. COLLEGE OF ENGINEERING (Autonomous)				R 20	20
	<u>SEMESTER - III</u>				
IT203A2	DISASTER MANAGEMENT (AUDIT COURSE)	L 2	Т 0	P 0	C 0
Prerequis	site:				
Course C	outcomes : On successful completion of the course, the student will be able to	(Cogni	tive Le	evel
CO1:	Compare Disasters and Hazards	Understand			
CO2: Illustrate the concepts of Disasters and Hazards Understand		and			
CO3:	Analyze Disaster mitigations	Ar	nalyze		
CO4:	Examine Disaster preparedness in remote sensing areas	Ar	nalyze		
CO5:	Analyze Risk Assessment	Ar	nalyze		
UNIT – I	INTRODUCTION				[9]

- ----

[9]

[9]

[9]

[9]

Total = 45 Periods

UNIT-I INTRODUCTION

Disaster: Definition - Factors and Significance - Difference Between Hazard and Disaster - Natural and Manmade Disasters Difference - Nature - Types and Magnitude

REPERCUSSIONS OF DISASTERS AND HAZARDS UNIT - II

Economic Damage - Loss of Human And Animal Life - Destruction of Ecosystem - Natural Disasters: Earthquakes -Volcanisms - Cyclones - Tsunamis- Floods - Droughts and Famines - Landslides and Avalanches - Man - made disaster: Nuclear Reactor Meltdown - Industrial Accidents - Oil Slicks and Spills - Outbreaks of Disease and Epidemics -War and Conflicts

UNIT – III **DISASTER PRONE AREAS IN INDIA**

Study of Seismic Zones - Areas Prone to Floods and Droughts - Landslides and Avalanches - Areas Prone to Cyclonic and Coastal Hazards With Special Reference to Tsunami - Post Disaster Diseases And Epidemics

DISASTER PREPAREDNESS AND MANAGEMENT UNIT - IV

Preparedness: Monitoring of Phenomena - Triggering a Disaster or Hazard - Evaluation of Risk: Application of Remote Sensing - Data From Meteorological and Other Agencies - Media Reports: Governmental and Community Preparedness

RISK ASSESSMENT AND DISASTER MITIGATION UNIT – V

Disaster Risk: Concept and Elements - Disaster Risk Reduction - Global and National Disaster Risk Situation -Techniques of Risk Assessment - Global Co Operation in Risk Assessment and Warning - People's Participation in Risk Assessment - Strategies for Survival - Disaster Mitigation Meaning - Concept And Strategies of Disaster Mitigation -Emerging Trends in Mitigation - Structural Mitigation and Non Structural Mitigation - Programs of Disaster Mitigation in India

References

- R. Nishith and Singh AK, Disaster Management in India: Perspectives- issues and strategies, New Royal book 1
- Company.
- 2 Sahni Pardeep Et.Al. (Eds.), Disaster Mitigation Experiences and Reflections, Prentice Hall of India New Delhi.

K.S.R. COLLEGE OF ENGINEERING (Autonomous)				R 20	20
	<u>SEMESTER - III</u>				
IT203A3	MOBILE AND PERVASIVE COMPUTING (AUDIT COURSE)	L 2	Т 0	P 0	C 0
Prerequisite:					
Course Outcomes : On su	uccessful completion of the course, the student will be able to	С	ognit	ive Le	evel
	ious technologies and protocols used in wireless communication nciples, architecture, functionalities and security issues of mobile	-	ndersta reate	and	
CO3: Analyze and chara CO4: Discover the chara	acterize hand off and location management in wireless mobile networks acteristics of pervasive computing applications including the major ts and architectures of the systems		alyze alyze		
	ngths and limitations of the tools and devices for development	of An	alyze		
UNIT – I EMER	GING WIRELESS TECHNOLOGIES				[9]
Wireless Networks – Emerg WAP Push Architecture – W	ging Technologies – Bluetooth – WiFi – WiMAX – 4G – 5G – WATM · /ML scripts and applications	– Mobile	e IP F	rotoco	ols –
UNIT – II MOBIL	E COMPUTING PRINCIPLES				[9]
	ment – Functions – Architecture Design Considerations – Content ext Manager – Data Management in WAE – Coda Files System – Cach obile Computing				
UNIT – III HAND	OFF AND LOCATION MANAGEMENT				[9]
	Networks – Reference Model – Handoff Schemes – Location Managem on and Tracking Management Schemes – Time – Movement – Prof			Netw	orks
UNIT – IV PERV	ASIVE COMPUTING PRINCIPLES				[9]
	ciples – Characteristics – Architecture for Pervasive Computing – Devic on – Embedded Controls – Entertainment Systems – Device Manageme		ormati	on Ac	cess
UNIT – V PERV	ASIVE SOFTWARE				[9]
	ating Systems : Windows CE – Palm OS – Symbian OS – Android OS	S – JAV	'A Ca		
Middle ware – Synchronizat	ion – Security	Tof	al = 4	5 Peri	iods
Pafarancas					-

References

- 1 Saad Asif ,5G Mobile Communications Concepts and Technologies, CRC Press , 2018
- 2 Marc Langheinrich, Florian Schaub ,Privacy in Mobile and Pervasive Computing, Morgan & Claypool Publishers ,2018
- 3 Alexander Kukushkin ,Introduction to Mobile Network Engineering: GSM, 3G-WCDMA, LTE and the Road to 5G,Wiely, 2018

	K.S.R. COLLEGE OF ENGINEERING (Autonomous)			R 20)20
	<u>SEMESTER - III</u>				
IT203A4	CONSTITUTION OF INDIA (AUDIT COURSE)	L 2	Т 0	P 0	C 0
Prerequi	site:				
Course C	Dutcomes : On successful completion of the course, the student will be able to	(Cogni	tive L	evel
CO1:	Analyze the history of Indian constitution	Aı	ļ		
CO2:	Analyze Preamble salient features	Ai	nalyze	l.	
CO3:	Identify constitutional Rights and Duties	Aj	oply		
CO4:	Discuss rules of Election Commission	Ċ	reate		
CO5:	Identify the importance of Local Administration	Aı	nalyze	l	
UNIT – I	HISTORY OF MAKING OF THE INDIAN CONSTITUTION				[9]
History D	rafting Committee (Composition & Working)				
UNIT – II	PHILOSOPHY OF THE INDIAN CONSTITUTION				[9]
Preamble	Salient Features				

UNIT - III CONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES

Fundamental Rights: Right to Equality – Right to Freedom – Right against Exploitation – Right to Freedom of Religion – Cultural and Educational Rights – Right to Constitutional Remedies – Directive Principles of State Policy – Fundamental Duties

UNIT – IV ORGANS OF GOVERNANCE

Parliament: Composition – Qualifications and Disqualifications – Powers and Functions – Executive – President – Governor Council of Ministers – Judiciary Appointment and Transfer of Judges Qualifications – Powers and Functions – Election Commission: Role and Functioning Chief Election Commissioner and Election Commissioners – State Election Commission: Role and Functioning Institute and Bodies for the welfare of SC/ST/OBC and women

UNIT – V LOCAL ADMINISTRATION

District's Administration head: Role and Importance – Municipalities: Introduction – Mayor and Role of Elected Representative – CEO of Municipal Corporation – Pachayati Raj: Introduction – PRI: Zila Pachayat – Elected Officials and their roles – CEO – Zila Pachayat: Position and Role – Block level: Organizational Hierarchy (Different departments) Village level:Role of Elected and Appointed Officials – Importance of Grass Root Democracy

References

- 1 Dr. S. N. Busi , Dr. B. R. Ambedkar, Framing of Indian Constitution ,1st Edition, 2015
- 2 M. P. Jain , Indian Constitution Law, 7th Edition Lexis Nexis, 2014

Total = 45 Periods

[9]

[9]