

Curriculum & Syllabus for REGULATIONS 2024 (ACADEMIC YEAR 2024-25 ONWARDS)

K.S.R. COLLEGE OF ENGINEERING : TIRUCHENGODE - 637 215 (Autonomous) <u>CAD/CAM ENGINEERING</u> (REGULATIONS 2024)

Vision of the Institution

IV We envision to achieve status as an excellent educational institution in the global knowledge hub, making self-learners, experts, ethical and responsible engineers, technologists, scientists, managers, administrators and entrepreneurs who will significantly contribute to research and environment friendly sustainable growth of the nation and the world.

Mission of the Institution

- IM 1 To inculcate in the students self-learning abilities that enable them to become competitive and considerate engineers, technologists, scientists, managers, administrators and entrepreneurs by diligently imparting the best of education, nurturing environmental and social needs.
- **IM 2** To foster and maintain mutually beneficial partnership with global industries and Institutions through knowledge sharing, collaborative research and innovation.

Vision of the Department / Programme: (Industrial Safety Engineering)

DV To be a centre of excellence in the field of Mechanical Engineering for providing its students and faculty with opportunities for excel in education and targeted research themes in emerging areas.

Mission of the Department / Programme: (Industrial Safety Engineering)

DM 1 To excel in academic and research activities that meet the industrial and social needs.DM 2 To develop competent, innovative and ethical mechanical Engineers.

Programme Educational Objectives (PEOs) : (Industrial Safety Engineering)

The graduates of the programme will be able toPEO 1To Impart knowledge to students in recent advances in the Computer Aided Manufacturin

PEO 1	To Impart knowledge to students in recent advances in the Computer Aided Manufacturing
	to educate them to prosper in Manufacturing engineering and research related
	professions.
PEO 2	To enhance the scientific and engineering fundamentals the provide students with a solid
	foundation in required to solve analytical problems
PEO 3	To coach students with good design and engineering skills so as to comprehend, analyze,
	design, and produce novel materials, products and solutions for the contemporary
	manufacturing issues.
PEO 4	To inculcate students with professional and ethical attitude, effective communication skills,
	teamwork skills, multidisciplinary approach, and an ability to relate Computer Integrated
	Manufacturing engineering issues to broader engineering and social context.

K.S.R. COLLEGE OF ENGINEERING : TIRUCHENGODE - 637 215 (Autonomous) <u>CAD/CAM_ENGINEERING</u>

(REGULATIONS 2024)

PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs)

	Programme Outcomes (POs)
PO1	An ability to independently carry out research/investigation and development work to solve practical problems
PO2	An ability to write and present a substantial technical report/document
РОЗ	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program
PO4	Graduate will demonstrate skills to use modern engineering tools, software and equipment to analyze engineering problems.
PO5	Graduates will demonstrate an ability to visualize and work on laboratory and multidisciplinary tasks in the design and manufacturing applications
PO6	Responsibility of understanding ethically and professionally and develop confidence for self- education and ability for life-long learning
	Programme Specific Outcomes (PSOs)
PSO1	Design, analyse, formulate and solve engineering problems using computer software, tools and techniques.
PSO2	Adopt and demonstrate multidisciplinary approach to solve design, manufacturing and allied problems.

	KSR College of Engineering	K. S. R COLLE An Autor Approved by AICTE and A Accredited by	nomous In Affiliated to	0	Curriculum PG R - 2024						
De	partment	Department of Mechanical I	Engineering	g							
Pr	ogramme	M.E. CAD/CAM									
	grunne		EMESTER I								
S.				Po	riods	/ We	ok		М	[ax. Mai	rke
S. No.	Course Code	Course Title	Category	L	T	P	Tot	Credit	CA	ES	Tot
Induc	tion Programm	ie	-	-	-	-	-	-	-	-	-
THEO	RY COURSES										
1	CC24T11	Computer Applications in Design	PCC	3	0	0	3	3	40	60	100
2	CC24T12	Computer Aided Manufacturing	PCC	3	0	0	3	3	40	60	100
3	CC24T13	Advanced Manufacturing PCC 3 0 0 3 3								60	100
4	RM24T19	Research Methodology and IPR	RMC	3	0	0	3	3	40	60	100
5		Professional Elective-I	PEC	3	0	0	3	3	40	60	100
6		Professional Elective-II	PEC	3	0	0	3	3	40	60	100
LABO		SES									
7	CC24P11	Computer Aided Design Laboratory	PCC	0	0	4	4	2	60	40	100
8	CC24P12	Computer Aided Manufacturing Laboratory	PCC	0	0	4	4	2	60	40	100
			TOTAL	18	0	8	26	22		800	
		S	EMESTER II								
S.	Course Code	Course Title	Category	Pe	riods	/ We	eek	Credit	Μ	lax. Mai	rks
No.	Course Coue		Category	L	Т	Р	Tot	creat	CA	ES	Tot
THEO	RY COURSES						1				-
1	CC24T21	Product Life cycle Management	PCC	3	0	0	3	3	40	60	100
2	CC24T22	Finite Element Methods in Mechanical Design	PCC	3	0	0	3	3	40	60	100
3	CC24T23	Solid Freeform Manufacturing	PCC	3	0	0	3	3	40	60	100
4	CC24T24	Industry 4.0	PCC	3	0	0	3	3	40	60	100
5		Professional Elective-III	PEC	3	0	0	3	3	40	60	100
6		Professional Elective-IV	PEC	3	0	0	3	3	40	60	100
		SES					,		· · · · ·		
7	CC24P21	Rapid Prototyping Laboratory	PCC	0	0	4	4	2	60	40	100
8	CC24P22	Simulation and Analysis Laboratory	PCC	0	0	4	4	2	60	40	100
[TOTAL	18	0	8	26	22	· · · · ·	800	

Applicable for the students admitted during 2024-2025

	K. S. R COLLEGE OF ENGINEERING An Autonomous Institution Approved by AICTE and Affiliated to Anna University, Chennai Accredited by NBA,NAAC ('A++' Grade) Curricul PG R - 202 Department Department of Mechanical Engineering V M.E. CAD/CAM SEMESTER III										
		S	EMESTER II	I							
S. No.	Course Code	Course Title	Category	Pe L	riods T	/ We P	ek Tot	Credit	M CA	ax. Mar ES	·ks Tot
THEO	RY COURSES										
1	CC24T31	Design for Sustainability	PCC	3	0	0	3	3	40	60	100
2		Professional Elective-V	PEC	3	0	0	3	3	40	60	100
3		Open Elective	OEC	3	0	0	3	3	40	100	
EMPL	OYABILITY ENI	HANCEMENT COURSES	II		1						
4	CC24P31	Technical Presentation	EEC	0	0	2	2	1	60	40	100
5	CC24P32	Project Work I	EEC	0	0	12	12	6	60	40	100
AUDI	COURSES		rr		1		1				-
6		Audit Course	AC	2	0	0	2	0	100	-	100
			TOTAL	11	0	14	25	16		600	
		S	EMESTER IN	/							
S.	Course Code	Course Title	Category	Pe	riods	/We	ek	Credit	Μ	ax. Mar	ks
No.			Category	L	Т	Р	Tot	Cicuit	CA	ES	Tot
-	-	HANCEMENT COURSES	,		1				I		
1	CC24P41	Project Work II	EEC	0	0	24	24	12	60	40	100
			TOTAL	0	0	24	24	12		100	

No. 1. C 2. C 3. C 4. C 5. C		Department of Mechanical Engin M.E. CAD/CAM PROFESSIONAL CO Course Title Computer Applications in Design Computer Aided Manufacturing Advanced Manufacturing Processes	0	· ·		s / W P	'eek Tot	Credit	Max CA	x. Ma	
S. O No. 1. C 2. C 3. C 4. C 5. C	Course Code CC24T11 CC24T12 CC24T12 CC24T13 CC24P11	PROFESSIONAL CO Course Title Computer Applications in Design Computer Aided Manufacturing Advanced Manufacturing Processes	Category PCC	Pe L	riods T			Credit			
No. 1. C 2. C 3. C 4. C 5. C	Code CC24T11 CC24T12 CC24T12 CC24T13 CC24P11	Course Title Computer Applications in Design Computer Aided Manufacturing Advanced Manufacturing Processes	Category PCC	Pe L	riods T			Credit			
No. 1. C 2. C 3. C 4. C 5. C	Code CC24T11 CC24T12 CC24T12 CC24T13 CC24P11	Computer Applications in Design Computer Aided Manufacturing Advanced Manufacturing Processes	PCC	L	Т			Credit			
No. 1. C 2. C 3. C 4. C 5. C	Code CC24T11 CC24T12 CC24T12 CC24T13 CC24P11	Computer Applications in Design Computer Aided Manufacturing Advanced Manufacturing Processes	PCC			Р	Tot	Credit	CA	ES	T-4
2. C 3. C 4. C 5. C	CC24T12 CC24T13 CC24P11	Design Computer Aided Manufacturing Advanced Manufacturing Processes		3	0						Tot
3. C 4. C 5. C	CC24T13	Advanced Manufacturing Processes	PCC		-	0	3	3	40	60	100
4. C	CC24P11	Processes		3	0	0	3	3	40	60	100
5. C		Commutes Alded Deats 1.1	PCC	3	0	0	3	3	40	60	100
	C24P12	Computer Aided Design Laboratory	PCC	0	0	4	4	2	60	40	100
6. C		Computer Aided Manufacturing Laboratory	PCC	0	0	4	4	2	60	40	100
	C24T21	Product Lifecycle Management	PCC	3	0	0	3	3	40	60	100
7. C	C24T22	Finite Element Methods in Mechanical Design	PCC	3	0	0	3	3	40	60	100
8. C	C24T23	Solid Freeform Manufacturing	PCC	3	0	0	3	3	40	60	100
9. C	C24T24	Industry 4.0	PCC	3	0	0	3	3	40	60	100
10. C	C24P21	Rapid Prototyping Laboratory	PCC	0	0	4	4	2	60	40	100
11. C	C24P22	Simulation and Analysis Laboratory	PCC	0	0	4	4	2	60	40	100
12. C	C24T31	Design for Sustainability	PCC	3	0	0	3	3	40	60	100
<u>.</u>			TOTAL	24	0	16	40	32			
		RESEARCH METHODOLO					-				
	Course	Course Title	Categor	Pe		s / W	/eek	Credit	Max	k. Ma	irks
No.	Code	Course The	У	L	Τ	P	Tot	crean	CA	ES	Tot
1 R	M24T19	Research Methodology and IPR	RMC	3	0	0	3	3	40	60	100
			TOTAL	3	0	0	3	3			
						(== 0)					
C A	<u>c</u>	EMPLOYABILITY ENHAI		1		<u> </u>		1	Ma		
	Course Code	Course Title	Catego ry		T	ls / W P	Tot	Credit	CA	x. Ma ES	Tot
NO.		Technical Presentation	EEC	0	0	2	2	1			
No.	C24P31						· ·	1	60	4()	TUU
1 C	C24P31		EEC	0		-		1 6	60 60	40 40	100
1 C 2 C	C24P31 C24P32 C24P41	Project Work I Project Work II	EEC EEC	0	0	12 24	12 24	6 12	60 60 60	40 40 40	100 100 100

		PROFESSIONAL ELECT	IVE COU	RSE	S (PE	C)					
		PROFESSIONAL ELECTIVE	- I and II	(SE	MES	TER-	I)				
S.	Course		Catego	Pe	eriod	s / W	'eek		Ma	x. Ma	arks
No.	Code	Course Title	ry	L	Т	Р	Tot	Credit	CA	ES	Tot
1	CC24E01	Integrated Product Development	PEC	3	0	0	3	3	40	60	100
2	CC24E02	Composite Materials and Mechanics	PEC	3	0	0	3	3	40	60	100
3	CC24E03	Computer Control in Process Planning	PEC	3	0	0	3	3	40	60	100
4	CC24E04	Advanced Finite Element Analysis	PEC	З	0	0	3	3	40	60	100
5	CC24E05	Optimization Techniques in Design	PEC	3	0	0	3	3	40	60	100
6	CC24E06	Advanced Machine tool Design	PEC	3	0	0	3	3	40	60	100
7	CC24E07	Reverse Engineering	PEC	3	0	0	3	3	40	60	100
		PROFESSIONAL ELECTIVE -	-III and I	V (SI	EME	STER	-11)				
S.	Course	Course Title	Catego	Pe	eriod	s / W	'eek	Credit	Ma	x. Ma	arks
No.	Code	Course The	ry	L	Т	Р	Tot	Crean	CA	ES	Tot
1	CC24E08	Industrial Safety Management	PEC	3	0	0	3	3	40	60	100
2	CC24E09	Mechanical Measurements and Analysis	PEC	3	0	0	3	3	40	60	100
3	CC24E10	Reliability in Engineering Systems	PEC	3	0	0	3	3	40	60	100
4	CC24E11	Lean Manufacturing	PEC	3	0	0	3	3	40	60	100
5	CC24E12	Performance Modeling and Analysis of Manufacturing Systems	PEC	3	0	0	3	3	40	60	100
6	CC24E13	Creativity and Innovation	PEC	3	0	0	3	3	40	60	100
7	CC24E14	Industrial Robotics and Expert systems	PEC	3	0	0	3	3	40	60	100
8	CC24E15	Design for Cellular Manufacturing Systems	PEC	3	0	0	3	3	40	60	100
9	CC24E16	Manufacturing Technology For Electronic Devices	PEC	3	0	0	3	3	40	60	100
10	CC24E17	Smart Manufacturing	PEC	3	0	0	3	3	40	60	100
		PROFESSIONAL ELECTIV	· ·	1							
S.	Course	Course Title	Catego		eriod			Credit		x. Ma	
No.	Code		ry	L	Τ	Р	Tot	_	CA	ES	Tot
1	CC24E18	Quality Concepts in Design	PEC	3	0	0	3	3	40	60	100
2	CC24E19	Non–Destructive Testing	PEC	3	0	0	3	3	40	60	100
3	CC24E20	Design of Hybrid and Electric Vehicles Material Handling Systems and Design	PEC	3 3	0	0	3	3	40	60	100
4	CC24E21				0	0	3	3	40	60	100
5	CC24E22	Designing with Advanced Materials Advances in Manufacturing Processes	PEC	3 3	0	0	3	3	40	60	100
6	CC24E23	Advances in Manufacturing Processes	PEC		0	0	3	3	40	60	100
C	Course		· ·	·	eriod	c / XX	ممار		Me	x. Ma	orke
S. No.	Course Code	Course Title	Catego ry	L	T	s / w	Tot	Credit	CA	ES	Tot
1	AX24A01	Disaster Management	AC	2	0	0	2	0	100	- -	100
2	AX24A01 AX24A02	Value Education	AC	2	0	0	2	0	100	-	100
3	AX24A03	Constitution of India	AC	2	0	0	2	0	100	-	100
4	AX24A04	Indian Knowledge System	AC	2	0	0	2	0	100	-	100
•				_	, J	~	_	, ,			

		OPEN ELECTI		RSES								
S.	Course	Course Title	Catego	Pe	riods	/ W	eek	Credit	M	ax. Ma	rks	
No.	Code	course fille	ry	L	Т	Ρ	Tot	Credit	CA	ES	Tot	
		COMPUTER SCIENCE	AND EN	GINE	ERIN	IG						
1	CS24001	Machine learning and Deep Learning	OEC	3	0	0	3	3	40	60	100	
2	CS24002	Blockchain and Crypto Currency	OEC	3	0	0	3	3	40	60	100	
3	CS24003	Multimedia Technologies	OEC	3	0	0	3	3	40	60	100	
		BIG DATA	ANALYTI	cs	-							
4	BD24001	Big Data Analytics	OEC	3	0	0	3	3	40	60	100	
5	BD24002	Internet of Things and Cloud	OEC	3	0	0	3	3	40	60	100	
6	BD24003	Big Data Visualization	OEC	3	0	0	3	3	40	60	100	
		POWER ELECTRO	NICS AN	D DR	IVE				•			
7	PE24001	Switching Concepts and Power	OEC	3	0	0	3	3	40	60	100	
8	PE24002	Smart Grid Technology	OEC	3	0	0	3	3	40	60	100	
9	PE24003	Renewable Energy Technology	OEC	3	0	0	3	3	40	60	100	
10	PE24004	Energy Management and Conservation	OEC	3	0	0	3	3	40	60	100	
	EMBEDDED SYSTEMS TECHNOLOGY											
11	ET24001	Embedded Systems	OEC	3	0	0	3	3	40	60	100	
12	ET24002	Embedded Control	OEC	3	0	0	3	3	40	60	100	
13	ET24003	Embedded Automation	OEC	3	0	0	3	3	40	60	100	
		INFORMATION	TECHNO	DLOG	ïΥ	I			<u> </u>			
14	IT24001	IoT for Smart System	OEC	3	0	0	3	3	40	60	100	
15	IT24002	Machine Learning for Intelligent	OEC	3	0	0	3	3	40	60	100	
16	IT24003	DevOps and Microservices	OEC	3	0	0	3	3	40	60	100	
17	IT24004	Cyber security and Digital Awareness	OEC	3	0	0	3	3	40	60	100	
		CONSTRUCTION ENGINEE	RING AN	D M	ANAG	GEMI	ENT					
18	CN24001	Energy Efficient Building	OEC	3	0	0	3	3	40	60	100	
19	CN24002	Economics and Finance management	OEC	3	0	0	3	3	40	60	100	
20	CN24003	Stress management	OEC	3	0	0	3	3	40	60	100	
		STRUCTURAL										
21	ST24001	Principles of Sustainable	OEC	3	0	0	3	3	40	60	100	
22	ST24002	Failure Analysis of Structures	OEC	3	0	0	3	3	40	60	100	
23	ST24O03	Smart materials and Smart Structures	OEC	3	0	0	3	3	40	60	100	
		COMMUNICAT		TEM	S				•			
24	CU24001	Principles of Multimedia	OEC	3	0	0	3	3	40	60	100	
25	CU24002	Software Defined Radio	OEC	3	0	0	3	3	40	60	100	
26	CU24O03	MEMS & NEMS	OEC	3	0	0	3	3	40	60	100	

M.E –CAD/CAM

Regulations 2024

27	CU24O04	Introduction to cognitive Radio Network	OEC	3	0	0	3	3	40	60	100
		INDUSTRIAL SAFE	TY ENGI	NEER	ING						
28	IS24001	Industrial Safety Engineering	OEC	3	0	0	3	3	40	60	100
29	IS24002	Fire Engineering and Protection	OEC	3	0	0	3	3	40	60	100
30	IS24003	Food and Bio-safety	OEC	3	0	0	3	3	40	60	100
		OPEN ELECTIVE COURSES OFFER	RED BY C	AD/C	CAM	ENGI	NEER	ING	<u>.</u>		
1	CC24001	Digital Manufacturing	OEC	3	0	0	3	3	40	60	100
2	CC24002	Design for Manufacturing and Assembly	OEC	3	0	0	3	3	40	60	100
3	CC24O03	Smart Materials and Structures	OEC	3	0	0	3	3	40	60	100

			Summar	'Y		
		Name of th	e Programme	e: M.E CAD/	ĊAM	
CATEGORY		Credits pe	er Semester	TOTAL CREDITS	%	
CATEGORY	I	II		IV		
PCC	13	16	03		32	44.44
RMC	03				03	04.17
PEC	06	06	03		15	20.83
OEC			03		03	04.17
EEC			07	12	19	26.39
AC			V			
Total	22	22	16	12	72	100

CC24T11	COMPUTER APPLICATIONS IN DESIGN	Category	L	T	Р	C
CC24111	COMI UTER AITLICATIONS IN DESIGN	РСС	3	0	0	3
	nderstand basic design principles, mechanical components computer-aided design (CAD) software like Solid Edge, A					
To und framewoTo impa	art the parametric fundamentals to create and manipulate				-	
 To impa and solid To prov. To creat 	and soli art the parametric fundamentals to create and manipulate g ds. ide clear understanding of CAD systems for 3D modeling a te strong skills of assembly modeling and prepare the stud is in CAD system.	nd viewing.		-		
	NTRODUCTION TO COMPUTER GRAPHICS FUND	AMENTALS			9	
Geometric Tran transformations- transformations. UNIT - II	CURVES AND SURFACES MODELLING	, Composite ti	ransfo		ion,3 9	3D
	curves - Analytical curves: line, circle and conics – synthet l B-Spline curve – curve manipulations.	ic curves: Herr	nite c	ubic	splir	ie-
	surfaces - Analytical surfaces: Plane surface, ruled surf ler – synthetic surfaces: Hermitebicubic surface- Bezier ations.					
UNIT - III	NURBS AND SOLID MODELING				9	
- primitive insta	s- curves, lines, arcs, circle and bi linear surface. Reg ncing - sweep representations - boundary representations epresentations - user interface for solid modeling			_		
UNIT - IV	/ISUAL REALISM				9	
Hidden Line re Coloring.Anima	moval, Hidden Surface removal, – Hidden Solid Retion - Conventional, Computer animation, Engineering anim	÷			-	-
	ASSEMBLY OF PARTS AND PRODUCT LIFE CYCLI MANAGEMENT				9	
inferences of	deling – Design for manufacture – Design for assembl positions and orientation - tolerances analysis –Center mechanism simulation. Graphics and computing standa	of Gravity and	d ma	ss p	roper	ty

Product development and management – new product development –models utilized in various phases of new product development – managing product life cycle

TOTAL: 45 PERIODS

COURSE OUTCOMES: Upon completion of the course, the students will be able to:

Course Outcomes	Description	Bloom's Taxonomy Level
C01	Solve 2D and 3D transformations for the basic entities like line and circle.	Apply
CO2	Formulate the basic mathematics fundamental to CAD system.	Analysis
CO3	Use the different geometric modeling techniques like feature based modeling, surface modeling and solid modeling.	Understand
CO4	Apply geometric models through animation and transform them into real world systems	Apply
CO5	Simulate assembly of parts using Computer-Aided Design software	Analysis

TEXT BOOKS:

- 1. Boothroyd, G, "Assembly Automation and Product Design" Marcel Dekker, New York, 1997.
- **2.** Chitale A.K and Gupta R.C "Product design and manufacturing "PHI learning private limited, 6th Edition, 2015.

REFERENCES:

- 1. David Rogers, James Alan Adams "Mathematical Elements for Computer Graphics"2nd Edition, Tata McGraw-Hill edition.2003
- 2. Donald D Hearn and M. Pauline Baker "Computer Graphics C Version", Prentice Hall, Inc.,2nd Edition, 1996.
- 3. Ibhim Zeid, "Mastering CAD/CAM", McGraw Hill, 2nd Edition, 2006
- **4.** William M Newman and Robert F.Sproull "Principles of Interactive Computer Graphics", McGraw Hill Book Co. 1stEdition, 2001.

					Map	ping of	COs w	vith PO	s and l	PSOs				
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1	1	-	-	-	-	-	-	2	3
CO2	3	3	2	2	1	1	-	-	-	-	-	-	2	3
CO3	3	3	2	2	1	1	-	-	-	-	-	-	2	3
CO4	3	2	2	2	1	1	-	-	-	-	-	-	2	3
CO5	3	2	2	2	1	1	-	-	-	-	-	-	2	3
Avg.	3	3	2	2	1	1	-	-	-	-	-	-	2	3
										1			1	

10

K.S.R COLLEGE OF ENGINEERING

CC24T12	COMPUTER AIDED MANUFACTURING	Category	L	Т	Р	C
CC24112	COMI UTER AIDED MANUFACTURING	PCC	3	0	0	3
PREREQUISI	TE: Know the basic manufacturing processes such as machining,	casting and for	rmine		sent	
	ow CAM systems apply to real-world manufacturing.	casting, and to	1111112	, 15 C	ssent	lai
OBJECTIVES	:					
Гhe Course wi	ll enable learners to:					
	an overview of how computers are being used in me ize in CNC Programming for turning operations.	chanical comp	onen	t des	sign	anc
	rize the process of reconstructing/ reformation of an already	existing object				
	the students for computer aided tools that can be in	0 0		ous i	ndus	tria
· ·	tions and to generate part programs using CAM packages for	•	•			
	and the application of computers in various aspects of M	anufacturing vi	iz., D	esigr	n, Pro	ope
	g, Manufacturing cost & Layout. ce the concept of printing parts using additive manufacturi	ing and to intro	oduce	Re	latio	าลโ
	e management system in Material requirements planning	ing und to intro	Juuce	ne	iuuioi	iui
UNIT - I	COMPUTER AIDED MANUFACTURING				9	
		T (•	L .		
	Processes – Removing, Forming, Deforming and joini D, NC and CAM – Machine tools – Point to point and contin					
	C Programming – Basics, Languages, G Code, M Code					
and verification					Cellu	
Manufacturing						
UNIT - II	COMPUTER AIDED PROCESS PLANNING				9	
Role of process	planning in CAD/CAM Integration – Computer Aided Pr	ocess Planning	r _ D	evelo	nme	nt
•	1 and Architecture – CAPP Approaches – Variant, Genera				-	
	ns – CAM-I, D-CLASS and CMPP – Criteria in selecting a C	-	Iu	1100	035 u	iiu
UNIT - III	COMPUTER AIDED INSPECTION				9	
Engineering To	lerances – Need for Tolerances – Conventional Tolerances -	- FITS and LIN	/ITS	– To	lerar	ce
Accumulation a	nd Surface quality - Geometric Tolerances - Tolerances F	Practices in des	ign, I	Draft	ing a	nd
manufacturing	- Tolerance Analysis - Tolerance synthesis - Computer A	Aided Quality of	contro	ol – (Cont	act
-	ods – Non Contact Inspection Methods - Non optical.					
UNIT - IV	REVERSE ENGINEERING				9	
	s of Reverse Engineering - Domain Analysis - Process					
	chnical data – Digitizing techniques – Construction of surf		-			
and solid model	evaluation – Software's and its application – CMM and	its feature cap	oturin	g –	surra	ice
	DATA MANAGEMENT				9	
Strategies for D	everse Engineering Data management – Software application	n Finding ra	nouvol		ofter	ro
-	Recycling real time embedded software – Design experiment	-				
-	ction for RE user interface $-$ RE of assembly programs	mentes to evalu	aic a		10018	-
	eron for the user interface – the or assentiony programs					
		TOT		6 DT		
		TOTA	1L: 4	3 PE	'KI()	D:

COURSE OUTCOMES:

Upon completion of the course, the students will be able to:

Course Outcomes	Description	Bloom's Taxonomy Level
CO1	Summarize Numerical Control of machine tools and write a part program.	Apply
CO2	Explain the concepts Computer Aided Process Planning	Understand
CO3	Discuss the fundamentals of Engineering tolerance, Quality control and Inspection methods	Understand
CO4	Understand the principles behind the design of the product, ways to redesign and improve the performance of the system	Understand
CO5	Integrate strategies for Reverse Engineering Data management and evaluation of RE tools	Apply

TEXT BOOKS:

- 1. Catherine A. Ingle, "Reverse Engineering", Tata Mc Graw Hill Publication, 1994
- 2. David D. Bedworth, Mark R. Henderson, Philp M. Wolfe, "Computer Integrated Design and manufacturing", Mc Graw Hill International series, 1991

REFERENCES:

1. Donald R. Honra, "Co-ordinate measurement and reverse Engineering, American Gear Manufacturers Association

2. Ibrahim Zeid and R. Sivasubramanian, "CAD/CAM Theory and Practice", Revised First special Indian Edition, Tata Mc Graw Hill Publication, 2007

- 3. Ibrahim Zeid, "Mastering CAD/CAM", special Indian Edition, Tata Mc Graw Hill Publication, 2007
- 4. Linda Wills, "Reverse Engineering" Kluwer Academic Press, 1996

					Марј	ping of	COs w	vith PO	s and l	PSOs				
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1	1	-	-	-	-	-	-	2	3
CO2	3	3	2	2	1	1	-	-	-	-	-	-	2	3
CO3	3	3	2	2	1	1	-	-	-	-	-	-	2	3
CO4	3	2	2	2	1	1	-	-	-	-	-	-	2	3
CO5	3	2	2	2	1	1	-	-	-	-	-	-	2	3
Avg.	3	3	2	2	1	1	-	-	-	-	-	-	2	3

CC24T13	ADVANCED MANUFACTURING PROCESSES	Category	L	Τ	Р	C
0024115	ADVANCED MANUFACTURING I ROCESSES	РСС	3	0	0	3
•	sic manufacturing processes, such as machining, welding, casti these concepts in advanced techniques.	ng, or forming	, is us	sually	7	
OBJECTIVES:						
 Use laborate Operate reg and etc. Recognize e Setup and o Identify wit UNIT - I Scope, Cleaners, Meconomics of coating coating, Diamond control of the second secon	I determine material fabrication processes. by instrument doing routine metrological measurements alar machine shop equipment such as grinders, drill presses, lat engine machine tool requirements and be selective in the choice perate machines, index and determine machine speeds, feeds, a in numerical control machining and computer programming. SURFACE TREATMENT lethods of cleaning, Surface coating types, and ceramic an g. Electro forming, Chemical vapour deposition, thermal spray bating and cladding. NON-TRADITIONAL MACHINING	e of tools. nd depth of cu d organic met ving, Ion impla	t requ	of con, di	ents. 9 coatir	ıg,
Parametric Analysis	AJM, Parametric Analysis, Process capabilities, USM–Mechani , WJM–principle, equipment, process characteristics, performa rs, analysis of R-C circuits, MRR, Surface finish, WEDM.	•			9	
Applications. Plasm performance charact removal rate, Proc	ng, equipment, Material removal rate, Process parameters, a Arc Machining–Principle of working, equipment, Material re- erization, Applications. Electron Beam Machining-Principle of ess parameters, performance characterization, Applications. ng, equipment, Material removal rate, Process parameters,	moval rate, Pro f working, equ Electro Chem	ocess iipme iical	para ent, N Macl	meter Iateri nining	rs, Ial g—
UNIT - IV	PROCESSING OF CERAMICS				9	
Drying, sintering, Composite Layers,	teristics, classification. Processing of particulate ceramics, Pow Hot compaction, Area of application, finishing of ceramic Particulate and fiber reinforced composites, Elastomers, Rei posites.	cs. Processing	of	Com	posite	es:
Polymer matrix com	^	-		1	_	
UNIT - V	APPLIED QUANTUM MECHANICS				9	
UNIT - V Crystal growth and and yield, Printed	APPLIED QUANTUM MECHANICS wafer preparation, Film Deposition oxidation, lithography, bo Circuit boards, computer aided design in micro electronic pnomics. E-Manufacturing, nanotechnology, and micromachini	cs, surface m	ount	techi	iabili 10log	•

Γ

<u>At the end o</u> Course Outcome						Descrij						Bloom	's Taxo Level	nomy
CO1	Under	stand t	he inst	rumen	t doing	routine	e metro	logical	measur	ements		U	nderstan	ıd
CO2	Under: hybrid			U		ole of I	Electror	n beam	, laser	beam a	nd laser	U	nderstan	ıd
CO3					es of c g proces	_	ite mat	terial c	haracte	ristics, 1	types of			
CO4	Under	Understand the e-manufacturing & nano materials										U	nderstan	ıd
C05	Make the students get acquainted with the design for manufact assembly and environment.									acturing,		Apply		
2. Boot	hroyd, (hroyd, (C ES:	G, Hea	rtz and	Nike,	Produc	ct Desig	gn for N	Aanufad	cture, N	•	NewYork kker, 2nd			
1. Boot 2. Boot REFERENC 1. Brall 2. Dick Appr 3. Fixe 4. Grae 5. Reas 6. Harr	hroyd, (hroyd, (CES: a, Desig son, Jol roach, F l, J. Des delT. A onPub., y Peck,	G, Hea gn for l hn. R, ield St ign for llen By 1996. Desigr	Manufa and C one Pu the Er 7. B, D	Nike, acture Corroda blishen vironn esign f	Product handboa a Poly, c, USA nent M For the facture	ook, Mc , Engin , 1995. cGraw Enviror	gn for M Grawh heering Hill.199 hment A n—1973	Manufao ill,1999 Desigr 96 Angle V	v. v. v. and I vood C	Design f	ekker, 2nd	facture a	2002.	
 Boot Boot Boot Brall Dick Appr Fixe Grae Reas Harr Kevi 2009 	hroyd, (hroyd, (CES: a, Desig son, Jol roach, F l, J. Des delT. A onPub., y Peck, n Otto a	G, Hea gn for l hn. R, ield St ign for llen By 1996. Desigr und Kri	Manufa and C one Pu the Er y. B, D hing for stin W	Nike, acture E Corroda blishen nvironn esign f r manu 'ood, P	Product handboa a Poly, c, USA nent M For the F ifacture roduct	ct Desig ook, Mcc, Engin, 1995. CGraw Enviror P,Pitman Design	gn for M Grawh heering Hill.199 hment A n–1973 h. Pearse Ds with	/anufac ill,1999 Desigr 96 Angle V on Publ	vive, M and I vood C ication	Design f liff, Prer , (Fourth	or Manu	facture a	2002.	
1. Boot 2. Boot REFERENC 1. Brall 2. Dick App 3. Fixe 4. Grae 5. Reas 6. Harr 7. Kevi 2009	hroyd, (hroyd, (CES: a, Desig son, Jol roach, F l, J. Des delT. A onPub., y Peck, n Otto a	G, Hea gn for I hn. R, ield Stu ign for Ilen By 1996. Desigr und Kri PO2	Manufa and C one Pu the Er 7. B, D ning for stin W	Nike, Acture Corroda blishen wironn esign f r manu food, P M PO4	Product handboa a Poly, c, USA nent M for the froduct lappin PO5	ct Desig ook, Mc , Engin , 1995. cGraw Environ Design Design g of CC PO6	gn for M Grawh heering Hill.199 hment A n-1973 h. Pearso Ds with PO7	Anufad ill,1999 Desigr 96 Angle V on Publ	vood C ication nd PS(PO9	IarcelDe Design f liff, Prer , (Fourth	or Manu tice Hall Impress	facture a ion)	2002. and Stru PSO1	ictura
1. Boot 2. Boot 2. Boot 1. Brall 2. Dick App 3. Fixe 4. Grae 5. Reas 6. Harr 7. Kevi 2009 COs/ POs CO1	hroyd, (hroyd, (CES: a, Desig son, Jol roach, F l, J. Des delT. A onPub., y Peck, n Otto a PO1 3	G, Hea gn for I hn. R, ield Stu ign for Ilen By 1996. Desigr und Kri PO2 2	Manufa and C one Pu the Er 7. B, D hing for stin W PO3 2	Nike, Acture Corroda blishen wironn esign f r manu food, P M PO4 2	Product handboa a Poly, c, USA nent M for the P facture roduct Tappin PO5 1	ct Desig ook, Mcc, Engin, 1995. CGraw Environ Design Design g of CC PO6 1	gn for N Grawh heering Hill.199 hment A n-1973 h. Pearso Ds with PO7	Anufad ill,1999 Desigr 96 Angle V on Publ POS a -	vood C ication nd PSC PO9 -	IarcelDe Design f liff, Prer , (Fourth Ds PO10 -	for Manu tice Hall Impress	facture a ion) PO12 -	2002. and Stru PSO1 1	Ictura PSO 2
1. Boot 2. Boot REFERENC 1. Brall 2. Dick App 3. Fixe 4. Grae 5. Reas 6. Harr 7. Kevi 2009 COs/ POs CO1 CO2	hroyd, C hroyd, C CES: a, Desig son, Jol roach, F l, J. Des delT. A onPub., y Peck, n Otto a PO1 3 3	G, Hea gn for l hn. R, ield St ign for llen By 1996. Desigr und Kri PO2 2 2	Manufa and C one Pu the Er 7. B, D hing for stin W PO3 2 2	Nike, Acture Corrod: Dishen Nironn esign f r manu food, P M PO4 2 2	Product handboa a Poly, c, USA nent M for the f facture roduct lappin PO5 1 1	ct Desig ook, Mc , Engin , 1995. CcGraw Environ Design Design g of CC PO6 1	gn for M Grawh heering Hill.199 hment A n-1973 h. Pearso Ds with PO7 - -	Anufad ill,1999 Desigr 96 Angle V on Publ POs a - -	vood C ication nd PSC PO9 -	IarcelDe Design f liff, Prer , (Fourth Ds PO10 - -	for Manu for Manu ntice Hall n Impress P011 - -	facture a ion) PO12 - -	2002. and Stru PSO1 1 1	PSO 2 3
1. Boot 2. Boot 2. Boot 3. Fixel 4. Grae 5. Reas 6. Harr 7. Kevi 2009 COs/ POs CO1 CO2 CO3	hroyd, C hroyd, C CES: a, Desig son, Jol roach, F l, J. Des delT. A onPub., y Peck, n Otto a PO1 3 3 3 3	G, Hea gn for l hn. R, ield Str ign for llen By 1996. Desigr und Kri PO2 2 2 2 2 2	Manufa and C one Pu the Er 7. B, D hing for stin W PO3 2 2 2 2	Nike, Acture Corrod: Dishen Nironn esign f r manu food, P M PO4 2 2 2 2	Product handboa a Poly, c, USA nent M for the f facture roduct [appin] PO5 1 1 1 1	ct Desig ook, Mc , Engin , 1995. CGraw Environ Design Design g of CC PO6 1 1	gn for M Grawh heering Hill.199 hment A n-1973 h. Pearso Ds with PO7 - -	Anufac ill,1999 Design 96 Angle V on Publ POs a POS - -	vood C ication nd PSC PO9 - - -	IarcelDe Design f liff, Prer , (Fourth Ds PO10 - - -	or Manu tice Hall Impress PO11 - -	facture a facture a ion) PO12 - -	2002. and Stru PSO1 1 1 1	PSO 2 3 3
1. Boot 2. Boot REFERENC 1. Brall 2. Dick App 3. Fixe 4. Grae 5. Reas 6. Harr 7. Kevi 2009 COs/ POs CO1 CO2	hroyd, C hroyd, C CES: a, Desig son, Jol roach, F l, J. Des delT. A onPub., y Peck, n Otto a PO1 3 3	G, Hea gn for l hn. R, ield St ign for llen By 1996. Desigr und Kri PO2 2 2	Manufa and C one Pu the Er 7. B, D hing for stin W PO3 2 2	Nike, Acture Corrod: Dishen Nironn esign f r manu food, P M PO4 2 2	Product handboa a Poly, c, USA nent M for the f facture roduct lappin PO5 1 1	ct Desig ook, Mc , Engin , 1995. CcGraw Environ Design Design g of CC PO6 1	gn for M Grawh heering Hill.199 hment A n-1973 h. Pearso Ds with PO7 - -	Anufad ill,1999 Desigr 96 Angle V on Publ POs a - -	vood C ication nd PSC PO9 -	IarcelDe Design f liff, Prer , (Fourth Ds PO10 - -	for Manu for Manu ntice Hall n Impress P011 - -	facture a ion) PO12 - -	2002. and Stru PSO1 1 1	PSO 2 3

DM24T10		Category	L	Т	Р	С
RM24T19	RESEARCH METHODOLOGY AND IPR	RMC	3	0	0	3
	(Common to PED, EST,CAD/CAM,ISE and CS	5)				
literature, famil knowledge relev property, ethica	FE: A basic understanding of academic writing and critical this iarity with fundamental statistical concepts for data analysis, an want to the student's field. Additionally, a general awareness of leg 1 research practices, and innovation trends will enhance the studelologies and IPR concepts.	d a strong gr al principles re	asp o elated	f cor to in	e sub tellec	oject tual
OBJECTIVES	:					
methodeTo foste	ip students with the ability to design and conduct rigorous ologies, and critically analyzing results. er the ability to critically evaluate academic literature, identify rese	_				
	Is. It students to effectively communicate research findings and legal a presentations, to academic and professional audiences.	rguments, both	in wı	itten	form	and
ethical u	Il an understanding of ethical issues in research, including responsil use of intellectual property.					
	vide a comprehensive understanding of intellectual property righ hts, and their application in various industries.	ts, including j	patent	s, tra	dema	rks,
UNIT - I	RESEARCH DESIGN				(9)	
	search process and design – Use of Secondary and exploratory dat arch, Observation studies – Experiments and surveys.	a to answer th	e rese	arch	quest	ion,
UNIT - II	DATA COLLECTION AND SOURCES				(9)	
	Measurement Scales – Questionnaires and Instruments – Samplin nining and displaying.	g and Method	s. Dat	a - F	repar	ing,
UNIT - III	DATA ANALYSIS AND REPORTING				(9)	
	Iultivariate analysis – Hypotheses testing and Measures of Asso vitten reports and oral presentation.	ciation – Pres	enting	g Insi	ghts	and
UNIT - IV	INTELLECTUAL PROPERTY RIGHTS				(9)	
process, Trade	perty – The concept of IPR, Evolution and development of the observets, utility Models, IPR & Biodiversity, Role of WIPO and WT non rules of IPR practices, Types and Features of IPR Agreement, Tonce.	O in IPR estal	olishn	nents,	Righ	t of
UNIT - V	PATENTS				(9)	
patent application	tives and benefits of patent – Concept, features of patent, Invention, process E-filling – Examination of patent – Grant of patent, Romsing of related patents – patent agents, – Registration of patent agent	evocation, Equ				
		ТОТ	AL:	45 P	ERIC	DDS

At the e	end of the course, the	students will be able t	to:		
COs		Course	Outcome		Cognitive Leve
CO1:	Develop a suitable r	esearch process to solve	e real-time problems.		Apply
CO2:	Apply appropriate m	nethods to collect qualit	tative and quantitative	data for analysis.	Apply
CO3:	Apply appropriate st	tatistical tools to analyz	e data and solve resea	urch problems.	Apply
CO4:	Describe the types establishment.	s and features of in	tellectual property	and its role in IPR	Apply
CO5:	Illustrate the patent	procedures, E-filling, re	egister of patents, and	licensing of patents.	Apply
TEXT	BOOKS: Cooper Donald, R.,	Schindler Pamela, S.,	and Sharma, J.K., "E	Business Research Metho	ods", Tata McGra
	Hill Education, Elev	enth Edition, 2012.			
2	Catherine J. Hollan Press, 2007.	d, Intellectual property	2: Patents, Trademark	s, Copyrights, Trade Se	crets, Entreprene
REFEF	RENCES:				
1	David Hunt, Long N	Iguyen, Matthew Rodge	ers, Patent Searching:	Tools & Techniques, W	iley, 2007.
2		mpany Secretaries of tual Property Rights, La		under an Act of Parlia ember 2013.	ament, Profession
		Maarinaaf	CO	6 0 -	
COs/	BOI		COs with POs and P	1	PSO2
POs	P01	PO2	PO3	PSO1	PSO2
	3	PO2 3		1	PSO2
POs	3	PO2 3 3	PO3	PSO1	
POs CO1	3	PO2 3	PO3	PSO1 1	1
POs CO1 CO2	3	PO2 3 3	PO3	PSO1 1 1 1	1
POs CO1 CO2 CO3	3 3 3	PO2 3 3 3 3	PO3	PSO1 1 1 1 1	1 1 1

1 - Low, 2 - Medium, 3 - High

K.S.R COLLEGE OF ENGINEERING

0024011	COMPLITED AIDED DECION LABORATORY	Category	L	Т	T P	
CC24P11	COMPUTER AIDED DESIGN LABORATORY	PCC	0	0	4	2
PREREQUIS	ITE:	I				
	to basic CAD software, such as Solid Edge, AutoCAD, or So	olidWorks, is u	sually	v nec	essar	y
to ensure fami	iarity with design tools before hands-on lab work.					
	~					
OBJECTIVE						
	ill enable learners to:					
	part knowledge on how to prepare drawings for various mecha	anical compone	ents u	sing	any	
comm	ercially available 3D modeling software's					
CAD Introd	action.					
Sketcher						
Solid modeli	ng–Extrude, Revolve, Sweep and variational sweep, Loft					
	leling– Extrude, Sweep, Trim and Mesh of curves, Freeform.					
	ipulation – Copy, Edit, Pattern, Suppress, History operations	etc.				
	onstraints, Exploded Views, Interference check					
•	youts, Standard & Sectional Views, Detailing & Plotting.					
0	nodeling and drafting of mechanical components-assembly us	ing parametric	and f	eatu	e-ba	isec
packages like	PRO-E/SOLIDWORKS/CATIA/NX					
		TOTA	L=3	80 PE	ERIC	DDS

COURSE OUTCOMES:

Upon completion of the course, the students will be able to:

Cours Outcor						Desc	ription						Bloom' onomy		
COI	L	Use th	e mode	rn engi	neering	tools n	ecessar	y for en	gineeri	ng pract	ice	U	Indersta	nd	
CO2	2	Draw a standa	-	drawin	gs, sect	tional v	iews, a	nd assen	nbly dr	awings	as per	U	Indersta	nd	
CO3	3	constru	construct 3D Model on any CAD software										Apply		
CO4	l	Convert 3D solid models into 2D drawings and prepare different vie sections, and dimensioning of part models.											Apply		
COS	5	Examine interference to ensure that parts will not interfere.											Analyze		
]	Mappi	ng of C	Os wit	h POs a	nd PS	Os		·			
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3	2	1	1	-	-	-	-	-	-	3	3	
CO2	3	3	3	2	1	1	-	-	-	-	-	-	3	3	
CO3	3	3	3	2	1	1	-	-	-	-	-	-	3	3	
CO4	3	3	3	2	1	1	-	-	-	-	-	-	3	3	
CO5	3	3	3	2	1	1	-	-	-	-	-	-	3	3	
Avg.	3	3	3	2	1	1	-	-	-	-	-	-	3	3	

17

K.S.R COLLEGE OF ENGINEERING

CC24D12	COMPUTER AIDED MANUFACTURING C	Category	L	Т	Р	C		
CC24P12	LABORATORY	PCC	0	0	4	2		
PREREQUI Basic underst	SITE: tanding or coursework in CNC (Computer Numerical Control) macl	hining or h	asic r	progra	amm	ing		
	ems often generate CNC code.	8	F	8-		2		
OBJECTIVI								
	will enable learners to:							
To geTo transmission	miliarize students with manual CNC part programming for milling enerate part programs using CAM packages for milling and turning ain students with dimensional and geometric measurements for mac	machines.	-			C		
• To ge	uring system and coordinate measuring machine. et hands on knowledge on programming logic controller - ladder pro-	ogramming	g and	robot	t			
• To in	ramming. atroduce the concept of printing parts using additive manufacturing a base management system in Material requirements planning.	and to intro	oduce	Rela	tiona	ıl		
DETAILE	D SYLLABUS:							
LIST OF EX	PERIMENTS							
 Progr Progr Progr Progr 	ramming and simulation for various operations using canned cycle framming and simulation for machining of internal surfaces in CNC ramming and simulation for profile milling operations ramming and simulation for circular and rectangular pocket milling ramming and simulation using canned cycle for CNC Milling such	turning Ce	entre			ng		
 6. CNC 7. CNC 8. Dime 9. PLC 	code generation using CAM software packages – Milling code generation using CAM software packages – Turning ensional and geometric measurement of machined features using VN ladder logic programming. of programming for Material handling applications.	MS and CN	ИM					
	y on RDBMS and its application in problems like inventory control	MRP.						
	gn and fabrication of a component using extrusion based additive m		ng.					
		TOTA	AL: 3	60 PE	ERIO	D		
	UTCOMES: etion of the course, the students will be able to:							
Course Outcomes	Description			Bloon nom	n's y Le	ve		
Outcomes				Understand				
CO1	Explain the manual CNC part programming for milling and tu machines				tand			
		urning	Uı					

M.E –CAD/CAM

Regulations 2024

CO4	4	Constr	uct PLO	Cladde	r progra	amming	g and ro	bot prog	grammi	ng			Apply		
COS	5		the co the the	-	-	•		g additi 2.	ve mar	ufactur	ing and	Understand			
	Mapping of COs with POs and PSOs														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3	3	1	1	-	-	-	-	-	-	3	3	
CO2	3	3	3	3	1	1	-	-	-	-	-	-	3	3	
CO3	3	3	3	3	1	1	-	-	-	-	-	-	3	3	
CO4	3	3	3	3	1	1	-	-	-	-	-	-	3	3	
CO5	3	3	3	3	1	1	-	-	-	-	-	-	3	3	
Avg.	3	3	3	3	1	1	-	-	-	-	-	-	3	3	

CC24T21	PRODUCT LIFE CYCLE MANAGEMENT	Category	L	Т	Р	C
CC24121	FRODUCT LIFE CICLE MANAGEMENT	РСС	3	0	0	3
oroduct, from co OBJECTIVES: The Course wil	anding of design principles and processes is often required to oncept to disposal.	o grasp the life	cycle	e stag	ges o	fa
Underst.Underst.Demonst	and functions and features of PLM/PDM and different modules offered in commercial PLM/PDM to trate PLM/PDM approaches for industrial applications M/PDM with legacy data bases, CAx& ERP systems HISTORY,CONCEPTSAND TERMINOLOGYOF PL				9	
Introduction to Management(EI (cPDm), Collab Infrastructure–	PLM, Need for PLM, opportunities of PLM, Different vi DM), Product Data Management (PDM), Collaborative P orative Product Commerce (CPC), Product Life cycle N Network and Communications, Data Management, He	ews of PLM- roduct Definit Management (1	ion M PLM)	Mana).PLN	ng Da .geme M/PD	ent M
applications. UNIT - II	PLM/PDM FUNCTIONS AND FEATURES				9	
and application	n and Notification, data transport, data translation, image n integration DETAILS OF MODULES INAPDM/PLMSOFTWARH ed on top few commercial PLM/PDM tools	•	m ad	mini	strati 9	on
UNIT - IV	ROLE OF PLMININDUSTRIES				9	
PLM visioning of PLM, barri	on PLM selection and implementation (like auto, aero, ele g, PLM strategy, PLM feasibility study, change management ers to PLM implementation, ten step approach to PLM , sers, product or service, process performance. BASICS ON CUSTOMISATION/INTEGRATION OF PDM/PLMSOFTWARE	for PLM, fina	ncial	justi	ficati	on
PLM Customiz and ERP	zation, use of EAI technology (Middleware), Integration with	th legacy data	base,	CAI	D, SL	M
		TOTA	AL: 4	5 PE	ERIO	DS

COURSE OUTCOMES:

Upon completion of the course, the students will be able to:

Course Outcomes	Description	Bloom's Taxonomy Level
CO1	Summarize the history, concepts and terminology of PLM	Remember
CO2	Use the functions and features of PLM/PDM	Understand
CO3	Use different modules offered in commercial PLM/PDM tools.	Understand
CO4	Implement PLM/PDM approaches for industrial applications.	Apply
CO5	Integrate PLM/PDM with legacy data bases, CAD & ERP systems	Apply

TEXT BOOKS:

1. Antti Saaksvuori and Anselmi Immonen, "Product Lifecycle Management", Springer Publisher, 2008 (3rd Edition).

2. International Journal of Product Lifecycle Management, Inderscience Publishers

REFERENCES:

- 1. Ivica Crnkovic, Ulf Asklund and Annita Persson Dahlqvist, "Implementing and Integrating Product Data Management and Software Configuration Management", Artech House Publishers, 2003.
- 2. John Stark, "Global Product: Strategy, Product Lifecycle Management and the Billion Customer Question", Springer Publisher, 2007.
- 3. John Stark, "Product Lifecycle Management: 21st Century Paradigm for Product Realisation", Springer Publisher, 2011 (2nd Edition).
- 4. Michael Grieves, "Product Life Cycle Management", Tata McGraw Hill, 2006.

	Mapping of COs with POs and PSOs														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	2	2	1	1	-	-	-	-	-	-	2	2	
CO2	2	2	2	2	1	1	-	-	-	-	-	-	2	2	
CO3	2	2	2	2	1	1	-	-	-	-	-	-	2	2	
CO4	2	2	2	2	1	1	-	-	-	-	-	-	2	2	
CO5	2	2	2	2	1	1	-	-	-	-	-	-	2	2	
Avg.	2	2	2	2	1	1	-	-	-	-	-	-	2	2	

	CC24T22	FINITE ELEMENT METHODS IN	Category	L	Т	Р	C
A solid understanding of how materials behave under different loading conditions (stress, strain, deformation) is essential for applying FEM to mechanical design problems. OBJECTIVES: The Course will enable learners to: Learn two dimensional scalar and vector variable problems and their numerical solutions Learn two dimensional scalar and vector variable problems to determine field variables Learn los parametric transformation and numerical integration for evaluation of element matrices Study various solution techniques to solve Eigen value problems Learn solution techniques to solve non-linear problems UNIT -1 FINITE ELEMENT ANALYSIS OF ONE DIMENSIONAL PROBLEMS UNIT -1 FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS UNIT -1 FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS Game Elements – Applications to Heat Transfer problems. UNIT -11 FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS Basic Boundary Value Problems in two-dimensions – Linear and higher order Triangular, quadrilateral elements – Poisson's and Laplace's Equation – Weak Formulation – Element Matrices and Vectors – Application to scalar variable problems - Introduction to Theory of Elasticity – Plane Stress – Plane Strain and Axisymmetric Formulation – Principle of virtual work – Element matrices using energy approach. UNIT -11 ISO-PARAMETRIC FORMULATION Matural Co-ordinate Systems – Lagrangian Interpolation Polynomials – Iso parametric Elements - Formulation – Shape functions o-me dimensional , two dimensional triangular and quadrilateral elements - Sperendipty elements - Jacobian transformation - Numerical Integration – Gauss quadrature – one, two and three	CC24122	MECHANICAL DESIGN	PCC	3	0	0	3
deformation) is essential for applying FEM to mechanical design problems. OBJECTIVES: The Course will enable learners to: • Learn mathematical models for one dimensional problems and their numerical solutions • Learn Iso parametric transformation and numerical integration for evaluation of element matrices • Study various solution techniques to solve Eigen value problems • Learn solution techniques to solve non-linear problems UNIT -1 FINITE ELEMENT ANALVSIS OF ONE DIMENSIONAL PROBLEMS 9 Historical Background – Weighted Residual Methods - Basic Concept of FEM – Variational Formulation of B.V.P. – Ritz Method – Finite Element Modelling – Element Equations – Linear and Higher order Shape functions – Bar, Beam Elements – Applications to Heat Transfer problems. UNIT -11 FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS 9 Basic Boundary Value Problems in two-dimensions – Linear and higher order Triangular, quadrilateral elements – Poisson's and Laplace's Equation – Weak Formulation – Element Matrices and Vectors – Application to scalar variable problems - Introduction to Theory of Elasticity – Plane Stress – Plane Strain and Axisymmetric Formulation – Principle of virtual work – Element matrices using energy approach. 9 UNIT -11 ISO-PARAMETRIC FORMULATION 9 Natural Co-ordinate Systems – Lagrangian Interpolation Polynomials – Iso parametric Elements-Formulation – Shape functions - one dimensional, two dimensional triangular and quadrilateral elements-Sormulation	-						1
OBJECTIVES: The Course will enable learners to: • Learn mathematical models for one dimensional problems to determine field variables • Learn Iso parametric transformation and numerical integration for evaluation of element matrices • Study various solution techniques to solve Eigen value problems • Learn solution techniques to solve non-linear problems • UNIT -1 FINTE ELEMENT ANALYSIS OF ONE DIMENSIONAL PROBLEMS 9 Historical Background – Weighted Residual Methods - Basic Concept of FEM – Variational Formulation of B.V.P. – Ritz Method – Finite Element Modelling – Element Equations – Linear and Higher order Shape functions – Bar, Beam Elements – Applications to Heat Transfer problems. UNIT -11 FINTE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS 9 Basic Boundary Value Problems in two-dimensions – Linear and higher order Triangular, quadrilateral elements – Poisson's and Laplace's Equation – Weak Formulation – Element Matrices and Vectors – Application to scalar variable problems - Introduction to Theory of Elasticity – Plane Stress – Plane Strain and Axisymmetric Formulation – Principle of virtual work – Element matrices using energy approach. 9 UNIT -11 ISO-PARAMETRIC FORMULATION 9 Natural Co-ordinate Systems – Lagrangian Interpolation Polynomials – Iso parametric Elements-Formulation – Shape functions -one dimensional , two dimensional triangular and quadrilateral elements - Serendipity elements- Jacobian transformation - Numerical Integration – Solution of Eigen value problems - Introduction			litions (stress,	strain	,		
 Learn mathematical models for one dimensional problems and their numerical solutions Learn two dimensional scalar and vector variable problems to determine field variables Learn lso parametric transformation and numerical integration for evaluation of element matrices Study various solution techniques to solve Eigen value problems Learn solution techniques to solve Eigen value problems Learn solution techniques to solve Eigen value problems UNIT - I FINITE ELEMENT ANALYSIS OF ONE DIMENSIONAL PROBLEMS 9 Historical Background – Weighted Residual Methods - Basic Concept of FEM – Variational Formulation of B.V.P. – Ritz Method – Finite Element Modelling – Element Equations – Linear and Higher order Shape functions – Bar, Beam Elements – Applications to Heat Transfer problems. UNIT - II FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS 9 Basic Boundary Value Problems in two-dimensions – Linear and higher order Triangular, quadrilateral elements – Poisson's and Laplace's Equation – Weak Formulation – Element Matrices and Vectors – Application to scalar variable problems – Introduction to Theory of Elasticity – Plane Stress – Plane Strain and Axisymmetric Formulation – Principle of virtual work – Element matrices using energy approach. UNIT - III ISO-PARAMETRIC FORMULATION 9 Natural Co-ordinate Systems – Lagrangian Interpolation Polynomials – Iso parametric Elements - Formulation – Shape functions -one dimensional , two dimensional triangular and quadrilateral elements - Serendipity elements - Jacobian transformation - Numerical Integration – Solution of Eigen value problems - Introduction to transient field problems UNIT - IV EIGEN VALUE PROBLEMS 9 Dynamic Analysis – Equations of Motion – Consistent and lumped mass matrices – Free Vibration analysis – Natural frequencies of Longitudinal, Transverse and torsional vibration – Solution of							
Learn two dimensional scalar and vector variable problems to determine field variables Learn Iso parametric transformation and numerical integration for evaluation of element matrices Study various solution techniques to solve Eigen value problems Learn solution techniques to solve non-linear problems Learn solution techniques to solve non-linear problems UNIT - I FINITE ELEMENT ANALYSIS OF ONE DIMENSIONAL PROBLEMS PHistorical Background – Weighted Residual Methods - Basic Concept of FEM – Variational Formulation of B.V.P. – Ritz Method – Finite Element Modelling – Element Equations – Linear and Higher order Shape functions – Bar, Beam Elements – Applications to Heat Transfer problems. UNIT - II FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS 9 Basic Boundary Value Problems in two-dimensions – Linear and higher order Triangular, quadrilateral elements – Poisson's and Laplace's Equation – Weak Formulation – Element Matrices and Vectors – Application to scalar variable problems - Introduction to Theory of Elasticity – Plane Stress – Plane Strain and Axisymmetric Formulation – Principle of virtual work – Element matrices using energy approach. UNIT - II ISO-PARAMETRIC FORMULATION 9 Natural Co-ordinate Systems – Lagrangian Interpolation Polynomials – Iso parametric Elements- Formulation – Shape functions -one dimensional , two dimensional triangular and quadrilateral elements - Serendipity elements- Jacobian transformation - Numerical Integration – Gauss quadrature – one, two and three point integration. UNIT - IV EIGEN VALUE PROBLEMS 9 Dynamic Analysis – Equations of Motion – Consistent and lumped mass matrices – Free Vibration analysis – Natural frequencies of Longitudinal, Transverse and torsional vibration – Solution of Eigen value problems - Introduction to transient field problems UNIT - V NON-LINEAR ANALYSIS 9 Thtroduction to Non-linear problems - some solution techniques- computational procedure- material non- linearity-Plasticity and visc	The Course v	vill enable learners to:					
Learn Iso parametric transformation and numerical integration for evaluation of element matrices Study various solution techniques to solve Eigen value problems Learn solution techniques to solve non-linear problems UNIT - I FINITE ELEMENT ANALYSIS OF ONE DIMENSIONAL PROBLEMS 9 Historical Background – Weighted Residual Methods - Basic Concept of FEM – Variational Formulation of B.V.P. – Ritz Method – Finite Element Modelling – Element Equations – Linear and Higher order Shape functions – Bar, Beam Elements – Applications to Heat Transfer problems. UNIT - II FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS 9 Basic Boundary Value Problems in two-dimensions – Linear and higher order Triangular, quadrilateral elements – Poisson's and Laplace's Equation – Weak Formulation – Element Matrices and Vectors – Application to scalar variable problems - Introduction to Theory of Elasticity – Plane Stress – Plane Strain and Axisymmetric Formulation – Principle of virtual work – Element matrices using energy approach. UNIT - III ISO-PARAMETRIC FORMULATION 9 Natural Co-ordinate Systems – Lagrangian Interpolation Polynomials – Iso parametric Elements - Gormulation – Shape functions - one dimensional , two dimensional triangular and quadrilateral elements - Gerendipity elements- Jacobian transformation - Numerical Integration – Gauss quadrature – one, two and three point integration. UNIT - IV EIGEN VALUE PROBLEMS 9 Dynamic Analysis – Equations of Motion – Consistent and lumped mass matrices – Free Vibration analysis – Natural frequencies of Longitudinal, Transverse and torsional vibration – Solution of Eigen value problems - Introduction to Non-linear problems - some solution techniques- computational procedure- material non- linearity-Plasticity and viscoplasticity, stress stiffening, contact interfaces- problems of gaps and contact - geometric non-linearity - modeling considerations - Free and Mapped meshing -Mesh quality- Error estimate.	• Learn	mathematical models for one dimensional problems and t	heir numerica	l solu	tions		
matrices • Study various solution techniques to solve Eigen value problems • Learn solution techniques to solve non-linear problems UNIT - I FINITE ELEMENT ANALYSIS OF ONE DIMENSIONAL PROBLEMS 9 Historical Background – Weighted Residual Methods - Basic Concept of FEM – Variational Formulation of B.V.P. – Ritz Method – Finite Element Modelling – Element Equations – Linear and Higher order Shape functions – Bar, Beam Elements – Applications to Heat Transfer problems. UNIT - II FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS 9 Basic Boundary Value Problems in two-dimensions – Linear and higher order Triangular, quadrilateral elements – Poisson's and Laplace's Equation – Weak Formulation – Element Matrices and Vectors - Application to scalar variable problems - Introduction to Theory of Elasticity – Plane Stress – Plane Strain and Axisymmetric Formulation – Principle of virtual work – Element matrices using energy approach. 9 Natural Co-ordinate Systems – Lagrangian Interpolation Polynomials – Iso parametric Elements - Serendipity elements- Jacobian transformation - Numerical Integration – Gauss quadrature – one, two and three point integration. 9 UNIT - IV EIGEN VALUE PROBLEMS 9 Dynamic Analysis – Equations of Motion – Consistent and lumped mass matrices – Free Vibration analysis – Natural frequencies of Longitudinal, Transverse and torsional vibration – Solution of Eigen value problems - Introduction to transient field problems UNIT - V NON-LINEAR ANALYSIS 9 <t< td=""><td></td><td>-</td><th></th><td></td><td></td><td></td><td></td></t<>		-					
 Study various solution techniques to solve Eigen value problems Learn solution techniques to solve non-linear problems UNIT - I FINTE ELEMENT ANALYSIS OF ONE DIMENSIONAL PROBLEMS 9 Historical Background – Weighted Residual Methods - Basic Concept of FEM – Variational Formulation of B.V.P. – Ritz Method – Finite Element Modelling – Element Equations – Linear and Higher order Shape functions – Bar, Beam Elements – Applications to Heat Transfer problems. UNIT - II FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS 9 Basic Boundary Value Problems in two-dimensions – Linear and higher order Triangular, quadrilateral elements – Poisson's and Laplace's Equation – Weak Formulation – Element Matrices and Vectors – Application to scalar variable problems - Introduction to Theory of Elasticity – Plane Stress – Plane Strain and Axisymmetric Formulation – Principle of virtual work – Element matrices using energy approach. UNIT - III ISO-PARAMETRIC FORMULATION 9 Natural Co-ordinate Systems – Lagrangian Interpolation Polynomials – Iso parametric Elements - Serendipity elements - Jacobian transformation - Numerical Integration – Gauss quadrature – one, two and three point integration. UNIT - IV EIGEN VALUE PROBLEMS 9 Dynamic Analysis – Equations of Motion – Consistent and lumped mass matrices – Free Vibration analysis – Natural frequencies of Longitudinal, Transverse and torsional vibration – Solution of Eigen value problems UNIT - V NON-LINEAR ANALYSIS 9 Introduction to Non-linear problems - some solution techniques- computational procedure- material non-linearity-Plasticity and viscoplasticity, stress stiffening, contact interfaces- problems of gaps and contact - geometric non-linearity - modeling considerations - Free and Mapped meshing -Mesh quality- Error estimate. 			r evaluation of	of elei	nent		
Learn solution techniques to solve non-linear problems VINT - I FINITE ELEMENT ANALYSIS OF ONE DIMENSIONAL PROBLEMS 9 Historical Background – Weighted Residual Methods - Basic Concept of FEM – Variational Formulation of B.V.P. – Ritz Method – Finite Element Modelling – Element Equations – Linear and Higher order Shape functions – Bar, Beam Elements – Applications to Heat Transfer problems. VINT - II FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS 9 Basic Boundary Value Problems in two-dimensions – Linear and higher order Triangular, quadrilateral elements – Poisson's and Laplace's Equation – Weak Formulation – Element Matrices and Vectors – Application to scalar variable problems - Introduction to Theory of Elasticity – Plane Stress – Plane Strain and Axisymmetric Formulation – Principle of virtual work – Element matrices using energy approach. UNIT - III ISO-PARAMETRIC FORMULATION 9 Natural Co-ordinate Systems – Lagrangian Interpolation Polynomials – Iso parametric Elements- Formulation – Shape functions - one dimensional , two dimensional triangular and quadrilateral elements - Serendipity elements- Jacobian transformation - Numerical Integration – Gauss quadrature – one, two and three point integration. UNIT - IV EIGEN VALUE PROBLEMS 9 Dynamic Analysis – Equations of Motion – Consistent and lumped mass matrices – Free Vibration analysis – Natural frequencies of Longitudinal, Transverse and torsional vibration – Solution of Eigen value problems - Introduction to transient field problems UNIT - V NON-LINEAR ANALYSIS 9 Introduction to Non-linear problems - some solution techniques- computational procedure- material non- linearity-Plasticity and viscoplasticity, stress stiffening, contact interfaces- problems of gaps and contact - geometric non-linearity - modeling considerations - Free and Mapped meshing -Mesh quality- Error estimate.							
UNIT - IFINITE ELEMENT ANALYSIS OF ONE DIMENSIONAL PROBLEMS9Historical Background – Weighted Residual Methods - Basic Concept of FEM – Variational Formulation of B.V.P. – Ritz Method – Finite Element Modelling – Element Equations – Linear and Higher order Shape functions – Bar, Beam Elements – Applications to Heat Transfer problems.9UNIT - IIFINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS9Basic Boundary Value Problems in two-dimensions – Linear and higher order Triangular, quadrilateral elements – Poisson's and Laplace's Equation – Weak Formulation – Element Matrices and Vectors – Application to scalar variable problems - Introduction to Theory of Elasticity – Plane Stress – Plane Stress – Plane Stress – Plane9Natural Co-ordinate Systems – Lagrangian Interpolation Polynomials – Iso parametric Elements- Formulation – Shape functions -one dimensional , two dimensional triangular and quadrilateral elements- Serendipity elements- Jacobian transformation - Numerical Integration – Gauss quadrature – one, two and three point integration.9UNIT - IVEIGEN VALUE PROBLEMS9Dynamic Analysis – Equations of Motion – Consistent and lumped mass matrices – Free Vibration analysis – Natural frequencies of Longitudinal, Transverse and torsional vibration – Solution of Eigen value problems9Introduction to Non-LINEAR ANALYSIS9Introduction to Non-linear problems - some solution techniques- computational procedure- material non- linearity-Plasticity and viscoplasticity, stress stiffening, contact interfaces- problems of gaps and contact - geometric non-linearity - modeling considerations - Free and Mapped meshing -Mesh quality- Error estimate.							
Historical Background – Weighted Residual Methods - Basic Concept of FEM – Variational Formulation of B.V.P. – Ritz Method – Finite Element Modelling – Element Equations – Linear and Higher order Shape functions – Bar, Beam Elements – Applications to Heat Transfer problems. UNIT - II FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS 9 Basic Boundary Value Problems in two-dimensions – Linear and higher order Triangular, quadrilateral elements – Poisson's and Laplace's Equation – Weak Formulation – Element Matrices and Vectors – Application to scalar variable problems - Introduction to Theory of Elasticity – Plane Stress – Plane Strain and Axisymmetric Formulation – Principle of virtual work – Element matrices using energy approach. UNIT - III ISO-PARAMETRIC FORMULATION 9 Natural Co-ordinate Systems – Lagrangian Interpolation Polynomials – Iso parametric Elements - Serendipity elements - Jacobian transformation - Numerical Integration – Gauss quadrature – one, two and three point integration. 9 Dynamic Analysis – Equations of Motion – Consistent and lumped mass matrices – Free Vibration analysis – Natural frequencies of Longitudinal, Transverse and torsional vibration – Solution of Eigen value problems 9 UNIT - V NON-LINEAR ANALYSIS 9 Introduction to Non-linear problems - some solution techniques- computational procedure- material non-linearity - modeling considerations - Free and Mapped meshing -Mesh quality- Error estimate.			AT PROBLEM	AC		0	
of B.V.P. – Ritz Method – Finite Element Modelling – Element Equations – Linear and Higher order Shape functions – Bar, Beam Elements – Applications to Heat Transfer problems. Image: State	0111 - 1	FINITE ELEMENT ANAL 1515 OF ONE DIVIENSION		V1 5		,	
Basic Boundary Value Problems in two-dimensions – Linear and higher order Triangular, quadrilateral elements – Poisson's and Laplace's Equation – Weak Formulation – Element Matrices and Vectors – Application to scalar variable problems - Introduction to Theory of Elasticity – Plane Stress – Plane Strain and Axisymmetric Formulation – Principle of virtual work – Element matrices using energy approach. UNIT - III ISO-PARAMETRIC FORMULATION 9 Natural Co-ordinate Systems – Lagrangian Interpolation Polynomials – Iso parametric Elements– Formulation – Shape functions -one dimensional , two dimensional triangular and quadrilateral elements - Serendipity elements- Jacobian transformation - Numerical Integration – Gauss quadrature – one, two and three point integration. UNIT - IV EIGEN VALUE PROBLEMS 9 Dynamic Analysis – Equations of Motion – Consistent and lumped mass matrices – Free Vibration analysis – Natural frequencies of Longitudinal, Transverse and torsional vibration – Solution of Eigen value problems 9 IVIT - V NON-LINEAR ANALYSIS 9 Introduction to Non-linear problems - some solution techniques- computational procedure- material non-linearity-Plasticity and viscoplasticity, stress stiffening, contact interfaces- problems of gaps and contact - geometric non-linearity - modeling considerations - Free and Mapped meshing -Mesh quality- Error estimate.	of B.V.P. – H	Ritz Method – Finite Element Modelling – Element Equatio	ns – Linear ai				
elements – Poisson's and Laplace's Equation – Weak Formulation – Element Matrices and Vectors – Application to scalar variable problems - Introduction to Theory of Elasticity – Plane Stress – Plane Strain and Axisymmetric Formulation – Principle of virtual work – Element matrices using energy approach. UNIT - III ISO-PARAMETRIC FORMULATION 9 Natural Co-ordinate Systems – Lagrangian Interpolation Polynomials – Iso parametric Elements– 9 Natural Co-ordinate Systems – Lagrangian Interpolation Polynomials – Iso parametric Elements– 9 Formulation – Shape functions -one dimensional , two dimensional triangular and quadrilateral elements - 9 VINIT - IV EIGEN VALUE PROBLEMS 9 Dynamic Analysis – Equations of Motion – Consistent and lumped mass matrices – Free Vibration analysis – Natural frequencies of Longitudinal, Transverse and torsional vibration – Solution of Eigen value problems - Introduction to transient field problems 9 UNIT - V NON-LINEAR ANALYSIS 9 Introduction to Non-linear problems - some solution techniques- computational procedure- material non-linearity-Plasticity and viscoplasticity, stress stiffening, contact interfaces- problems of gaps and contact - geometric non-linearity - modeling considerations - Free and Mapped meshing -Mesh quality- Error estimate.	UNIT - II	FINITE ELEMENT ANALYSIS OF TWO DIMENSION	AL PROBLE	MS		9	
Formulation – Shape functions -one dimensional , two dimensional triangular and quadrilateral elements - Serendipity elements- Jacobian transformation - Numerical Integration – Gauss quadrature – one, two and three point integration. UNIT - IV EIGEN VALUE PROBLEMS 9 Dynamic Analysis – Equations of Motion – Consistent and lumped mass matrices – Free Vibration analysis – Natural frequencies of Longitudinal, Transverse and torsional vibration – Solution of Eigen value problems - Introduction to transient field problems UNIT - V NON-LINEAR ANALYSIS 9 Introduction to Non-linear problems - some solution techniques- computational procedure- material non-linearity-Plasticity and viscoplasticity, stress stiffening, contact interfaces- problems of gaps and contact - geometric non-linearity - modeling considerations - Free and Mapped meshing -Mesh quality- Error estimate.	**	ISO-PARAMETRIC FORMULATION				9	
UNIT - IVEIGEN VALUE PROBLEMS9Dynamic Analysis – Equations of Motion – Consistent and lumped mass matrices – Free Vibration analysis – Natural frequencies of Longitudinal, Transverse and torsional vibration – Solution of Eigen value problems - Introduction to transient field problems9UNIT - VNON-LINEAR ANALYSIS9Introduction to Non-linear problems - some solution techniques- computational procedure- material non- linearity-Plasticity and viscoplasticity, stress stiffening, contact interfaces- problems of gaps and contact - geometric non-linearity - modeling considerations - Free and Mapped meshing -Mesh quality- Error estimate.	Formulation - Serendipity el	Shape functions -one dimensional , two dimensional triangue ements- Jacobian transformation - Numerical Integration – G	lar and quadri	latera	l elei	ment	s -
analysis – Natural frequencies of Longitudinal, Transverse and torsional vibration – Solution of Eigen value problems - Introduction to transient field problems UNIT - V NON-LINEAR ANALYSIS 9 Introduction to Non-linear problems - some solution techniques- computational procedure- material non-linearity-Plasticity and viscoplasticity, stress stiffening, contact interfaces- problems of gaps and contact - geometric non-linearity - modeling considerations - Free and Mapped meshing -Mesh quality- Error estimate.		•				9	
Introduction to Non-linear problems - some solution techniques- computational procedure- material non- linearity-Plasticity and viscoplasticity, stress stiffening, contact interfaces- problems of gaps and contact - geometric non-linearity - modeling considerations - Free and Mapped meshing -Mesh quality- Error estimate.	analysis – Nat	ural frequencies of Longitudinal, Transverse and torsional vib					
linearity-Plasticity and viscoplasticity, stress stiffening, contact interfaces- problems of gaps and contact - geometric non-linearity - modeling considerations - Free and Mapped meshing -Mesh quality- Error estimate.	UNIT - V	NON-LINEAR ANALYSIS				9	
TOTAL: 45 PERIOD	linearity-Pla geometric n	sticity and viscoplasticity, stress stiffening, contact interfaces-	problems of g meshing -Mes	aps a sh qu	nd co ality	ontac - Err	t - or
			TOT	AL: 4	15 PH	ERIC	DS

COURSE OUTCOMES:

Upon completion of the course, the students will be able to:

Course Outcomes	Description	Bloom's Taxonomy Level
CO1	Develop mathematical models for one dimensional problems and their numerical solutions	Understand
CO2	Determine field variables for two dimensional scalar and vector variable problems	Apply
CO3	Apply Isoparametric transformation and numerical integration for evaluation of element matrices	Apply
CO4	Apply various solution techniques to solve Eigen value problems	Apply
CO5	Formulate solution techniques to solve non-linear problems	Analyse

TEXT BOOKS:

- 1. Bathe K.J., "Finite Element Procedures in Engineering Analysis", Prentice Hall, 1990
- 2. David Hutton, "Fundamentals of Finite Element Analysis", Tata McGrawHill, 2005

REFERENCES:

- 1. Rao, S.S., "The Finite Element Method in Engineering", 6th Edition, Butterworth-Heinemann,2018
- 2. Reddy, J.N. "Introduction to the Finite Element Method", 4th Edition, TataMcGraw Hill, 2018
- 3. Seshu.P, "Text Book of Finite Element Analysis", PHI Learning Pvt. Ltd., New Delhi, 2012.
- **4.** Tirupathi R. Chandrupatla and Ashok D. Belegundu, "Introduction to Finite Elements in Engineering", International Edition, Pearson Education Limited, 2014.

					Map	ping of	COs w	vith PO	s and l	PSOs				
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	2	1	-	-	-	-	-	-	2	3
CO2	3	3	3	3	2	1	-	-	-	-	-	-	2	3
CO3	3	3	3	3	2	1	-	-	-	-	-	-	2	3
CO4	3	3	3	3	2	1	-	-	-	-	-	-	2	3
CO5	3	3	3	3	2	1	-	-	-	-	-	-	2	3
Avg.	3	3	3	3	2	1	-	-	-	-	-	-	2	3

CC24T23	SOLID FREEFORM MANUFACTURING	Category	L	Т	Р	C
CC24123	SOLID FREEFORM MANUFACTURING	PCC	3	0	0	3
	TTE: g the properties of various materials (metals, polymers, cerami g is critical for selecting suitable materials and processes.	ics, composites) used	l in a	dditi	ve
OBJECTIVE	S:					
The Course w	vill enable learners to:					
Manut • Gain impro • Acqua • Acqua • Gain b	aint the students with evolution of Solid Freeform Man facturing (AM), proliferation into various fields and its effects knowledge on Design for Additive Manufacturing (DFAM vement of fabricated parts aint with polymerization and sheet lamination processes and t aint with material extrusion and powder bed fusion processes.	s on supply chain (1) and its imposed (1) heir application	in. ortane is.	ce in	quali	
UNIT - I	INTRODUCTION				9	
Classification	velopment of SFM systems – Hierarchical structure of S n – Applications. Case studies: Bio printing- Food Printing Building printing. AM Supply chain. Economics aspect	g- Electronics	- printi	ng –	Rap	oid
ÚNIT - II	DESIGN FOR ADDITIVE MANUFACTURING				9	
Lightweight Reconstruction	Objectives - AM Unique Capabilities - Part Consolidati Structures - DFAM for Part Quality Improvement n - Data Processing for AM - Data Formats - Data Interfaci sign and Support Structure Generation - Model Slicing -	- CAD Mod ing - Part Orie	leling ntatio	; - on - S	ation Moc Suppo	lel ort
Lightweight Reconstruction Structure Des Requirements Case Studies. UNIT - III	Structures - DFAM for Part Quality Improvement n - Data Processing for AM - Data Formats - Data Interfaci- sign and Support Structure Generation - Model Slicing - of Additive Manufacturing: For Part Production, For Mass Pr VAT POLYMERIZATION AND SHEET LAMINATION	- CAD Mod ing - Part Orie Tool Path Go oduction, For S	leling ntatio enerat Series	n - S tion. Prod	ation Moc Suppo Desi luctic	lel ort gn on.
Lightweight Reconstruction Structure Des Requirements <u>Case Studies</u> . <u>UNIT - III</u> Stereolithograp Part-Building Advantages - Advantages an Laminated O	Structures - DFAM for Part Quality Improvement n - Data Processing for AM - Data Formats - Data Interfaci sign and Support Structure Generation - Model Slicing - of Additive Manufacturing: For Part Production, For Mass Pr VAT POLYMERIZATION AND SHEET LAMINATION phy Apparatus (SLA): Principles – Photo Polymerization of and Post-Build Processes - Part Quality and Process Plannin Limitations and Applications. Digital Light Processing and Applications. bject Manufacturing (LOM): Working Principles - Proc	- CAD Mod ing - Part Orie Tool Path Ge oduction, For S N PROCESSE SL Resins - Pr g, Recoating Is (DLP) - Mate	leling ntatio eneratio series S e Bui sues rials	ild Prod	ation Mod Suppo Desi luctic 9 roces terial roces	$\frac{1 \text{ el}}{\text{ ort}}$ $\frac{1}{\text{ s}}$ $\frac{1}{\text{ s}}$ $\frac{1}{\text{ s}}$ $\frac{1}{\text{ s}}$ $\frac{1}{\text{ s}}$ $\frac{1}{\text{ s}}$
Lightweight Reconstruction Structure Des Requirements Case Studies. UNIT - III Stereolithograp Part-Building Advantages - Advantages an Laminated O Limitations a	Structures - DFAM for Part Quality Improvement n - Data Processing for AM - Data Formats - Data Interfaci sign and Support Structure Generation - Model Slicing - of Additive Manufacturing: For Part Production, For Mass Pr VAT POLYMERIZATION AND SHEET LAMINATION phy Apparatus (SLA): Principles – Photo Polymerization of and Post-Build Processes - Part Quality and Process Plannin Limitations and Applications. Digital Light Processing ad Applications. bject Manufacturing (LOM): Working Principles - Proc nd Applications. Ultrasonic Additive Manufacturing (UA	- CAD Mod ing - Part Orie Tool Path Ge oduction, For S N PROCESSE SL Resins - Pr g, Recoating Is (DLP) - Mate	leling ntatio eneratio series S e Bui sues rials	ild Prod	ation Mod Suppo Desi luctic 9 roces terial roces	lel ort gn on. s - ls s es,
Lightweight Reconstruction Structure Des Requirements Case Studies. UNIT - III Stereolithogra Part-Building Advantages - Advantages an Laminated O Limitations a Applications.	 Structures - DFAM for Part Quality Improvement n - Data Processing for AM - Data Formats - Data Interfaci sign and Support Structure Generation - Model Slicing - of Additive Manufacturing: For Part Production, For Mass Pr VAT POLYMERIZATION AND SHEET LAMINATION phy Apparatus (SLA): Principles – Photo Polymerization of and Post-Build Processes - Part Quality and Process Plannin Limitations and Applications. Digital Light Processing and Applications. bject Manufacturing (LOM): Working Principles - Proc nd Applications. Ultrasonic Additive Manufacturing (UA Case Studies. 	- CAD Mod ing - Part Orie Tool Path Ge oduction, For S N PROCESSE SL Resins - Pr g, Recoating Is (DLP) - Mate cess - Materia M) - Process	leling ntatio enerat Series S e Bui sues rials als, - P	n - S tion. Prod ild Pr - Ma - Pr	ation Mod Suppo Desi luctic 9 roces terial roces	lel ort gn on. s - ls - s - es,
Lightweight Reconstruction Structure Des Requirements <u>Case Studies</u> . <u>UNIT - III</u> Stereolithograp Part-Building Advantages - Advantages an Laminated O Limitations a <u>Applications</u> . <u>UNIT - IV</u> Fused deposi Design Rules Powder Struct Laser Melting	Structures - DFAM for Part Quality Improvement n - Data Processing for AM - Data Formats - Data Interfaci sign and Support Structure Generation - Model Slicing - of Additive Manufacturing: For Part Production, For Mass Pr VAT POLYMERIZATION AND SHEET LAMINATION phy Apparatus (SLA): Principles – Photo Polymerization of and Post-Build Processes - Part Quality and Process Plannin Limitations and Applications. Digital Light Processing and Applications. bject Manufacturing (LOM): Working Principles - Pro- nd Applications. Ultrasonic Additive Manufacturing (UA Case Studies. MATERIAL EXTRUSION AND POWDER BED FUSIO tion Modeling (FDM): Working Principles - Process for FDM. Selective Laser Sintering (SLS): Principles - Pro- ure – Materials - Surface Deviation and Accuracy - Application g (SLM) and Electron Beam Melting (EBM): Princip	- CAD Mod ing - Part Orie Tool Path Ge oduction, For S N PROCESSE SL Resins - Pr g, Recoating Is (DLP) - Mate cess - Materia M) - Process N PROCESSI - Materials a cess - Indirect tions. Multi jet	leling ntatio enerat series S e Bui sues rials als, - P ES and J Fusio	in - S tion. Prod ild Pr - Ma - Pr Adva aram Appli Direc on. S	ation Mod Suppo Desi luctio 9 roces terial oces antage eters 9 catio t SL elect	lel ort gn on. s - ls s - es, - S ive
Lightweight Reconstruction Structure Des Requirements <u>Case Studies.</u> <u>UNIT - III</u> Stereolithograp Part-Building Advantages - Advantages an Laminated O Limitations a <u>Applications.</u> <u>UNIT - IV</u> Fused deposi Design Rules Powder Struct Laser Melting Advantages - I	 Structures - DFAM for Part Quality Improvement n - Data Processing for AM - Data Formats - Data Interfaci sign and Support Structure Generation - Model Slicing - of Additive Manufacturing: For Part Production, For Mass Pr VAT POLYMERIZATION AND SHEET LAMINATION phy Apparatus (SLA): Principles – Photo Polymerization of and Post-Build Processes - Part Quality and Process Plannin Limitations and Applications. Digital Light Processing ad Applications. bject Manufacturing (LOM): Working Principles - Proc nd Applications. Ultrasonic Additive Manufacturing (UA Case Studies. MATERIAL EXTRUSION AND POWDER BED FUSIO tion Modeling (FDM): Working Principles - Process for FDM. Selective Laser Sintering (SLS): Principles - Proc ure – Materials - Surface Deviation and Accuracy - Application g (SLM) and Electron Beam Melting (EBM): Princip Limitations and Applications. Case Studies. 	- CAD Mod ing - Part Orie Tool Path Ge oduction, For S NPROCESSE SL Resins - Pr g, Recoating Is (DLP) - Mate cess - Materia M) - Process NPROCESSI - Materials a cess - Indirect tions. Multi jet les – Process	leling ntatio enerat series S e Bui sues rials als, - P ES and J Fusio	in - S tion. Prod ild Pr - Ma - Pr Adva aram Appli Direc on. S	ation Moc Suppo Desi luctio 9 roces terial roces eters 9 catio t SL elect terial	$\frac{1}{3}$
Lightweight Reconstruction Structure Des Requirements Case Studies. UNIT - III Stereolithogra Part-Building Advantages - Advantages an Laminated O Limitations a Applications. O UNIT - IV Fused deposi Design Rules Powder Struct Laser Melting Advantages - I UNIT - V Binder Jetting Continuous mo Material Jettin Limitations. Laser Engine	Structures - DFAM for Part Quality Improvement n - Data Processing for AM - Data Formats - Data Interfaci- sign and Support Structure Generation - Model Slicing - of Additive Manufacturing: For Part Production, For Mass Pr VAT POLYMERIZATION AND SHEET LAMINATION phy Apparatus (SLA): Principles – Photo Polymerization of and Post-Build Processes - Part Quality and Process Plannin Limitations and Applications. Digital Light Processing ad Applications. bject Manufacturing (LOM): Working Principles - Proc nd Applications. Ultrasonic Additive Manufacturing (UA Case Studies. MATERIAL EXTRUSION AND POWDER BED FUSIO tion Modeling (FDM): Working Principles - Process for FDM. Selective Laser Sintering (SLS): Principles - Proc ure – Materials - Surface Deviation and Accuracy - Application g (SLM) and Electron Beam Melting (EBM): Princip Limitations and Applications. Case Studies. JETTING AND DIRECT ENERGY DEPOSITION PRO : Three dimensional Printing (3DP): Principles - Process - Pho ode – Drop on Demand mode - Process – Materials - Advanta ng: Multi Jet Modelling (MJM) - Principles - Process evered Net Shaping (LENS): Processes- Materials- Advanta	- CAD Mod ing - Part Orie Tool Path Ge oduction, For S NPROCESSE SL Resins - Pr g, Recoating Is (DLP) - Mate cess - Materia M) - Process NPROCESSI - Materials a cess - Indirect tions. Multi jet les – Process CESSES ysics of 3DP - ges - Limitation - Materials -	leling ntatio enerat series E e Bui sues rials als, and Fusi ses Type ns - A Adv	ild Prod ild Prod ild Prod - Ma - Pr Adva aram Appli Directon. S - Mat s of p antag	ation Moc Suppo Desi luction 9 roces terial roces terial roces terial oces terial soces terial oces terial soces teri soces teris terial soces ter	lel ort gn on. s - ls - s - es, - s - ive s - ng ns. anc
Lightweight Reconstruction Structure Des Requirements Case Studies. UNIT - III Stereolithograp Part-Building Advantages - Advantages an Laminated O Limitations a Applications. O UNIT - IV Fused deposi Design Rules Powder Struct Laser Melting Advantages - I UNIT - V Binder Jetting Continuous mo Material Jettin Limitations.	Structures - DFAM for Part Quality Improvement n - Data Processing for AM - Data Formats - Data Interfaci- sign and Support Structure Generation - Model Slicing - of Additive Manufacturing: For Part Production, For Mass Pr VAT POLYMERIZATION AND SHEET LAMINATION phy Apparatus (SLA): Principles – Photo Polymerization of and Post-Build Processes - Part Quality and Process Plannin Limitations and Applications. Digital Light Processing ad Applications. bject Manufacturing (LOM): Working Principles - Proc nd Applications. Ultrasonic Additive Manufacturing (UA Case Studies. MATERIAL EXTRUSION AND POWDER BED FUSIO tion Modeling (FDM): Working Principles - Process for FDM. Selective Laser Sintering (SLS): Principles - Proc ure – Materials - Surface Deviation and Accuracy - Application g (SLM) and Electron Beam Melting (EBM): Princip Limitations and Applications. Case Studies. JETTING AND DIRECT ENERGY DEPOSITION PRO : Three dimensional Printing (3DP): Principles - Process - Pho ode – Drop on Demand mode - Process – Materials - Advanta ng: Multi Jet Modelling (MJM) - Principles - Process evered Net Shaping (LENS): Processes- Materials- Advanta	- CAD Mod ing - Part Orie Tool Path Ge oduction, For S NPROCESSE SL Resins - Pr g, Recoating Is (DLP) - Mate cess - Materia M) - Process NPROCESSI - Materials a cess - Indirect tions. Multi jet les – Process CESSES ysics of 3DP - ges - Limitation - Materials -	leling ntatio eneration series S e Bui sues rials als, 2 - P ES and 1 Fusion ses - Type ns - A Adv Limit	ild Prod ild Prod ild Prod - Ma - Pr Adva aram Appli Direction. S - Mat s of p antag ation	ation Mod Suppo Desi luctio 9 roces terial roces eters 9 catio t SL elect terial 9 rotation ges a	lel ort gn on. s - ls - s - es, - s - s - s - ive s - ng ns. anc

	OUTCOMES: letion of the course, the students will be able to:	
Course Outcomes	Description	Bloom's Taxonomy Level
CO1	Relate the importance in the evolution of SFM/AM, proliferation into the various fields and its effects on supply chain.	Understand
CO2	Analyze the design for AM and its importance in the quality of fabricated parts	Analyse
CO3	Build knowledge on principles and applications of polymerization and sheet lamination processes with case studies	Understand
CO4	Explain the principles of material extrusion and powder bed fusion processes and design guidelines	Understand
CO5	Elaborate jetting and direct energy deposition processes and their applications.	Understand

TEXT BOOKS:

1. Andreas Gebhardt and Jan-Steffen Hotter, "Additive Manufacturing:3D Printing for Prototyping and Manufacturing", Hanser publications Munchen, Germany, 2016. ISBN:978-1-56990-582-1.

2. Ben Redwood, Brian Garret, FilemonSchöffer, and Tony Fadel, "The 3D Printing Handbook Technologies, Design and Applications", 3D Hubs B.V., Netherland, 2017. ISBN-13: 978-9082748505.

REFERENCES:

- 1. Ian Gibson, David W. Rosen and Brent Stucker, "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing" Springer - New York, USA, 2nd Edition, 2015. ISBN-13: 978-1493921126.
- 2. Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press, 1st Edition, 2007 FL, USA. ISBN- 9780849334092.
- 3. Milan Brandt., "Laser Additive Manufacturing 1st Edition Materials, Design, Technologies, and Applications", Woodhead Publishing, UK, 2016. ISBN- 9780081004333.

	Mapping of COs with POs and PSOs														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	-	-	-	-	-	-	-	-	-	-	-	2	3	
CO2	3	2	2	-	-	-	-	-	-	-	-	2	2	3	
CO3	3	-	-	-	-	-	-	-	-	-	-	-	2	3	
CO4	3	-	-	-	-	-	-	-	-	-	-	-	2	3	
CO5	3	-	-	-	-	-	-	-	-	-	-	-	2	3	
Avg.	3	2	2	-	-	-	-	-	-	-	-	2	2	3	

CC24T24	INDUSTRY 4.0	Category	L	T	P	C
CC24124		PCC	3	0	0	3
-	e to Cyber-Physical Systems (CPS), IoT, or smart systems car	be beneficial,	as th	lese a	ure co	ore
OBJECTIVE	f Industry 4.0. ES:					
UndersApply 1	vill enable learners to: tand Industry 4.0 IOT and IIOT for Industry 4.0 tand CPS for Industry 4.0					
	INTRODUCTION				9	
Economy - D 4.0 Factory a Business Trar		ry 4.0 - Compa	arisor	n of I	ndus Sm	try
UNIT - II	IOT AND HOT FOR INDUSTRY 4.0				9	
Analytics. UNIT - III System, Tech	TECHNOLOGIES FOR INDUSTRY 4.0 nologies for enabling Industry 4.0–Cyber Physical Syster	ns - Robotic	Auto	omati	9 on a	nd
	Robots - Support System for Industry 4.0 - Mobile Computing	- Cyber Secur	ity.			
UNIT - IV	INFORMATION SHARING IN ORGANISATIONS				9	
of a firm - D	information, knowledge and collaboration in future organiza ata as a new resource for organizations - Harnessing and shari ting Basics -Cloud Computing and Industry 4.0					
UNIT - V	OPPORTUNITIES AND CHALLENGES				9	
•	IIoT case studies - Opportunities and Challenges - Fut e Industry 4.0 Era - Strategies for competing in an Industry 4.0				ills f	for
		TOTA	AL: 4	5 PE	CRIO	DS

г

Cours Outcon							criptio					Bloom	's Taxo Level	nomy
CO1	1	Use In	dustry	4.0 for	Indust	rial Ap	plication	ons				U	nderstan	d
CO2	2	Use Io	T and	IIoT fo	or Indus	stry 4.0						U	nderstan	d
CO3	3	Apply	smart	device	s Indus	trial Ap	oplicati	ons					Apply	
CO4	4	Apply	inform	nation,	knowle	edge fo	r organ	izations	5				Apply	
CO5	5	Know	the Op	portun	ities ar	nd Chal	lenges					U	nderstan	d
1.	Alaso	dair Gi	lchrist	, Indu	stry 4.	0: The	Indust	trial In	ternet	of Thing	gs			
REFE	Alaso	dair Gi		nterne	t of Th	ings: A	A Hano	ds-On	Appro	ach	gs			
1. REFER	Alaso	dair Gi C ES:		nterne	t of Th	ings: A	A Hano		Appro	ach	<u>gs</u>			
1. REFEI 1. COs/	Alaso	dair Gi C ES:		nterne	t of Th	ings: A	A Hano	ds-On	Appro	ach	255 PO11	PO12	PSO1	PSO2
1. REFE 1.	Alaso REN(Arsho	dair Gi C ES: eep Ba	hga, Ii	nterne]	t of Th Mappi	ings: 4	A Hand COs w	ds-On vith PC	Approa)s and	ach PSOs		PO12	PSO1 2	PSO 2
1. REFEI 1. COs/ POs	Alasc RENC Arsho PO1	dair Gi CES: eep Ba PO2	hga, Ii PO3	nterne] PO4	t of Th Mappi PO5	ings: 2 ing of PO6	A Hand COs w P07	ds-On vith PC	Approa)s and	ach PSOs	PO11	PO12 -		
1.REFEI1.COs/POsCO1	Alasc RENC Arsho PO1 2	dair Gi CES: eep Ba PO2 2	hga, I PO3 2	nterne I PO4 2	t of Th Mappi PO5	ings: 7 ing of PO6	A Hand COs w PO7 -	ds-On / vith PC PO8	Approa Ds and PO9 -	PSOs PO10 -	P011 -	-	2	2
1. REFEH 1. COs/ POs CO1 CO2	Alasc RENC Arsho PO1 2 2	dair Gi CES: eep Ba PO2 2 2	hga, I PO3 2 2	nterne PO4 2 2	t of Th Mappi PO5 1 1	ings: A ing of PO6 1 1	A Hand COs w PO7 - -	ds-On vith P(PO8 - -	Approa Ds and PO9 -	ach PSOs PO10	PO11 - -	-	2 2 2	2 2
1. REFER 1. COs/ POs CO1 CO2 CO3	Alasc RENC Arsho PO1 2 2 2	CES: eep Ba PO2 2 2 2	hga, I PO3 2 2 2	nterne	t of Th Mappi PO5 1 1 1	ings: 7	A Hand COs w P07 - -	ds-On vith P(PO8 - -	Approa Ds and PO9 -	ach PSOs PO10	PO11 - -	-	2 2 2 2	2 2 2

CCA	D 2 1		DADI			VDINI	C T A T	BORAT		0	Categor	y L	Т	Р	С
CC24	F21		KAFI	DPK	5101	IPIN	G LAI	OKAI	UKI		PCC	0	0	4	2
PRERE A backg (e.g., 3D	ground	l in basi												ing	<u>I</u>
OBJEC The Co	urse v	vill ena													
			acilities , and di					CAD), n ection.	nanufac	turing ((CAM),	rapid pi	rototyp	ing (of
			LABUS												
								luction t	o RP						
			ups & A					/orking	on STI	files					
		•	eative I					orking		incs					
5.	Asser	nbling	Creative	e Desig	ns in C	AD So	ftware								
					in Ca	talyst s	software	e (Selec	tion of	Orient	ation, S	Supports	s gene	ratio	on,
			generati tool pati		o FDM	RP mg	chine								
								ing the s	urfaces)					
			ng Crea					U							
											TC	DTAL:	<u>30 PE</u>	RIO	DS
COURS Upon co				urse, th	e stude	ents wi	ll be ab	le to:							
Cours Outcor						Desc	ription						Bloom onomy		vel
COI	L	Design	n the mo	odels in	CAD	softwa	re						Appl	у	
CO2		quality	of the	e parts	produc	ed.		M mach					Analy	ze	
CO3		proces	s planni	ing.	-			n plastie					Appl	у	
CO4	ł		ve surf eering a			tabri	cated 1	plastic o	compor	ents fo	or the		Analy	ze	
COS	5		n and			rking	models	for th	e con	ceptual	testing	1	Appl	у	
]	Mappi	ng of C	Os wit	h POs a	nd PS	Os		I			
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	P	SO2
CO1	3	3	3	2	1	1	-	-	-	-	-	-	2		2
CO2	3	3	3	3	1	1	-	-	-	-	-	-	2		2
CO3	3	3	3	3	1	1	-	-	-	-	-	-	2		2
CO4	3	3	3	2	1	1	-	-	-	-	-	-	2		2
			3	2	1	1	_	-	_		_	-	2		2
CO5	3	3	3	2	1	1	-	-	-	-	-		2		2

CC24	DJJ			SIMU	JLATI	ION A	ND Al	NALYS	SIS	0	Categor	y L	Т	Р	С
CC24	F 2 2				Ι	LABO	RATO	RY			PCC	0	0	4	2
PRERE A backg techniqu	ground	d in nun		•		nputatio	onal me	ethods is	import	ant sinc	e simula	ations o	ften us	e the	ese
OBJEC															
The Co						1 1.	1			1 1					
		exposu EXPER			oois ne	eaea to	anaiyz	e engine	eering p	broblem	8.				
					sing lin	k eleme	ents in T	Trusses.							
								erent sup		ondition	s.				
		s analys													
		s analys						0							
		nal stre nal stre						s.							
		ation and													
		al analy	•	· ·	,	- j									
								nple syst	ems.						
		ysis of r				er dyna	mic loa	ıds.							
11.	Analy	ysis of r	ion-line	ar syste	ems						т	OTAL:	20 DE	DIO	DC
												JIAL.		om's	
Cours Outcor						De	scriptio	0 n					Taxo		
COI	_		enginee nt Analy	•••		numeri	cally us	sing Cor	nputer	Aided F	inite		Unde	rstar	ıd
CO2								hanical						lysis	
<u>CO3</u>								mechan	ical con	nponent	s.			lysis	
CO4	•		ze the v					onents. I spectru	Im core	onto in	machan	ical	Ana	lysis	;
COS	5	compo		ioual, fi	ai 11101110	c, uans		i specifi		epts m	meenan	icai	Ana	lysis	3
				l	Марріі	ng of C	Os wit	h POs a	nd PS	Os		I			
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	P	SO2
CO1	3	2	3	2	-	-	-	-	-	-	-	2	-		3
CO2	3	3	3	3	-	-	-	-	-	-	-	2	-		3
CO3	3	3	3	2	-	-	-	-	-	-	-	2	-		3
CO4	3	3	3	3	-	-	-	-	-	-	-	2	3		-
CO5	3	3	3	3	-	-	-	-	-	-	-	2	-		3
Avg.	3	2.8	3	2.6	-	-	-	-	-	-	-	2	3		3

CC24E01	INTEGRATED PRODUCT DEVELOPMENT	Category	L	Τ	Р	C
CC24E01	INTEGRATED I RODUCT DEVELOT MENT	PEC	3	0	0	3
PREREQUISI						L
	Know the basic design principles and processes are crucial f luct development are integrated.	or understandi	ng ho	ow d	iffere	nt
OBJECTIVE	S:					
 Under analys Enham concej Apply DFM Expose design Apply new p UNIT - I Characteristics Challenges of 	 vill enable learners to: stand the principles of generic development process; product prises for new product design and development. the understanding of setting product specifications and generic product design and development. the principles of product architecture and the importance of in principles for new product development. the different Prototyping techniques, Design of Experiment product. ing the concepts of economics principles; project management roduct. s of Successful Product development –Duration and Cost Product Development - Product Development Processes ess - Process of Identifying Customer Needs. 	erate, select, so ndustrial design principles to de t practices in de	ereen, n prin eveloj evelo Dev	and ciple o a rc pmer elopr	s and bust of 9	_
UNIT - II	PRODUCT SPECIFICATIONS, CONCEPT GENERAT SELECTION AND TESTING	ION,		9		
•	et and Final product specifications – Activities of Concept C Concept Testing Methodologies	eneration - Co	oncep	t. Sci	reenii	ng
UNIT - III	PRODUCT ARCHITECTURE AND INDUSTRIAL DES	IGN			9	
Planning – Re	tecture – Implications and establishing the architecture – Del elated system level design issues - Need and impact of indu agement of the industrial design process - assessing the quality	strial design -	Indu	strial		
UNIT - IV	DESIGN FOR MANFACTURE, PROTOTYPING AND DESIGN	ROBUST		9		
function and a	on - Estimation of Manufacturing cost- Reducing the compo- ssembly costs – Impact of DFM decision on other factors - Prototyping technologies - Planning for prototypes - Robust de	Prototype basi	cs - I	Princi	ples	of
UNIT - V	PRODUCT DEVELOPMENTECONOMICS AND MAN PROJECTS	AGING			9	
	alysis – Elements of Economic Analysis - Understanding as ng - Accelerating the project - Project execution – Postmortem			ks- B	aseli	ne
		TOTA	AL: 4	5 PE	RIO	DS

COURSE OUTCOMES:

Upon completion of the course, the students will be able to:

Course Outcomes	Description	Bloom's Taxonomy Level
C01	Apply the principles of generic development process; product planning; customer need analysis for new product design and development.	Apply
CO2	Set product specifications and generate, select, screen, test concepts for new product design and development	Understand
CO3	Apply the principles of product architecture, industrial design and design for manufacturing principles in new product development	Apply
CO4	Apply the adopt Prototyping techniques and Design of Experiment principles to develop a robust design and document a new product for patent	Apply
CO5	Apply the Elements of Economic analysis and design a product	Apply

TEXT BOOKS:

- 1. Karl T.Ulrich, Steven D. Eppinger, Anita Goyal, "Product Design and Development", McGraw –Hill Education (India) Pvt. Ltd, 4th Edition, 2012.
- **2.** Kenneth Crow, "Concurrent Engineering/Integrated Product Development". DRM Associates, 6/3,ViaOlivera, Palos Verdes, CA 90274(310) 377-569,Workshop Book

REFERENCES:

- 1. Kevin N Otto, Kristin L Wood, "Product Design Techniques in Reverse Engineering and New Product Development", Pearson Education, Inc, 2016
- 2. Stephen Rosenthal, "Effective Product Design and Development", Business One Orwi Homewood, 1992
- Stuart Pugh, "Total Design Integrated Methods for successful Product Engineering", Addison Wesley Publishing, Neyourk, NY, 1991

	Mapping of COs with POs and PSOs													
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	1	1	-	-	-	-	-	-	2	3
CO2	3	3	3	2	1	1	-	-	-	-	-	-	2	3
CO3	3	3	3	2	1	1	-	-	-	-	-	-	2	3
CO4	3	3	3	2	1	1	-	-	-	-	-	-	2	3
CO5	3	3	3	2	1	1	-	-	-	-	-	-	2	3
Avg.	3	3	3	2	1	1	-	-	-	-	-	-	2	3

		Category	L	T P		С
CC24E02	COMPOSITE MATERIALS AND MECHANICS	PEC	3	0	0	3
	TE: standing of the properties and behaviors of different mate ceramics, is essential for grasping the concepts of compo	rials, includir	g me	_	_	
OBJECTIVE						
	vill enable learners to:					
-	of different composite materials and finding its mechanic	-				
	ation of FRP and other composites by different manufact					
	analysis of fiber reinforced Laminates for different on orientations of the fiber.	combinations	of p	olies	with	1
	ation of stresses in the lamina of the laminate using diffe					
	ation of residual stresses in different types of laminates u	nder thermo-	nech	anic	al	
	sing the Classical Laminate Theory.					
UNIT - I	INTRODUCTION TO COMPOSITE MATERIALS				9	
	atrix materials-polymers-metals-ceramics - Reinforce					
	ers, metal filaments-ceramic fibers-fiber fabrication-na					
	nd drawbacks of composites over monolithic materials					
	of composites, Particulate-Reinforced composite Materi					
-	iber-reinforced composites Rule of mixtures-Charact	eristics of f	iber-	Rein	Iorce	30
UNIT - II	Ianufacturing fiber and composites MANUFACTURING OF COMPOSITES				9	
	g of Polymer Matrix Composites (PMCs)-handlay-up	annar tach	niana			nt
	trusion, Resin Transfer Moulding (RTM)-, bag mou					
-	ould Composites (SMC) - Manufacturing of Metal M					-
	quid state, vapour state processing, Manufacturing of	1			,	
	pressing- reaction bonding process-infiltration technique,					20
	LAMINA CONSTITUTIVE EQUATIONS	anoutomaan	/11 111	lerra	9	
	stitutive Equations: Lamina Assumptions–Macroscopi	c View poir	nt. C	lene	-	ed
	. Reduction to Homogeneous Orthotropic Lamina – Iso					
	ix (Qij), Definition of stress and Moment Resultants. S	-			-	
Basic Assum	otions of Laminated anisotropic plates. Laminate Consti	tutive Equation	ons -	- Co	upliı	ng
Interactions,	Balanced Laminates, Symmetric Laminates, Angl	e PlyLamin	ates,	Cr	ossP	ly
Laminates. L	aminate Structural Moduli. Evaluation of Lamina Prop	erties from I	ami	nate	Test	s.
Quasi-Isotrop	ic Laminates. Determination of Lamina stresses within L	aminates				
UNIT - IV	LAMINA STRENGTH ANALYSIS AND ANALYSI LAMINATED FLAT PLATES	S OF			9	
Introduction-	Maximum Stress and Strain Criteria. Von-Misses Y	lield criterion	n fo	r Iso	otrop	ic
	neralized Hill's Criterion for Anisotropic materials. Tsa					
	Tensor Polynomial(Tsai-Wu) Failure criterion. Pred					
-	Equations of Motion. Energy Formulations. Static B	ending Anal	ysis.	Bu	cklir	ıg
	e Vibrations– Natural Frequencies				~	
	THERMO-STRUCURAL ANALYSIS			C	9	1
	tresses / Residual stresses in FRP laminated compos					
-	C.T.E.) - Modification of Hooke's Law. Modification					
-	rthotropic Lamina C.T.E's -Stress and Moment Res			-	UI tl	ıe
	ing fabrication-Calculations for thermo-mechanical stress				o:	th
Case studies:	Implementation of CLT for evaluating residual stresses i	ii uie compon	ents	mad	e W1	uı

different isotropic layers such as electronic packages etc

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon comp	letion of the course, the students will be able to:	
Course Outcomes	Description	Bloom's Taxonomy Level
CO1	Calculate for mechanical strength of the composite material	Apply
CO2	Fabricate the FRP and other composites by different manufacturing methods	Understand
CO3	Analyze fiber reinforced Laminates for different combinations of plies with different orientations of the fiber	Analyze
CO4	Apply the stresses in the lamina of the laminate using different failure theories	Apply
CO5	Analyze thermo-mechanical behavior and evaluate residual stresses in different types of laminates using the Classical Laminate Theory	Analyze

TEXT BOOKS:

- 1. Agarwal BD and Broutman LJ, "Analysis and Performance of Fiber Composites", John Wiley and Sons, New York, 1990.
- 2. Gibson RF, Principles of Composite Material Mechanics, CRC press, 4th Edition, 2015

REFERENCES:

- 1. Hyer MW and Scott R White, "Stress Analysis of Fiber Reinforced Composite Materials", McGraw-Hill, 1998
- 2. Issac M Daniel and OriI shai, "Engineering Mechanics of Composite Materials", OxfordUniversityPress-2006,FirstIndian Edition-2007
- 3. Madhujit Mukhopadhyay, "Mechanics of Composite Materials and Structures", University Press(India)Pvt.Ltd., Hyderabad, 2004(Reprinted 2008)
- 4. Mallick PK, Fiber Reinforced Composites: Materials, Manufacturing and Design, CRC Press, 3rd Edition,2007.

	Mapping of COs with POs and PSOs													
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1	1	2	2	-	-	-	-	-	-	2	3
CO2	3	1	1	1	2	2	-	-	-	-	-	-	2	3
CO3	3	1	1	1	2	2	-	-	-	-	-	-	2	3
CO4	3	1	1	1	2	2	-	-	-	-	-	-	2	3
CO5	3	1	1	1	2	2	-	-	-	-	-	-	2	3
Avg.	3	1	1	1	2	2	-	-	-	-	-	-	2	3

	COMPUTER CONTROL IN PROCESS	Category	L	Т	P	С
CC24E03	PLANNING	PEC	3	0	0	3
PREREQUISIT	Е:		-	Ť	-	-
-	various manufacturing techniques and processes is essential, d optimize these processes.	as computer c	ontro	l sys	tems	are
OBJECTIVES	<u>^</u>					
The Course wi	ll enable learners to:					
Study a	bout process planning in manufacturing cycle and Concurrent	Engineering				
Unders	tand the concept and principle behind part design.					
	owledge on process engineering and process planning					
Study t	he application of Computer Aided Process Planning tool in the	present manuf	actur	ing so	cenar	io
 provide 	e the student with an understanding of the importance of proces	s planning role	in			
manufa	cturing					
UNIT - I	INTRODUCTION				9	
	f Process Planning in the Manufacturing cycle-Process	PlanningandPro	oduct	ionP	lanni	ng–
ProcessPlanni	ngandConcurrentEngineering,CAPP,GroupTechnology					
				1		
UNIT - II	PART DESIGN REPRESENTATION				9	
	ng - Dimensioning - Conventional tolerance - Geometric tolera					
^	s - topology- Geometric transformation- Perspective transform			e		
	nodelling for process planning- GT coding - The optiz system -	The MICLASS	8			
System. UNIT - III	PROCESS ENGINEERING AND PROCESS PLANNING				9	
	based planning - Decision table and decision trees - Proce		analy	cic -	-	2000
	riant process planning - Generative approach - Forward and I					
Al	finance process pranning Generative approach i forward and i	suckward plain	<u>6</u> ,	mpu	. 1011	mar,
UNIT - IV	COMPUTER AIDED PROCESS PLANNING SYSTEMS	, ,			9	
	n of a Process Planning - Implementation considerations -ma		vstem	com	pone	nts,
	blume, No. of production families - CAM-I, CAPP, MIPLAN,					
CPPP.	*					
UNIT - V	AN INTERGRADED PROCESS PLANNING SYSTEMS				9	
	ated process planning systems - An Overview - Modulus struc	cture - Data Str	uctur	e, op	eratio)n –
Report Genera	ation, Expert process planning					
		тот	T 4	<u>- DE</u>		
		TOTA	AL: 4	5 PE	RIO	DS

Upon completion of the course, the students will be able to:

Course Outcomes	Description	Bloom's Taxonomy Level
CO1	To understand the need of process planning in manufacturing	Understand
CO2	To know handle the computer aided process planning tool	Understand
CO3	ToapplytheknowledgeofExpertsystems,Grouptechnologyandpartrepres entationfor various applications	Apply
CO4	To interpret the use of computer aided process panning for CAD/CAM Systems	Understand
CO5	To analyse the computer aided planning systems for various industrial applications	Analyze

TEXT BOOKS:

- 1. Chang, T.C., "An Expert Process Planning System ", Prentice Hall, 1985.
- 2. Gideon Halevi and Roland D.Weill, "Principles of Process Planning", A logical approach, Chapman & Hall, 1995.

REFERENCES:

- 1. Nanua Singh, "Systems Approach to Computer Integrated Design and Manufacturing", John Wiley & Sons, 1996.
- 2. Rao, "Computer Aided Manufacturing", Tata Mc Graw Hill Publishing Co., 2000.
- 3. Tien-Chien Chang, Richard A. Wysk, "An Introduction to automated process planning systems", Prentice Hall,1985.

					Mapp	ing of (COs wi	ith POs	s and P	SOs				
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	1	1	1	-	-	-	-	-	-	1	3
CO2	3	3	3	1	1	1	-	-	-	-	-	-	1	3
CO3	3	3	3	1	1	1	-	-	-	-	-	-	1	3
CO4	3	3	3	1	1	1	-	-	-	-	-	-	1	3
CO5	3	3	3	1	1	1	-	-	-	-	-	-	1	3
Avg.	3	3	3	1	1	1	-	-	-	-	-	-	1	3

		Category	L	Т	Р	С
CC24E04	ADVANCED FINITE ELEMENT ANALYSIS	PEC	3	0	0	3
PREREQUISIT		1 1 1.1		1	 	1
Advanced ma used in advan	thematical skills are necessary for understanding the con	nplex algorith	ims a	and r	node	ls
	vill enable learners:					
• To stu element	dy concept of Finite Element Analysis to solve problem ts	ms involving	plat	e and	d she	ell
	rn concept of Finite Element Analysis to solve problem al non linearity	ms involving	geo	metr	ic ar	nd
• To stu	dy solution techniques to solve dynamic problems					
proble		l mechanics a	nd h	eat ti	ransf	er
	dy error norms, convergence rates and refinement.			1		
UNIT - I	BENDING OF PLATES AND SHELLS	· · · · · · · · · · · · · · · · · · ·	F	14	<u>9</u>	- 6
Plate and She	asticity Equations – Bending of Plates and Shells – Fin Il Elements - Conforming and Non-Conforming Eleme generated shell elements-Application and Examples					
UNIT - II	NON-LINEAR PROBLEMS				9	
Introduction -	Iterative Techniques – Material non-linearity – Elasto F	Plasticity – Pl	astic	ity –	Vise	20
	Geometric Non linearity – large displacement Formu Metal Forming Process and Contact Problems	lation –Solut	tion	proc	edur	e-
UNIT - III	DYNAMIC PROBLEM				9	
solution-Sub	lation – Free, Transient and Forced Response – Sc space Iterative Technique – Response analysis - H Explicit & Implict Methods-Lanchzos, Reduced met	oubolt, Wils	on,	New	marl	K—
UNIT - IV	FLUID MECHANICS AND HEAT TRANSFER				9	
	quations of Fluid Mechanics – Solid structure ir	nteraction -	Invi	scid	and	ł
Incompressibl	e Flow – Potential Formulations – Slow Non-Newtonian ier Stokes Equation–Steady and Transient Solution.					r
UNIT - V	ERROR ESTIMATES AND ADAPTIVE REFINEM	IENT			9	
	nd Convergence rates-h-refinement with adaptivity-Ada	ptive refinem	nent	1		
Error norms a						
Error norms a		TOTAI	. 15	DE		n¢

Upon completion of the course, the students will be able to:

epon com	section of the course, the students will be able to:	
Course Outcomes	Description	Bloom's Taxonomy Level
CO1	Apply concept of Finite Element Analysis to solve problems involving plate and shell elements	Apply
CO2	Apply concept of Finite Element Analysis to solve problems involving geometric and material non linearity	Apply
CO3	Formulate solution techniques to solve dynamic problems	Understand
CO4	Apply concepts of Finite Element Analysis to solve fluid mechanics and heat transfer problems	Apply
CO5	Investigate error norms, convergence rates and refinement	Understand

TEXT BOOKS:

- 1. Bathe K.J., "Finite Element Procedures in Engineering Analysis", Prentice Hall, 1990
- 2. Logan. D. L., "A first course in Finite Element Method", Cengage Learning, 2012

REFERENCES:

- 1. Reddy, J.N. "An Introduction to Non linear Finite Element Analysis", 2nd Edition, Oxford, 2015
- 2. Robert D.Cook, David S.Malkus, Michael E.Plesha, Robert J.Witt, "Concepts and Applications of Finite Element Analysis", 4th Edition, Wiley Student Edition, 2004.
- 3. Tirupathi R. Chandrupatla and Ashok D.Belegundu,"Introduction to Finite Elements in
- 4. Engineering", International Edition, Pearson Education Limited, 2014.
- 5. Zienkiewicz, O. C., Taylor, R. L. and Zhu. J. Z., "The Finite Element Method: Its Basis and
- 6. Fundamentals",7th Edition, Butterworth-Heinemann,2013

					F F	8								
COs/ POs	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	1	1	-	-	-	-	-	-	2	3
CO2	3	3	3	3	1	1	-	-	-	-	-	-	2	3
CO3	3	3	3	3	1	1	-	-	-	-	-	-	2	3
CO4	3	3	3	3	1	1	-	-	-	-	-	-	2	3
CO5	3	3	3	3	1	1	-	-	-	-	-	-	2	3
Avg.	3	3	3	3	1	1	-	-	-	-	-	-	2	3

37

PREREQUISITE: Understanding ba applied to improv OBJECTIVES: The Course will • To unders • To unders • To provia for desigr • To implet application • To demor application UNIT - I UI	enable learners: etand the basic concepts of unconstrained optimization tech stand the basic concepts of unconstrained optimization techni de the mathematical foundation of artificial neural net problems. nent optimization approaches and to select appropriates son. astrate selected optimization algorithms commonly used in	nniques. ques. works and swar olution for des	rm in sign			3
applied to improv OBJECTIVES: The Course will • To unders • To unders • To provid for design • To implen application • To demon application UNIT - I UI	sic principles of design and design processes is essential, a e and refine designs. enable learners: stand the basic concepts of unconstrained optimization tech stand the basic concepts of constrained optimization techni de the mathematical foundation of artificial neural net a problems. ment optimization approaches and to select appropriates s on. astrate selected optimization algorithms commonly used in ns.	nniques. ques. works and swar olution for des	rm in sign			
Applied to improv OBJECTIVES: The Course will • To unders • To unders • To provid for design • To implen application • To demon application UNIT - I UI	e and refine designs. enable learners: stand the basic concepts of unconstrained optimization techni stand the basic concepts of constrained optimization techni de the mathematical foundation of artificial neural neural problems. nent optimization approaches and to select appropriates son. astrate selected optimization algorithms commonly used in ns.	nniques. ques. works and swar olution for des	rm in sign			
DBJECTIVES: The Course will (To underse To underse To provide for design To implement application UNIT - I UNIT	enable learners: stand the basic concepts of unconstrained optimization tech stand the basic concepts of constrained optimization techni de the mathematical foundation of artificial neural net problems. ment optimization approaches and to select appropriates s on. astrate selected optimization algorithms commonly used in ns.	ques. works and swar olution for des	sign	tellig	ence	
 To unders To unders To provid for design To implet application To demon application UNIT - I 	stand the basic concepts of unconstrained optimization tech stand the basic concepts of constrained optimization techni de the mathematical foundation of artificial neural net problems. nent optimization approaches and to select appropriates s on. astrate selected optimization algorithms commonly used in ns.	ques. works and swar olution for des	sign	tellig	ence	
	ptimum design - General principles of optimization – ngle variable and multivariable optimization, Techniques		nulat		9 & the	
Golden section, R	andom, pattern and gradient search methods – Interpolatio				9	
	h equality and inequality constraints-Direct methods-I	adinast is it	1.	<u> </u>	1	4-
UNIT - III A	RTIFICIAL NEURAL NETWORKS AND SWARM IN	TELLIGENO	CE		9	
Introduction_Acti	vation functions, types of activation functions, neural net	work architect	ires	Sinol	e lav	er
feed forward netw	vork, multi layer feed forward network, Neural network appendent of the second	plications.		-		•-
UNIT - IV A	DVANCED OPTIMIZATION TECHNIQUES				9	
	ization–dynamic programming, stochastic programming s and Simulated Annealing technique	g Multi object	ive (optim	izati	on
UNIT - V ST	CATIC AND DYNAMIC APPLICATIONS				9	
members for mini Dynamic Appli	tions – Design of simple truss members – Design of mum cost, weight – Design of shafts and torsionally loade cations – Optimum design of single, two o s.ApplicationinMechanisms–Optimumdesignofsimplelinka	d members – I legree of f	Design Freedo	n of s	pring	gs.
		TOTA	AL: 4	5 PE	RIO	DS

Upon completion of the course, the students will be able to:

Course Outcomes	Description	Bloom's Taxonomy Level
CO1	Formulate unconstrained optimization techniques in engineering design application	Understand
CO2	Formulate constrained optimization techniques for various applications	Apply
CO3	Implement neural network technique to real world design problems	Apply
CO4	Apply genetic algorithms to combinatorial optimization problems	Apply
CO5	Apply solutions by various optimization approaches for a design problem	Apply

TEXT BOOKS:

- 1. Goldberg, David. E, "Genetic Algorithms in Search, Optimization and Machine Learning", Pearson, 2009.
- **2.** Jang, J. S.R, Sun,C. T and Mizutani E. "Neuro-Fuzzy and Soft Computing", PearsonEducation.2015

REFERENCES:

- 1. Johnson Ray, C., "Optimumdesignofmechanicalelements", Wiley, 2nd Edition 1980
- 2. Kalyanmoy Deb, "Optimization for Engineering Design: Algorithms and Examples", PHIL earningPrivateLimited, 2nd Edition, 2012
- 3. Rao Singiresu S., "Engineering Optimization Theory and Practice", New Age International Limited, New Delhi, 3rd Edition, 2013
- **4.** Rajasekaran S and Vijayalakshmi Pai, G.A, "Neural Networks, Fuzzy Logic andGeneticAlgorithms",PHI,2011

							005 1		,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1000				
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	3	1	1	-	-	-	-	-	-	2	3
CO2	3	2	3	3	1	1	-	-	-	-	-	-	2	3
CO3	3	2	3	3	1	1	-	-	-	-	-	-	2	3
CO4	3	2	3	3	1	1	-	-	-	-	-	-	2	3
CO5	3	2	3	3	1	1	-	-	-	-	-	-	2	3
Avg.	3	2	3	3	1	1	-	-	-	-	-	-	2	3

39

CC24E06	ADVANCED MACHINE TOOL DESIGN	Category	L	T	P	C
CC24E00	ADVANCED MACHINE TOOL DESIGN	PEC	3	0	0	3
	TE: ding material behavior under different loading conditions is in ant machine tools.	mportant for de	signir	ng ro	bust	
OBJECTIVE	S:					
SelectinDesigniDesigniDesigni	Fill enable learners to: Ig the different machine tool mechanisms. Ing the Multi speed Gear Box and feed drives. Ing the machine tool structures. Ing the guide ways and power screws. Ing the spindles and bearings.					
UNIT - I	INTRODUCTION TO MACHINE TOOL DESIGN				9	
	to Machine Tool Drives and Mechanisms, Auxiliary Machine Tools, Motion Transmission	Motions in	Macł	nine	Тоо	ls,
UNIT - II	REGULATION OF SPEEDS AND FEEDS				9	
·	and Feed Regulation, Stepped Regulation of Speeds, Multiple Design Considerations, Design of Speed Gear Boxes, Feed D	·	•			
UNIT - III	DESIGN OF MACHINE TOOL STRUCTURES				9	
Rigidity, Mate Housings, Col	Machine Tool Structures and their Requirements, Des erials for Machine Tool Structures, Machine Tool Const umns and Tables, Saddles and Carriage				eds a	
UNIT - IV	DESIGN OF GUIDEWAYS AND POWER SCREWS				9	
	Types of Guideways, Design of Guideways, Design of on Guideways, Combination Guideways, Design of Power Sc		de w	vays,	Desi	gn
UNIT - V	DESIGN OF SPINDLES AND SPINDLE SUPPORT				9	
Accuracy, De	Spindles and Requirements, Effect of Machine Too esign of Spindles, Antifriction Bearings. Dynamics of I , Static and Dynamic Stiffness	-			chinin e To	•
		TOTA	AL: 4	5 PE	CRIO	DS

Upon completion of the course, the students will be able to:

Course Outcomes	Description	Bloom's Taxonomy Level
CO1	Select the different machine tool mechanisms	Understand
CO2	Design the Multi speed Gear Box and feed drives	Apply
CO3	Design the machine tool structures	Apply
CO4	Design the guideways and power screws	Apply
CO5	Design the spindles and bearings	Apply

TEXT BOOKS:

1. N.K. Mehta, Machine Tool Design and Numerical Control, TMH, New Delhi, 3rd edition 2012

2. G.C. Sen and A. Bhattacharya, Principles of Machine Tools, New Central Book Agency, 2015

REFERENCES:

- 1. K Pal, S. K. Basu, "Design of Machine Tools", 6th Edition. Oxford IBH, 2014
- 2. N. S. Acherkhan, "Machine Tool Design", Volume 2 University Press of the Pacific, 2000
- 3. F. Koenigsberger, Design Principles of Metal-Cutting Machine Tools, Pergamon Press, 1964
- 4. F. Koenigsberger, Machine Tool Structures, Pergamon Press, 1970.

					Map	ping of	COs w	vith PO	s and l	PSOs				
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	1	1	1	-	-	-	-	-	-	2	2
CO2	3	3	3	1	1	1	-	-	-	-	-	-	2	2
CO3	3	3	3	1	1	1	-	-	-	-	-	-	2	2
CO4	3	3	3	1	1	1	-	-	-	-	-	-	2	2
CO5	3	3	3	1	1	1	-	-	-	-	-	-	2	2
Avg.	3	3	3	1	1	1	-	-	-	-	-	-	2	2

REVERSE ENGINEERING rengineering design principles and processes is important or improving existing designs. able learners to: the fundamental concepts and principles of reverse engineent. the concept and principles material characteristics, part design and development. the concept and principles of material identification in the concept and principles of data processing, part part of the concept and principles of data processing, part part of the various legal aspect and applications of reverse engineering. TRODUCTION TO REVERSE ENGINEERING & Concept The Generic Process – Phases – Computer Aided Revestruction – Dimensional Measurement – Prototyping ATERIAL CHARACTERISTICS, PART DURABILI FE LIMITATION	eering in produ lurability and l on and proce erformance an ment. engineering i GEOMETRIC verse Engineeri	ct des ife lir ess ve ad sys	sign a mitati erific tem duct	and ion in ation desig 9	n gn
able learners to: he fundamental concepts and principles of reverse engine ht. he concept and principles material characteristics, part d ineering of product design and development. the concept and principles of material identification ngineering of product design and development. he concept and principles of data processing, part perty in reverse engineering of product design and development. he various legal aspect and applications of reverse becoment TRODUCTION TO REVERSE ENGINEERING & C PRM - The Generic Process – Phases – Computer Aided Reverse struction – Dimensional Measurement – Prototyping	eering in produ lurability and l on and proce erformance an ment. engineering i GEOMETRIC verse Engineeri	ct des ife lir ess ve ad sys	sign a mitati erific tem duct	and ion in ation desig 9	n gn
able learners to: ne fundamental concepts and principles of reverse engine nt. ne concept and principles material characteristics, part d ineering of product design and development. the concept and principles of material identification ngineering of product design and development. he concept and principles of data processing, part part ty in reverse engineering of product design and development. the various legal aspect and applications of reverse oment TRODUCTION TO REVERSE ENGINEERING & O PRM - The Generic Process – Phases – Computer Aided Reverse struction – Dimensional Measurement – Prototyping	lurability and l on and proce erformance an ment. engineering i GEOMETRIC verse Engineeri	ife lir ess ve ad sys n pro	nitati erific tem duct	ion in ation desig	gn
 he fundamental concepts and principles of reverse engine int. he concept and principles material characteristics, part difference in the concept and principles of material identification in the concept and principles of data processing, part part of the concept and principles of data processing, part part of the various legal aspect and applications of reverse originet FRODUCTION TO REVERSE ENGINEERING & Concept The Generic Process – Phases – Computer Aided Reverse struction – Dimensional Measurement – Prototyping 	lurability and l on and proce erformance an ment. engineering i GEOMETRIC verse Engineeri	ife lir ess ve ad sys n pro	nitati erific tem duct	ion in ation desig	gn
nt. ne concept and principles material characteristics, part d ineering of product design and development. the concept and principles of material identification ingineering of product design and development. the concept and principles of data processing, part perty ty in reverse engineering of product design and developed the various legal aspect and applications of reverse oment TRODUCTION TO REVERSE ENGINEERING & C PRM - The Generic Process – Phases – Computer Aided Reverse struction – Dimensional Measurement – Prototyping ATERIAL CHARACTERISTICS, PART DURABILI	lurability and l on and proce erformance an ment. engineering i GEOMETRIC verse Engineeri	ife lir ess ve ad sys n pro	nitati erific tem duct	ion in ation desig	gn
ineering of product design and development. the concept and principles of material identification gineering of product design and development. the concept and principles of data processing, part part ty in reverse engineering of product design and develop the various legal aspect and applications of reverse oment TRODUCTION TO REVERSE ENGINEERING & CORM - The Generic Process – Phases – Computer Aided Reverse struction – Dimensional Measurement – Prototyping ATERIAL CHARACTERISTICS, PART DURABILI	on and proce erformance an ment. engineering i GEOMETRIC verse Engineeri	ess ve ad sys n pro	erific tem duct	ation desig 9	gn
ngineering of product design and development. he concept and principles of data processing, part per ty in reverse engineering of product design and development the various legal aspect and applications of reverse oment TRODUCTION TO REVERSE ENGINEERING & O PRM - The Generic Process – Phases – Computer Aided Reverse struction – Dimensional Measurement – Prototyping ATERIAL CHARACTERISTICS, PART DURABILI	erformance an ment. engineering i GEOMETRIC	nd sys	tem duct	desig 9	gn
ty in reverse engineering of product design and develop the various legal aspect and applications of reverse oment FRODUCTION TO REVERSE ENGINEERING & O RM - The Generic Process – Phases – Computer Aided Rev struction – Dimensional Measurement – Prototyping ATERIAL CHARACTERISTICS, PART DURABILI	ment. engineering i GEOMETRIC verse Engineeri	n pro	duct	9	
TRODUCTION TO REVERSE ENGINEERING & C PRM - The Generic Process – Phases – Computer Aided Rev struction – Dimensional Measurement – Prototyping ATERIAL CHARACTERISTICS, PART DURABILI	GEOMETRIC			9	
PRM - The Generic Process – Phases – Computer Aided Rev struction – Dimensional Measurement – Prototyping ATERIAL CHARACTERISTICS, PART DURABILI	verse Engineeri		Surfa	-	nd
struction – Dimensional Measurement – Prototyping		ng -	Surfa	ace a	nd
	TY AND				uu
				9	
nivalency – Phase Formation and Identification – Mecha Fatigue – Creep and Stress Rupture – Environmentally In		– Hai	rdnes	s –Pa	art
ATERIAL IDENTIFICATION AND PROCESS de V	ERIFICATIO	N		9	
	sis - Manufactu	ıring			
	SYSTEM			9	
– Data Analysis – Reliability and the Theory of Interfer cceptance – Data Report – Performance Criteria –					
	LICATIONS	OF		9	
	TOTA	AL: 4	5 PE	RIO	DS
	on - Composition Determination - Microstructure Analy TA PROCESSING, PART PERFORMANCE AND S DMPATIBILITY – Data Analysis – Reliability and the Theory of Interfer acceptance – Data Report – Performance Criteria – n Compatibility CCEPTANCE, LEGALITY AND INDUSTRIAL APP Se Engineering – Patent – Copyrights –Trade Secret – Th	on - Composition Determination - Microstructure Analysis - Manufactu TA PROCESSING, PART PERFORMANCE AND SYSTEM DMPATIBILITY – Data Analysis – Reliability and the Theory of Interference – Weibul acceptance – Data Report – Performance Criteria – Methodology n Compatibility CCEPTANCE, LEGALITY AND INDUSTRIAL APPLICATIONS Se Engineering – Patent – Copyrights –Trade Secret – Third-Party Mate neering in the Automotive Industry; Aerospace Industry; Medical Devic	on - Composition Determination - Microstructure Analysis - Manufacturing TA PROCESSING, PART PERFORMANCE AND SYSTEM DMPATIBILITY – Data Analysis – Reliability and the Theory of Interference – Weibull Ana acceptance – Data Report – Performance Criteria – Methodology of H n Compatibility CCEPTANCE, LEGALITY AND INDUSTRIAL APPLICATIONS OF See Engineering – Patent – Copyrights –Trade Secret – Third-Party Materials neering in the Automotive Industry; Aerospace Industry; Medical Device	on - Composition Determination - Microstructure Analysis - Manufacturing n ATA PROCESSING, PART PERFORMANCE AND SYSTEM OMPATIBILITY – Data Analysis – Reliability and the Theory of Interference – Weibull Analysis acceptance – Data Report – Performance Criteria – Methodology of Performance n Compatibility CCEPTANCE, LEGALITY AND INDUSTRIAL APPLICATIONS OF See Engineering – Patent – Copyrights –Trade Secret – Third-Party Materials neering in the Automotive Industry; Aerospace Industry; Medical Device	on - Composition Determination - Microstructure Analysis - Manufacturing n ATA PROCESSING, PART PERFORMANCE AND SYSTEM 9 MPATIBILITY 9 - Data Analysis - Reliability and the Theory of Interference - Weibull Analysis - Data cceptance - Data Report - Performance Criteria - Methodology of Performan n Compatibility CCEPTANCE, LEGALITY AND INDUSTRIAL APPLICATIONS OF 9 se Engineering - Patent - Copyrights - Trade Secret - Third-Party Materials

Upon completion of the course, the students will be able to:

Course Outcomes	Description	Bloom's Taxonomy Level
CO1	Apply the fundamental concepts and principles of reverse engineering in product design and development.	Apply
CO2	Apply the concept and principles material characteristics, part durability and life limitation in reverse engineering of product design and development	Apply
CO3	Apply the concept and principles of material identification and process verification in reverse engineering of product design and development	Apply
CO4	Apply the concept and principles of data processing, part performance and system compatibility in reverse engineering of product design and development	Apply
CO5	Analyze the various legal aspect and applications of reverse engineering in product design and development	Analyze

TEXT BOOKS:

- 1. Co-ordinate Measurement and reverse engineering, Donald R. Honsa, ISBN 1555897, American Gear Manufacturers Association
- 2. Data Reverse Engineering, Aiken, Peter, McGraw-Hill, 1996

REFERENCES:

- 1. Design Recovery for Maintenance and Reuse, T J Biggerstaff, IEEE Corpn. July 1991
- 2. Reverse Engineering, Katheryn, A. Ingle, McGraw-Hill, 1994
- 3. Reverse Engineering, Linda Wills, Kluiver Academic Publishers, 1996
- 4. White paper on RE, S. Rugaban, Technical Report, Georgia Instt. of Technology, 1994

43

COs/ POs	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1	1	1	-	-	-	-	-	-	2	2
CO2	3	3	2	1	1	1	-	-	-	-	-	-	2	2
CO3	3	3	2	1	1	1	-	-	-	-	-	-	2	2
CO4	3	3	2	1	1	1	-	-	-	-	-	-	2	2
CO5	3	3	2	1	1	1	-	-	-	-	-	-	2	2
Avg.	3	3	2	1	1	1	-	-	-	-	-	-	2	2

CCMEAO	INDUSTRIAL SAFETY MANAGEMENT	Category	L	Т	Р	0	
CC24E08	INDUSTRIAL SAFETY MANAGEMENT	PEC	3	0	0	3	
	TE: canding of engineering safety principles and practices is c strial safety management.	crucial for gra	sping	g adv	ance	ed	
OBJECTIVE							
	will enable learners to:						
	ve an understanding of principles of safety management.	_					
	e the students to learn about various functions and activi		lepar	tmei	nt.		
	knowledge about sources of information for safety prom	•	-				
	knowledge on accident prevention techniques and its equ		U				
	iarize students with evaluation of safety performance.						
UNIT - I	SAFETY MANAGEMENT				9		
Evaluation of	f modern safety concepts- Safety management function	s- safety orga	niza	tion,	safe	ty	
	afety committee, safety audit-performance measurement in safety-safety and productivity	nts and motiv	atior	n-em	ploy	ee	
participation	in safety-safety and productivity						
UNIT - II Hot metal C electroplating Machineshop-	OPERATIONAL SAFETY Deration-Boiler, pressure vessels- heat treatment sh g-hot bending pipes - Safety in welding and cutting. Col -Coldbendingandchamferingofpipes-metalcutting-shotbl and other machines	d-metal Opera	ation	- Sa	fety	in	
UNIT - II Hot metal C electroplating Machineshop- power press a UNIT - III	OPERATIONAL SAFETY Operation-Boiler, pressure vessels- heat treatment sh g-hot bending pipes - Safety in welding and cutting. Col- -Coldbendingandchamferingofpipes-metalcutting-shotbl and other machines SAFETY MEASURES	d-metal Opera asting, grind	ation ling,	- Sa pa	ratio fety intin 9	in g-	
UNIT - II Hot metal C electroplating Machineshop- power press a UNIT - III Layout design chemicals, In- sewage dispo Industries- pla	OPERATIONAL SAFETY Deration-Boiler, pressure vessels- heat treatment short bending pipes - Safety in welding and cutting. Col-Coldbendingandchamferingofpipes-metalcutting-shotbland other machines	d-metal Opera asting, grind agement of t and urban sa	ation ling, oxic fety eme	- Sa pa gaso - Sat	ratio fety intin 9 es ar fety cies	in g- nd of in	
UNIT - II Hot metal C electroplating Machineshop- power press a UNIT - III Layout design chemicals, In- sewage dispo Industries- pla hazards	OPERATIONAL SAFETY Operation-Boiler, pressure vessels- heat treatment shep-hot bending pipes - Safety in welding and cutting. Col-Coldbendingandchamferingofpipes-metalcutting-shotblend other machines SAFETY MEASURES gn and material handling – Use of electricity – Manadustrial fires and prevention - Road safety - highway osal and cleaning - Control of environmental pollution	d-metal Opera asting, grind agement of t and urban sa	ation ling, oxic fety eme	- Sa pa gaso - Sat	ratio fety intin 9 es ar fety cies	in g- nd of in	
UNIT - II Hot metal C electroplating Machineshop- power press a UNIT - III Layout design chemicals, In- sewage dispo Industries- pla hazards UNIT - IV Human side oprevention pro-	OPERATIONAL SAFETY Operation-Boiler, pressure vessels- heat treatment shephot bending pipes - Safety in welding and cutting. Colspan="2">Coldbending and cutting. Colspan="2">Colspan="2" Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2">Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2" Colspan="2" <td col<="" td=""><td>d-metal Opera asting, grind agement of t and urban sa - Managing e. Control of d cost of acci P - Training a</td><td>ation ling, oxic fety eme majo</td><td>- Sa pa gase - Sat rgene r ind</td><td>ratio fety intin 9 es an fety cies ustri 9 ccide</td><td>in g- nd of in al</td></td>	<td>d-metal Opera asting, grind agement of t and urban sa - Managing e. Control of d cost of acci P - Training a</td> <td>ation ling, oxic fety eme majo</td> <td>- Sa pa gase - Sat rgene r ind</td> <td>ratio fety intin 9 es an fety cies ustri 9 ccide</td> <td>in g- nd of in al</td>	d-metal Opera asting, grind agement of t and urban sa - Managing e. Control of d cost of acci P - Training a	ation ling, oxic fety eme majo	- Sa pa gase - Sat rgene r ind	ratio fety intin 9 es an fety cies ustri 9 ccide	in g- nd of in al
UNIT - II Hot metal C electroplating Machineshop- power press a UNIT - III Layout design chemicals, In- sewage dispo Industries- pla hazards UNIT - IV Human side oprevention pro-	OPERATIONAL SAFETY Operation-Boiler, pressure vessels- heat treatment shephot bending pipes - Safety in welding and cutting. Col-Coldbendingandchamferingofpipes-metalcutting-shotblend other machines SAFETY MEASURES m and material handling – Use of electricity – Manadustrial fires and prevention - Road safety - highway beal and cleaning - Control of environmental pollution anning, security and risk assessments, on-site and offsite ACCIDENTPREVENTION of safety - personal protective equipment - Causes and offsite ACCIDENTPREVENTION of safety - personal protective equipment - Causes and offsite ACCIDENTPREVENTION	d-metal Opera asting, grind agement of t and urban sa - Managing e. Control of d cost of acci P - Training a	ation ling, oxic fety eme majo	- Sa pa gase - Sat rgene r ind	ratio fety intin 9 es an fety cies ustri 9 ccide	in g- nd of in al	
UNIT - II Hot metal C electroplating Machineshop- power press a UNIT - III Layout design chemicals, Ind sewage dispo Industries- pla hazards UNIT - IV Human side of prevention pro of employees- UNIT - V Safety and he facilities-Histo	OPERATIONAL SAFETY Operation-Boiler, pressure vessels- heat treatment shephot bending pipes - Safety in welding and cutting. Coll-Coldbendingandchamferingofpipes-metalcutting-shotblend other machines SAFETY MEASURES gn and material handling – Use of electricity – Manadustrial fires and prevention - Road safety - highway osal and cleaning - Control of environmental pollution anning, security and risk assessments, on-site and offsite ACCIDENTPREVENTION of safety - personal protective equipment - Causes and orgrammes - Specific hazard control strategies - HAZOF	d-metal Opera asting, grind agement of t and urban sa - Managing e. Control of d cost of acci P - Training a estigation.	ation ling, oxic fety eme majo dents nd de	- Sa pa gaso - Sat rgeno r ind s. Ac evelo	ratio fety intin 9 es an fety cies ustri 9 ecide pme 9 /elfa	in g- nd of in al ent re	
UNIT - II Hot metal C electroplating Machineshop- power press a UNIT - III Layout design chemicals, In- sewage dispo Industries- pla hazards UNIT - IV Human side of prevention pro- of employees- UNIT - V Safety and he facilities-Histo	OPERATIONAL SAFETY Operation-Boiler, pressure vessels- heat treatment should be ding pipes - Safety in welding and cutting. Colspan="2">Coldbending and chamfering of pipes - metal cutting - Shotble and other machines SAFETY MEASURES an and material handling – Use of electricity – Man adustrial fires and prevention - Road safety - highway be baland cleaning - Control of environmental pollution anning, security and risk assessments, on-site and offsite ACCIDENTPREVENTION of safety - personal protective equipment - Causes and ogrammes - Specific hazard control strategies - HAZOF-First Aid-Fire fighting devices-Accident reporting, inve SAFETY,HEALTH,WELFARE & LAWS Balth standards - Industrial hygiene - occupational distory of legislations related to Safety-pressure vess	d-metal Opera asting, grind agement of t and urban sa - Managing e. Control of d cost of acci P - Training a estigation.	ation ling, oxic fety eme majo dents nd de	- Sa pa gase - Sat rgene r ind s. Ac evelo	ratio fety intin 9 es an fety cies lustri 9 ccide pme 9 Velfa ct-Th	in g- nd of in al al ant nt re ne	

Upon completion of the course, the students will be able to:

Course Outcomes	Description	Bloom's Taxonomy Level
CO1	To understand the functions and activities of safety engineering department.	Understand
CO2	To carry out a safety audit and prepare a report for the audit.	Understand
CO3	To prepare an accident investigation report.	Understand
CO4	To estimate the accident cost using supervisors report and data.	Understand
CO5	To Analyze the safety performance of an organization from accident records.	Analyze

TEXT BOOKS:

- 1. Ray Asfahl. C "Industrial Safety and Health Management" Pearson Prentice Hall, 2003.
- 2. Blake R.B., "Industrial Safety" Prentice Hall, Inc., New Jersey, 1973.

REFERENCES:

- 1. John V.Grimaldi and Rollin H. Simonds, "Safety Management", Richard D Irwin, 1994.
- 2. Dan Petersen, "Techniques of Safety Management", McGraw-Hill Company, Tokyo, 1981.
- 3. Philip Hagan, "Accident Prevention Manual for Business and Industry", N.S.C.Chicago, 13thedition, 2009.
- 4. Lees, F.P & M. Sam Mannan, "Loss Prevention in Process Industries: Hazard Identification, Assessment and Control", Butterworth-Heinemann publications, London, 4th edition, 2012.
- 5. John Ridley, "Safety at Work", Butterworth and Co., London, 1983.
- 6. Subramanian.V., "The Factories Act 1948 with Tamilnadu factories rules 1950", Madras BookAgency, 21st ed., Chennai, 2000.
- 7. Heinrich H.W. "Industrial Accident Prevention" McGraw-Hill Company, New York, 1980.
- 8. Krishnan N.V. "Safety Management in Industry" Jaico Publishing House, Bombay, 1997

					mapp	ing of			75 anu	1505				
COs/ POs	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	1	1	-	-	-	-	-	-	2	2
CO2	3	2	1	1	1	1	-	-	-	-	-	-	2	2
CO3	3	2	1	1	1	1	-	-	-	-	-	-	2	2
CO4	3	2	1	1	1	1	-	-	-	-	-	-	2	2
CO5	3	2	1	1	1	1	-	-	-	-	-	-	2	2
Avg.	3	2	1	1	1	1	-	-	-	-	-	-	2	2

45

CC24E09 Interfactorial Matrix of Matrix (Matrix	PREREQUISITE: Prior exposure to measurement tool OBJECTIVES: The Course will of OUnderstan Understan Impart kn Familiariz Realize th UNIT - I F Strain gauge, prin - Moire Fringe-H	basic measurement principles and techniques is necessary as and instrumentation. Enable learners to: d the principle of force and strain measurement. d the vibration measurement and their applications. bowledge on the principle behind acoustics and wind flow e with the distress measurements e non destructive testing principle and application ORCES AND STRAIN MEASUREMENT ciple, types, performance and uses. Photo elasticity–Princ	y, including kno	wledg		0
Prior exposure to basic measurement principles and techniques is necessary, including knowledge of measurement tools and instrumentation. OBJECTIVES: The Course will enable learners to:	Prior exposure to measurement tool OBJECTIVES: The Course will of Understar Understar Impart kn Familiariz Realize th UNIT - I F Strain gauge, prin - Moire Fringe-H	PEC 3 0 0 S: b basic measurement principles and techniques is necessary, including knowledge of ols and instrumentation. b basic measurement principles and techniques is necessary, including knowledge of ols and instrumentation. Itemable learners to: and the principle of force and strain measurement. and the principle of force and strain measurement. and the vibration measurement and their applications. newledge on the principle behind acoustics and wind flow measurements. ize with the distress measurements the non destructive testing principle and application FORCES AND STRAIN MEASUREMENT 9 nciple, types, performance and uses. Photo elasticity—Principle and applications Hydraulic jacks and pressure gauges—Electronic load cells—Proving Rings—esting Machines VIBRATION MEASUREMENTS 9 of Structural Vibrations—Linear Variable Differential Transformer(LVDT)— Transducers for eleration measurements. Vibration meter— Seismographs — Vibration Analyzer — Display is gigals — Cathode Ray Oscilloscope — XY Plotter — Chart Plotters—Digital data Acquisition ACOUSTICS AND WIND FLOW MEASUREMENTS 9 essure and flow measurements—pressure transducers—sound level meter—I flow meters—wind tunnel and its use in structural analysis—structural modeling lirect model analysis 9 DISTRESS MEASUREMENTS 9 stress in structures—crack observation and measurements—corrosion of reinforcement				
The Course will enable learners to: • Understand the principle of force and strain measurement. • Understand the vibration measurement and their applications. • Impart knowledge on the principle behind acoustics and wind flow measurements. • Familiarize with the distress measurements • Realize the non destructive testing principle and application UNIT · I FORCES AND STRAIN MEASUREMENT 9 train gauge, principle, types, performance and uses. Photo elasticity–Principle and applications Moire Fringe-Hydraulic jacks and pressure gauges–Electronic load cells–Proving Rings– Calibration of Testing Machines 9 Characteristics of Structural Vibrations–Linear Variable Differential Transformer(LVDT)– Transducers elocity and acceleration measurements. Vibration meter– Seismographs – Vibration Analyzer – Disp nd recording of signals – Cathode Ray Oscilloscope – XY Plotter – Chart Plotters–Digital data Acquisity ystems UNIT - III ACOUSTICS AND WIND FLOW MEASUREMENTS 9 Principles of Pressure and flow measurements–pressure transducers–sound level meter– 9 Ohigenosis of distress in structures–crack observation and measurements–corrosion of reinforcement oncrete – Half-cell, construction and use – damage assessment – controlled blasting for demolition 9 Diagnosis of distress in structures, buildings, bridges and towers–Rebound Hammer –acoustice mission –ultraso	Che Course will• Understar• Understar• Impart kn• Familiariz• Realize thUNIT - I• Frain gauge, prinMoire Fringe-H	d the principle of force and strain measurement. d the vibration measurement and their applications. owledge on the principle behind acoustics and wind flow e with the distress measurements e non destructive testing principle and application ORCES AND STRAIN MEASUREMENT ciple, types, performance and uses. Photo elasticity–Princ	v measurements.			
velocity and acceleration measurements. Vibration meter– Seismographs – Vibration Analyzer – Dispond recording of signals – Cathode Ray Oscilloscope – XY Plotter – Chart Plotters–Digital data Acquisity systems VINIT - III ACOUSTICS AND WIND FLOW MEASUREMENTS 9 Principles of Pressure and flow measurements–pressure transducers–sound level meter–venturimeter and flow meters–wind tunnel and its use in structural analysis–structural modeling 9 UNIT - IV DISTRESS MEASUREMENTS 9 Diagnosis of distress in structures–crack observation and measurements–corrosion of reinforcement concrete – Half-cell, construction and use – damage assessment – controlled blasting for demolition 9 Load testing on structures, buildings ,bridges and towers–Rebound Hammer –acoustice mission –ultrasonic testing principles and application–Holography–use of laser for structural testing–		ting Machines IBRATION MEASUREMENTS	cells–Proving R	ings–		9
Principles of Pressure and flow measurements-pressure transducers-sound level meter-venturimeter and flow meters-wind tunnel and its use in structural analysis-structural modeling - direct and indirect model analysis UNIT - IV DISTRESS MEASUREMENTS Diagnosis of distress in structures-crack observation and measurements-corrosion of reinforcement concrete – Half-cell, construction and use – damage assessment – controlled blasting for demolition UNIT - V NON DESTRUCTIVE TESTING METHODS 9 Load testing on structures, buildings ,bridges and towers-Rebound Hammer –acoustice mission –ultrasonic testing principles and application-Holography-use of laser for structural testing-	velocity and acce and recording of s	eration measurements. Vibration meter- Seismographs	– Vibration A	nalyze	er – I	Displ
UNIT - IV DISTRESS MEASUREMENTS 9 Diagnosis of distress in structures–crack observation and measurements–corrosion of reinforcement concrete – Half-cell, construction and use – damage assessment – controlled blasting for demolition 9 UNIT - V NON DESTRUCTIVE TESTING METHODS 9 Load testing on structures, buildings ,bridges and towers–Rebound Hammer –acoustice mission –ultrasonic testing principles and application–Holography–use of laser for structural testing–	Principles of Pre venturimeter and	ssure and flow measurements-pressure transducers-so low meters-wind tunnel and its use in structural analysis	ound level mete			9
Diagnosis of distress in structures–crack observation and measurements–corrosion of reinforcement concrete – Half-cell, construction and use – damage assessment – controlled blasting for demolition UNIT - V NON DESTRUCTIVE TESTING METHODS 9 Load testing on structures, buildings ,bridges and towers–Rebound Hammer –acoustice mission –ultrasonic testing principles and application–Holography–use of laser for structural testing–						0
Load testing on structures, buildings ,bridges and towers–Rebound Hammer –acoustice mission –ultrasonic testing principles and application–Holography–use of laser for structural testing–	Diagnosis of dist	ress in structures-crack observation and measurement				-
Load testing on structures, buildings ,bridges and towers–Rebound Hammer –acoustice mission –ultrasonic testing principles and application–Holography–use of laser for structural testing–	UNIT - V N	ON DESTRUCTIVE TESTING METHODS				9
	Load testing on –ultrasonic testin	structures, buildings ,bridges and towers-Rebound Hami			n	
TOTAL: 45 PERIO			ТОТА	L: 45	5 PE	RIO

(P)

COURSE OUTCOMES:

Upon completion of the course, the students will be able to:

Course Outcomes	Description	Bloom's Taxonomy Level
CO1	Measure physical quantities such as forces and strains	Understand
CO2	Apply different vibration measurements techniques	Apply
CO3	Measure physical quantities such as pressure and flow	Understand
CO4	Apply techniques involved in crack measurement.	Apply
CO5	Select the appropriate nondestructive testing methods for various engineering applications.	Apply

TEXT BOOKS:

- 1. Bray DonE and Stanley, R.K., "Non-destructive Evaluation", McGraw Hill Publishing Company, N.Y.1989
- 2. Garas, F.K., Clarke, J. Land Armer GST, "Structural assessment", Butterworths, London, 1987

REFERENCES:

- 1. James W. Dally and William Franklin Riley, "Experimental Stress Analysis", McGraw Hill , 3rdEdition,1991
- 2. Sadhu Singh, Experimental Stress Analysis, Khanna Publishers, New Delhi, 2009.
- 3. SrinathLS, Raghavan Mr, Lingaiah K, Gargesha G, Pant Band Ramachandra, K, "Experimental Stress Analysis", Tata Mc Graw Hill Company, NewDelhi, 1984
- 4. Sirohi,R.S.andRadhakrishna,H.C,"MechanicalMeasurements",NewAgeInternational Ltd,3rdEdition1997

]	Mappi	ing of C	Os wi	th POs	s and l	PSOs				
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	3	2	3	1	1	-	-	-	-	-	-	2	2
CO2	3	3	2	3	1	1	-	-	-	-	-	-	2	2
CO3	3	3	2	3	1	1	-	-	-	-	-	-	2	2
CO4	3	3	2	3	1	1	-	-	-	-	-	-	2	2
CO5	3	3	2	3	1	1	-	-	-	-	-	-	2	2
Avg.	3	3	2	3	1	1	-	-	-	-	-	-	2	2

•		<u> </u>	r —	-	r	
CC24E10	RELIABILITY IN ENGINEERING SYSTEMS	Category	L	Т	Р	C
0021210		PEC	3	0	0	3
PREREQUISI						
•	in probability theory and statistical methods is crucial	for analyzing	and	mo	delir	ıg
OBJECTIV	ta and failure rates.					
	will enable learners to:					
	bility to use statistical tools to characterize the reliability	of an item				
	rstand the failure data analysis.					
	vorking knowledge to determine the reliability of a syster	n				
	ggest approaches to enhancing system reliability;					
• The a	bility to select appropriate reliability validation methods					
UNIT - I	RELIABILITY CONCEPT				9	
-Hazard rate	efinition – Quality and Reliability– Reliability mathem –Measures of Reliability–Design life–Apriori and poste ent–Bath tub curve–Useful life		•			
UNIT - II	FAILURE DATA ANALYSIS				9	
Data collecti	on -Empirical methods: Ungrouped/Grouped, Comple	ete/Censored	data	- T	ime	to
failure distrib	outions: Exponential, Weibull–Hazard plotting–Goodn	ess of fittests				
UNIT - III					9	
	figurations–Redundancy–m/nsystem–Complexsystems:Fets–Fault Tree Analysis–Stand by system	(BD–Baye'sm	netho	d–		
UNIT - IV	RELIABILITY MONITORING				9	
	methods: Failure terminated – Time terminated rowth monitoring–Reliability allocation–Software reliabil		Tes	sting		
UNIT - V	RELIABILITY IMPROVEMENT				9	
	downtime – Repair time distribution – System MTTR of maintainability–System Availability–Replacement the		ility	prec	lictio	n
		TOTAI	L: 45	PE	RIO	DS

Course Outcomes	Description	Bloom's Taxonomy Level
CO1	Analyse the interference between strength and stress, or life data for estimating reliability	Analyze
CO2	Apply the appropriate methodologies and tools for enhancing the inherent and actual reliability of components and systems, taking into consideration cost aspects	Apply
CO3	Specify life test plans for reliability validation	Understand
CO4	Get knowledge on reliability monitoring	Understand
CO5	Analyze the downtime for reliability improvement	Analyze

TEXT BOOKS:

1. Charles E.Ebeling, "An introduction to Reliability and Maintain ability engineering", TMH,2000.

2. Roy Billington and Ronald N. Allan, "Reliability Evaluation of Engineering Systems", Springer,2007

REFERENCES:

- 1. Alessandro Birolini, Reliability Engineering: Theory and Practice 8th ed. 2017 Edition
- 2. Mohammad Modarres, Mark P. Kaminskiy, Vasiliy Krivtsov "Reliability Engineering and Risk Analysis: A Practical Guide", Third Edition 3rd Edition

				-	Mapp	ing of	COs w	vith PC)s and	PSOs				
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3	1	1	-	-	-	-	-	-	2	3
CO2	3	3	2	3	1	1	-	-	-	-	-	-	2	3
CO3	3	3	2	3	1	1	-	-	-	-	-	-	2	3
CO4	3	3	2	3	1	1	-	-	-	-	-	-	2	3
CO5	3	3	2	3	1	1	-	-	-	-	-	-	2	3
Avg.	3	3	2	3	1	1	-	-	-	-	-	-	2	3

CC34E1	Ι Ε ΑΝΙ ΜΑΝΗΤΕΑ ΟΤΗ ΙΒΙΝΙΟ	Category	L	Т	Р	С
CC24E1	LEAN MANUFACTURING	PEC 3 0 0 manufacturing processes and b	3			
Manageme OBJECTI The Cour • • • • • • • • • • •	ufacturing course Familiarity with foundational knowledge in maint machinery, and workflow concepts.	system			(9)	
and system UNIT - II Standards i standardize	s thinking – Basic image of lean production – Customer focus – Muda (w	vaste). dized work – E	Elemer	nts of	(9)	
systems - Y	of JIT – JIT system – Kanban – Kanban rules – Expanded role of conveya Value stream mapping.	ance – Product	ion le	vellin	g – P	ull
	JIDOKA (AUTOMATION WITH A HUMAN TOUCH)					
	cept – Poka-Yoke (mistake proofing) systems – Inspection systems and ze systems – Implementation of Jidoka.	one control – 7	Гурез	and u	<u> </u>	
Poka-Yoke UNIT - V Involvement	systems – Implementation of Jidoka. WORKER INVOLVEMENT AND SYSTEMATIC PLANNING METHODOLOGY at – Activities to support involvement – Quality circle activity – Kaizen the support involvement – Quality circle activity – Quality circle acti	raining - Sugg	estion	Prog	(9)	
Poka-Yoke UNIT - V Involvement	systems – Implementation of Jidoka. WORKER INVOLVEMENT AND SYSTEMATIC PLANNING METHODOLOGY	raining - Sugg Planning – Lea	estion n cult	Prog ure	(9)	es
Poka-Yoke UNIT - V Involvemen – Hoshin P COURSE	systems – Implementation of Jidoka. WORKER INVOLVEMENT AND SYSTEMATIC PLANNING METHODOLOGY at – Activities to support involvement – Quality circle activity – Kaizen the support involvement – Quality circle activity – Quality circle acti	raining - Sugg Planning – Lea	estion n cult	Prog ure	(9)	es
Poka-Yoke UNIT - V Involvemen – Hoshin P COURSE	systems – Implementation of Jidoka. WORKER INVOLVEMENT AND SYSTEMATIC PLANNING METHODOLOGY at – Activities to support involvement – Quality circle activity – Kaizen the lanning System (systematic planning methodology) – Phases of Hoshin P OUTCOMES:	raining - Sugg Planning – Lea TO T	estion n cult ΓAL:	Prog ure 45 P	(9) ramm	es
Poka-Yoke UNIT - V Involvemen – Hoshin P COURSE At the end	systems – Implementation of Jidoka. WORKER INVOLVEMENT AND SYSTEMATIC PLANNING METHODOLOGY nt – Activities to support involvement – Quality circle activity – Kaizen to lanning System (systematic planning methodology) – Phases of Hoshin P OUTCOMES: of the course, the students will be able to: Course Outcome know the necessity for a Lean Manufacturing system	raining - Sugg Planning – Lea TO	estion n cultr FAL: Cogni	Prog ure 45 P tive I	se of (9) ramm ERIC	es
Poka-Yoke UNIT - V Involvemen – Hoshin P COURSE At the end	systems – Implementation of Jidoka. WORKER INVOLVEMENT AND SYSTEMATIC PLANNING METHODOLOGY nt – Activities to support involvement – Quality circle activity – Kaizen th lanning System (systematic planning methodology) – Phases of Hoshin P OUTCOMES: of the course, the students will be able to: Course Outcome	raining - Sugg Planning – Lea TO	estion n cult TAL: Cogni Reme	Prog ure 45 P tive I	se of (9) ramm ERIC Level	es
Poka-Yoke UNIT - V Involvemen – Hoshin P COURSE At the end COs CO1	systems – Implementation of Jidoka. WORKER INVOLVEMENT AND SYSTEMATIC PLANNING METHODOLOGY nt – Activities to support involvement – Quality circle activity – Kaizen th lanning System (systematic planning methodology) – Phases of Hoshin P OUTCOMES: of the course, the students will be able to: Course Outcome know the necessity for a Lean Manufacturing system Differentiate between the conventional Mass production system with Lea	raining - Sugg Planning – Lea TO	estion n cult TAL: Cogni Reme And	Prog ure 45 P tive I	se of (9) ramm ERIC Level	es
Poka-Yoke UNIT - V Involvemen – Hoshin P COURSE At the end COs CO1 CO2	systems – Implementation of Jidoka. WORKER INVOLVEMENT AND SYSTEMATIC PLANNING METHODOLOGY nt – Activities to support involvement – Quality circle activity – Kaizen to lanning System (systematic planning methodology) – Phases of Hoshin P OUTCOMES: of the course, the students will be able to: Course Outcome know the necessity for a Lean Manufacturing system Differentiate between the conventional Mass production system with Lea system	raining - Sugg Planning – Lea TO	estion n cult TAL: Cogni Rema And Ap	Prog ure 45 P tive I ember alyzin	se of (9) ramm ERIC Level	es

K.S.R COLLEGE OF ENGINEERING

TEXT BOOKS:

1. Dennis P.," Lean Production Simplified: A Plain-Language Guide to the World's Most Powerful Production System", (Second edition), Productivity Press, New York,2007

2. Liker, J., "The Toyota Way: Fourteen Management Principles from the World's Greatest Manufacturer", McGraw Hill, 2004

REFERENCES:

1. Michael, L.G., "Lean Six SIGMA: Combining Six SIGMA Quality with Lean Production Speed", McGraw Hill, 2002

2. Ohno, T.," Toyota Production System: Beyond Large-Scale Production", Taylor & Francis, Inc., 1988.

3. Rother, M., and Shook, J.,' Learning to See: Value Stream Mapping to Add Value and Eliminate MUDA", Lean Enterprise Institute, 1999.

	Mapping of COs with POs and PSOs														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2		
CO1	3	2	2	3	2	1	-	-	-	-	-	2	3		
CO2	3	2	2	3	2	1	-	-	-	-	-	2	3		
CO3	3	2	2	3	2	1	-	-	-	-	-	2	3		
CO4	3	2	2	3	2	1	-	-	-	-	-	2	3		
CO5	3	2	2	3	2	1	-	-	-	-	-	2	3		
Avg.	3	2	2	3	2	1	-	-	-	-	-	2	3		
1-low,	2-medium	n, 3-high			•										

51

	PERFORMANCE MODELING AND ANALYSIS Category L											
CC24E12	OF MANUFACTURING SYSTEMS	PEC	3	0	0	3						
PREREQUISITE:												
Basic understand and workflows.	ling of manufacturing processes and systems, including pro	duction technic	lues,	equij	omen	ıt,						
OBJECTIVES:												
The Course will	enable learners to:											
 Develop an understanding of the use and benefits of modeling and simulation in manufacturing systems design and operation. Develop an understanding of techniques to assess factory performance and identify areas for improvement. Develop an understanding of techniques to assess and manufacturing performance. Develop an understanding of techniques to enable responsive manufacturing systems. Provide the students with knowledge of a set of tools to enable them to assess the performance of a manufacturing facility 												
UNIT– I	MANUFACTURING SYSTEMS & CONTROL				9							
models. Product configurations. Pe Capacity-Flexibili communications	Automated Manufacturing Systems- Modelling- Role of performance modelling – simulation models- Analytical models. Product cycle - Manufacturing automation - Economics of scale and scope - input/output model- plant configurations. Performance measures-Manufacturing lead time - Work in process- Machine utilization-Throughput– Capacity-Flexibility- performability - Quality. Control Systems - Control system architecture - Factory communications - Local area networks-Factory networks – Open systems interconnection model – Network to network interconnections – Manufacturing automation protocol – Database management system.											
UNIT– II	MANUFACTURING PROCESSES			9								
Sojourn times in analysis. Continue CTMCs in manuf	hastic processes – Poisson process Discrete time Markov chain n states-Examples of DTMCs in manufacturing-Chapman-Kous Time Markov Chain Models Definitions and notation – Soj facturing-Equations for CTMCevolution- Markovmodelofatrans - Steady state analysis of BD Processes-Typical BD processes in	Colmogorov equoration equoration equoration equipation equipation equipation equipation equipation equipation e experiments and equipation e equipation equipation equipation equipation equipation equipation equipation equipation equipation equipation e equipati eq	ation ates –	-Stea exan	dy-sta 1ples	ate of						
UNIT– III	QUEUING MODELS				9							
	es - Examples of queues in manufacturing systems - Performand/M/m queue, queues with general distributions and queues with											
UNIT-IV	QUEUING NETWORKS				9							
	models in manufacturing - Little's law in queuing networks - Taback- An open central server model for FMS- Closed transfer											
UNIT– V	PETRINETS				9							
Manufacturing m	lets - Definitions - Transition firing and reachability - Rep odels. Stochastic PetriNets- Exponential timed Petri Nets-G BAN systems-Manufacturing models											
		ТО	TAL:	45 P	ERIC	DDS						

Upon completion of the course, the students will be able to:

	course atcome						De	escripti	on					Bloom's Taxonomy Level
	CO1	Mo	odel an	d simu	late the	e operat	ion of a	a small	manufa	acturing	system			Understand
(CO2	Use	e simu	lation a	as a ma	nufactu	iring sy	stem de	esign te	chnique				Understand
	CO3	Jus	stify the	e use o	f manu	facturii	ng mod	eling a	nd simu	llation				Apply
	CO4							stream uring s		ing and	I IDEF	to ider	ntify	Apply
	CO5	· ·	ply the tem	techn	iques li	ke Petr	inets ar	nd KAN	IBAN s	system ii	n manufa	cturing		Apply
ГЕХЛ	Г ВООН	KS:												
1 Viswanadham, N and Narahari, Y. "Performance Modeling of Automated Manufacturing Systems", Prentice Hall of India, New Delhi,2005.														
2														
 Kelton D. W., Sadowski R. P. and Sasowski D. A. – 'Simulation with ARENA' – McGraw Hill – 2009 														
REFF	ERENC	ES:												
	Gupta S Chand a		-				als of N	Mathem	natical S	Statistics	",3rd Edi	tion, Sul	tan	
2	Trivedi, Applica			bility a	and Sta	tistics v	vith Re	liability	, Queu	ing and	Compute	r Science	2	
-	Banks J – 2001 -			., Nels	on B. I	. and N	Nicol D	. M. – '	Discre	te Event	System S	Simulatic	on' – Pea	arson Education
	Viswan Hall – 1		N. and	Narah	ari Y.	– 'Perf	òrmanc	e Mod	eling o	f Autom	ated Ma	nufacturi	ng Syste	ems' – Prentice
5	Horst T Operation	empeli on", Sj	meier pringer	and H - 200	einrich 7	Kuhn	"Flexil	ole Ma	nufactu	ring Sys	stems: De	ecision S	Support	for Design and
					Μ	apping	g of CO	Os wit	h POs	and PS	Os			
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1	1	-	-	-	-	-	-	2	3
CO2	3	3	2	2	1	1	-	-	-	-	-	-	2	3
CO3	3	3	2	2	1	1	-	-	-	-	-	-	2	3
CO4	3	3	22	2 2	1	1	-	-	-	-	-	-	22	3
CO5	3	3 3	2	2 2	1 1	1 1	-	-	-	-	-	-	2 2	3
Avg.	3	3	4	4	1	1	-	-	-	-	-	-	4	3

CC24E13	CREATIVITY AND INNOVATION	Category	L	Т	Р	С					
CC24E13	CREATIVITY AND INNOVATION	PEC	3	0	0	3					
PREREQUISITE: Basic understandi product and proce	ng of design processes and methodologies can be helpful as creates ss design.	tivity and innov	ation	often	appl	y to					
OBJECTIVES:											
The Course will e	enable learners to:										
 Apply the basic concepts of design thinking in new product design and development. Apply the principles of various methods and tools for creativity in new product design and development. Apply the design principles of creativity in new product design and development. Apply the various innovation principles and practices in new product design and development. Apply the principles of innovation management in new product design and development. UNIT I INTRODUCTION TO DESIGN THINKING CONCEPT 9 											
UNIT I INTRODUCTION TO DESIGN THINKING CONCEPT											
Design Thinking – Introduction – What- How – Why- Design Process- Four Questions – Ten Tools- opportunity – Scope your opportunity – Draft your design brief											
UNIT II	METHODS AND TOOLS FOR CREATIVITY				9						
Three basic principles behind the tools of directed creativity – Tools that prepare the mind for creative Tools that stimulate the imagination for new idea – Development and action: the bridge between mere creat the rewards of innovation - ICEDIP: Inspiration, Clarification, Distillation, Perspiration, Evaluation and Inc Creativity and Motivation											
UNIT III	DESIGN AND APPLICATION OF CREATIVITY				9						
	notional design: Visceral, Behavioral and Reflective – Process de stomer needs analysis – Innovative product and service designement										
UNIT IV	INNOVATION PRINCIPLES & PRACTICES				9						
	ivity Activation: Morphological Box – Requirements for Invent neters– Altshuller's Inventive Principles– Altshuller's Contradict				tshull	er's					
UNIT V	INNOVATION MANAGEMENT				9						
New Market Disr	tion Model – Two Types of Disruption – Three Approaches to Cuptions: Three Case Histories – Product Architectures and Integation – Two Processes of Strategy Formulation – Role of senior owth Engine.	gration – Proces	s of c	omm	odita	tion					
		ТОТ	AL:	45 Pl	ERIC	DDS					
Methods of Creat Engineering Parar UNIT V Disruptive Innova New Market Disr and de-commodita	ivity Activation: Morphological Box – Requirements for Invent neters– Altshuller's Inventive Principles– Altshuller's Contradict INNOVATION MANAGEMENT tion Model – Two Types of Disruption – Three Approaches to C uptions: Three Case Histories – Product Architectures and Integ ation – Two Processes of Strategy Formulation – Role of senior	tion Matrix Algo Creating New- G gration – Proces r executive in le	rithm rowth s of c eading	omm g new	9 iness odita grov	es – tion wth:					

Upon completion of the course, the students will be able to:

	Course utcome						De	scripti	on					Bloom's Taxonomy Level		
	CO1	Un	derstar	nd proc	esses tl	hat enh	ances i	nnovati	on activ	vities				Understand		
	CO2				iples of lopmen		is meth	ods an	d tools	for crea	tivity in	new prod	duct	Apply		
	CO3	Ap	ply the	design	n princi	ples of	creativ	ity in n	ew pro	duct des	ign and d	evelopm	ent.	t. Apply		
	CO4		ply the elopm		ıs inno	vation	princip	les and	practic	es in ne	w produc	et design	and	Apply		
	CO5	· · ·	ply the	-	ciples	of inno	ovation	manag	gement	in new	product	design	and	Apply		
TEXT BOOKS:																
1 Clayton M. Christensen Michael E. Raynor," The Innovator's Solution", Harvard Business School Press Boston, USA, 2013																
2	Donald A. Norman," Emotional Design", Perseus Books Group New York, 2004															
3	Pradip N	V Khan	dwalla	ı, Lifel	ong Cr	eativity	, An U	nending	g Quest	, Tata M	lcGraw H	[ill, 2004	•			
 3 Pradip N Khandwalla, Lifelong Creativity, An Unending Quest, Tata McGraw Hill, 2004. REFERENCES: 																
1			" how	to be	better a	t Creat	ivitv"	LULU	Enterpr	ises Inc	, Raleigh	NC 20	17			
2			-								risp Publ					
3	Semyon 2003.	D. Sav	vransk	y," Eng	gineerii	ng of C	reativit	y – TR	IZ", CF	RC Press	New Yo	rk USA				
4	Vinnie J	auhari	, Suda	nshuBł	ushan,	Innova	ation M	lanagen	nent, O	xford Hi	gher Edu	cation, 2	014.			
5	Innovati	on Ma	nagem	ent, C.	S. G. I	Krishna	macha	ryulu, F	R. Lalit	ha, Hima	alaya Pub	lishing H	House, 2	010		
					Ma	apping	g of CO	Os witl	h POs	and PS	Os	-				
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	3	2	3	1	1	-	-	-	-	-	-	2	3		
CO2	3	3	2	3	1	1	-	-	-	-	-	-	2			
CO3	3	3	2	3	1	1	-	-	-	-	-	-	2	3		
CO4	3	3	2	3	1	1	-	-	-	-	-	-	2	3		
CO5 Avg.	<u> </u>	<u> </u>	2 2	3 3	1 1	1 1	-	-	-	-	-	-	2 2	<u> </u>		

			r								
CC24E14	INDUSTRIAL ROBOTICS AND EXPERT	Category	L	Т	Р	С					
	SYSTEMS	PEC	3	0	0	3					
PREREQUISITE: Familiarity with a industrial automat	utomation principles and control systems, including feedback co	ntrol, sensors, a	nd act	uator	s use	d in					
OBJECTIVES:											
The Course will	enable learners to:										
**	e need and scope for robotics and to understand the principles of a	robot kinematics									
•	ve systems and its control										
	e principles of sensors and vision systems										
	ndustrial applications of robots and its safety										
Gain knowledge on artificial intelligence and expert systems. UNIT I INTRODUCTION AND ROBOT KINEMATICS											
		na Duraciaian		mont	9 E	nd					
	nd scope of Industrial robots– Robot anatomy – Work volur rs. Robot Kinematics – Direct and inverse kinematics – Robo										
	bobb dynamics – Methods for orientation and location of objects.		Com		1 100						
UNIT II	ROBOT DRIVES AND CONTROL				9						
Pneumatic drives	obot motion – Position and velocity sensing devices – Design – Linear and rotary actuators and control valves Electro hydraung of end effectors – Vacuum, magnetic and air operated grippers	ilic servo valves									
UNIT III	ROBOT SENSORS				9						
system – Image R	Sensors – Tactile sensor – Proximity and range sensors – Sense Representation - Image Grabbing –Image processing and analysis Rationing - Image segmentation – Pattern recognition – Training	s – Edge Enhan	cemer								
UNIT IV	ROBOT PROGRAMMING, ROBOT CELL DESIGN AND	APPLICATIO	N		9						
interference - Ro	design and control – Safety in Robotics – Robot cell layouts obot cycle time analysis. Industrial application of robots. Me task level languages lead through programming methods – Motic	ethods of Robo									
UNIT V	ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEM	S			9						
Problem reduction Representation -I	Artificial intelligence – Basics – Goals of artificial intelligence – AI techniques–problem representation in AI – Problem reduction and solution techniques - Application of AI and KBES in Robots. Elements of Knowledge Representation -Logic, Production Systems, Semantic Networks, Expert Systems, Components, Applications, Knowledge Building Environment Systems (KBES)-Humanoids.										
TOTAL : 45 PERIODS											

Upon completion of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Understand robot kinematics	Understand
CO2	Incorporate mechanical components and concepts in robotics	Apply
CO3	Understand the basics of various sensors to effectively design a robot	Understand
CO4	Design suitable robots for specific applications	Apply
CO5	Optimize the robots using Artificial Intelligence	Analyse

TEXT BOOKS:

1	K.S.Fu, Gonzalez, R.C. and Lee, C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw Hill, 2004
---	---

2 Jordanides, T. and Torby, B.J., ,"Expert Systems and Robotics", Springer –Verlag, New York, 2011

3	Groover, M.P., Weis, M., Nagel, R.N. and Odrey, N.G., "Industrial Robotics Technology, Programming and
5	Applications", McGraw-Hill, Int., 2019

REFERENCES:

1	Klafter, R.D., Chmielewski, T.A. and Negin, M., "Robotics Engineering - An Integrated Approach", Prentice-
1	Hall of India Pvt. Ltd., 2003

- 2 Deb, S.R."Robotics Technology and Flexible Automation", Tata McGraw-Hill, 2017
- 3 Kozyrey, Yu. "Industrial Robots", MIR Publishers Moscow, 1985
- 4 Koren, Y., "Robotics for Engineers", McGraw-Hill, 1987

5 Asitava Ghoshal, Robotics: Fundamental concepts and analysis, Oxford University Press 3. (2006).

Mapping of COs with POs and PSOs

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	3	1	1	-	-	-	-	-	-	2	3
CO2	3	2	2	3	1	1	-	-	-	-	-	-	2	3
CO3	3	2	2	3	1	1	-	-	-	-	-	-	2	3
CO4	3	2	2	3	1	1	-	-	-	-	-	-	2	3
CO5	3	2	2	3	1	1	-	-	-	-	-	-	2	3
Avg.	3	2	2	3	1	1	-	-	-	-	-	-	2	3

CC24E15	DESIGN FOR CELLULAR MANUFACTURING Category									
CC24E15	SYSTEMS	PEC	3	0	0	3				
PREREQUISITE: Familiarity with flow.	the design and analysis of manufacturing processes, includ	ling work cell d	lesigr	n and	proc	cess				
OBJECTIVES										
The Course wil	l enable learners to:									
• Understand	the basic concepts in Cellular manufacturing system									
	the planning and design of CMS									
	he GT/CMS in Manufacturing system									
• Understand the performance and analysis GT/CMS										
Understand the Human and economical aspects of CMS.										
UNIT-I INTRODUCTION										
Group Technology – Limitations of traditional manufacturing systems – Group machining concept– Principle of cellular manufacturing – Terminology associated with cellular manufacturing –Characteristics and perspectives of cellular manufacturing – Areas of applications of cellular manufacturing – Benefits and limitations of cellular manufacturing										
UNIT– II	CMS PLANNING AND DESIGN				9					
CMS - Customi	Problems in GT/CMS- CMS Evaluation and Selection - D zation and Integration - Testing and Quality Assurance- Mo approaches -Genetic Algorithms, Simulated Annealing, Neu	dels, traditiona								
UNIT– III	IMPLEMENTATION OF GT/CMS				9					
and Launch - F	Setup - Core Configuration - Plugins and Extensions - SE Post-Launch Maintenance - Inter and Intra cell layout, co eam approach, Managerial structure and groups, batch se IS.	ost and non-cos	st ba	sed 1	node	els,				
UNIT-IV	PERFORMANCE MEASUREMENT AND CONTROL	L			9					
Manufacturing -	IS performance - Performance Measurement Technic Lean Manufacturing and Cellular Systems - Parametric a red Performance Measurement, GT and MRP – framework.	-		_	-					
UNIT– V	ECONOMICS OF GT/CMS				9					
Economic Justification of cellular manufacturing – Economic Principles of GT/CMS - Cost Analysis in GT/CMS - Financial Metrics and Evaluation - Quality Improvement and Economic Impact - Emerging Trends and Future Directions - Use of computer models in GT/CMS – Human aspects of GT/CMS – Case studies.										
TOTAL: 45 PERIODS										

Upon completion of the course, the students will be able to:

Course Outcome	Description	Bloom's Taxonomy Level
CO1	Impart knowledge on group technology, optimization algorithms	Understand
CO2	Learn the aspects of cellular manufacturing and its design	Understand
CO3	Know the implementation of GT/CMS	Understand
CO4	Understand Performance measurements of CMS.	Understand
CO5	Understand the economics of GT/CMS	Understand

TEXT BOOKS:

1	Mikell P. Groover, "Automation, Production Systems, and Computer-Integrated Manufacturing" Pearson Education, Fourth Edition, July 2016
2	Technology and Management ", Cleland.D.I. and Bidananda, B (Eds), TAB Books, NY, 1991.
3	Burbidge, J.L. Group "Technology in Engineering Industry ", Mechanical Engineering pub.London, 1979

REFERENCES:

ŀ		
	1	Modeling and Analysis of Manufacturing Systems- R. G. Askin, and C. R. Standridge, John Wiley & Sons, 1995
	2	Manufacturing Systems Modeling and Analysis- G. L. Curry and R. M. Feldman, Springer, 2011
	3	Stereolithography and other RP& M Technologies- Paul F. Jacobs, Society of Manufacturing Engineers, NY, 1995
	4	Irani, S.A. " Cellular Manufacturing Systems ", John Wiley & Sons, 1999
	5	Kamrani, A.K, Parsaei, H.R and Liles, D.H. (Eds), "Planning, design and analysis of cellular manufacturing systems ", Elsevier, 1999

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1	1	-	-	-	-	-	-	2	3
CO2	3	3	2	2	1	1	-	-	-	-	-	-	2	3
CO3	3	3	2	2	1	1	-	-	-	-	-	-	2	3
CO4	3	3	2	2	1	1	-	-	-	-	-	-	2	3
CO5	3	3	2	2	1	1	-	-	-	-	-	-	2	3
Avg.	3	3	2	2	1	1	-	-	-	-	-	-	2	3

CCME1(MANUFACTURING TECHNOLOGY FOR	Category	L	Т	Р	С				
CC24E16	ELECTRONIC DEVICES PEC 3									
PREREQUISITE: Familiarity with specific to electr	general manufacturing processes, such as fabrication, asso	embly, and pao	ckagii	ng teo	chniq	lues				
OBJECTIVES										
The Course wil	l enable learners to:									
 Introduce The electronic constraints Elaborate va Be acquainte 	Pledge on wafer preparation and PCB fabrication arough Hole Technology (THT) and Surface Mount Techno amponents rious steps in Surface Mount Technology (SMT) ed with various testing and inspection methods of populated ir, rework and quality aspects of Electronic assemblies.		ith va	rious	type	s of				
UNIT I	INTRODUCTION TO ELECTRONICS MANUFACT	URING			9					
etching and clea	on, wafer preparation by growing, machining, and polishin ning, Printed Circuit Boards, types- single sided, double sid flexible printed circuit board, design, materials, manufa	led,		-		-				
	ough Hole Technology (THT) and Surface Mount Technology	ogy (SMT)		1						
UNIT II	COMPONENTS AND PACKAGING				9					
passive. Intercon on board, mult packaging, mini	omponents – axial, radial, multi leaded, odd form. Surf nections - chip to lead interconnection, die bonding, wire i chip module, direct chip array module, leaded, lead aturization and trends	bonding, TAl	B, Fli	p chi	p, ch bedd	ip				
UNIT III	SOLDERING AND CLEANING				9					
technology – manufacturing, system variable	y, effect of elemental constituents on wetting, microstruct fluxing reactions, flux chemistry, solder powder, so solder paste rheology, Wave soldering. Adhesive and s s. soldering temperature profile. Reflow soldering - p y and defects. Post solder cleaning and selection. Measurem	older paste o older paste aj profile generat	compo pplica ion a	ositio tion. .nd c	n a sold	nd ler				
UNIT IV	SURFACE MOUNT TECHNOLOGY				9					
SMT Equipment and Material Handling Systems, Handling of Components and Assemblies - Moisture Sensitivity and ESD, Safety and Precautions Needed, IPC and Other Standards, Stencil Printing Process, solder paste storage and handling, stencils and squeegees, process parameters, quality control - Component Placement, Equipment Type, Chip shooter, IC placer, Flexibility, Accuracy of Placement, Throughput, reflow soldering, adhesive, underfill and encapsulation process, applications, storage and handling, process & parameters.										
UNIT V	INSPECTION, TEST AND REWORK FOR PCB:				9					
Inspection Techniques, Equipment and Principle – AOI, X-ray. stencil printing process- defects & corrective action, component placement process - defects & corrective action, Reflow Soldering Process- defects & corrective action, underfill and encapsulation Process- defects & corrective action, Testing of assemblies, In-circuit testing (ICT), functional testing, concept of yield, Rework and Repair, tools, rework criteria and process, Design for - Manufacturability, Assembly, Reworkability, Testing, Reliability and Environment										

TOTAL: 45 PERIODS

COURSE OUTCOMES:

	course atcome		Description													
	CO1 Realize wafer preparation and PCB fabrication												Understand			
	CO2 Elaborate on through hole and surface mount technology components.											Apply				
	CO3 Discuss the steps involved in soldering post solder cleaning and its importance in PCB manufacturing										Understand					
	CO4	Im	prove	know]	ledge o	on surf	ace mo	ount tee	chnolo	gy				Apply		
	CO5	Lo	cate th	e requ	ired ir	nspecti	ons, te	sting a	nd rep	air meth	ods used	d in PCI	3.	Analyze		
ГЕХ 1	T BOO Coomb		D.E "	Printe	ed Circ	uits H	andbo	ok " M	c Grav	v-Hill H	and boo	ks Sixth	Edition	n. 2008		
2	Gurnett	·	· · ·									no oran	Lation	., 2000		
												0				
3			, Ele	ctroni	cs Mar	iuractu	Iring P	rocesse	es, Pro	entice H	all, 1998	8				
REF	ERENC															
1	Lee, N. Techno				-			rouble	Shooti	ng – SN	IT, BGA	A, CSP a	nd Flip	Chip		
2	Prasad 2013	R.P.,	"Surfa	ice M	ount T	Techno	logy:]	Princip	oles an	d Pract	ice", Ne	w York	: Chapr	nan and Hall		
3	Seraphi	m, D.,	Lask	y, R.C	and C	Che-Y	u Li, ''l	Princip	les of	Electron	nic Packa	aging" N	Acgraw	Hill, 1989.		
4	_			-						er, 2001		_				
5					-							or proce	essing "	McGraw Hill		
					Ma	apping	g of CO	Os witl	h POs	and PS	Os					
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	3	2	3	1	1	-	-	-	-	-	-	2	3		
CO2	3	3	2	3	1	1	-	-	-	-	-	-	2	3		
CO3	3	3	2	3	1	1	-	-	-	-	-	-	2	3		
	3	3	2	3	1	1	-	-	-	-	-	-	2	3		
CO4 CO5	3	3	2	3	1	1	-	-	-	-	-	-	2	3		

		ategory	L	Т	Р	C		
CC24E17	SMART MANUFACTURING	PEC	3	0	0	3		
PREREQU								
•	with traditional manufacturing methods, machinery, and production workflo	ws to unde	erstan	d the	conte	xt		
for smart te								
OBJECTIV								
	e will enable learners to:							
	nderstand concepts and basic framework necessary for smart manufacturing	~						
	ather idea about current trends at system level in manufacturing organization ake use of of Sensors and Selection of sensors for various applications	8						
	hild the IoT based manufacturing systems							
	arn the importance of industry 4.0 concepts at manufacturing systems							
UNIT - I	SENSORS SMART MANUFACTURING				(0)			
		forent con		alaat	(9)			
introduction	n – Role of sensors in manufacturing automation – operation principles of difusion using the sensors in manufacturing automation – operation sensors. Condition motion sensors condition motion sensors are sensors.	itoring of	sors –	footu	rical,			
* ·	rinciples – sensors for monitoring force, vibration and noise, selection of sen	0			inig			
	Automatic identification techniques for shop floor control – optical characte				sensc	rs -		
	ligent sensors – integrated sensors, Robot sensors, Micro sensors, Nano sens		unic v	151011	sense	15		
UNIT - II		0151			(9)			
Advances in	ata for analytics (techniques to improve data quality, integration - ETL) n data visualization & related tools-Statistical Techniques for Analytics, Dese egression and ANOVA	criptive St	atistic	s Infe	rentia	ıl		
UNIT - III					(9)			
	Cyber Physical Systems (CPS) and Cyber Physical Production System (CPP	S). Systen	n Arch	nitectu		r		
	tion of CPPS, Components for CPPS, Communication for CPPS	-), ~j~						
ÚNIT - IV					(9)			
Introduction	n of Agent based manufacturing- agent based Manufacturing, Cloud Base	ed Manuf	acturii	ng In	forma	tio		
	based Supply chain, Concept of agile manufacturing and E-manufacturing							
	INDUSTRY 4.0				(9)			
	of industries, Introduction to Industry 4.0, Challenges in industry 4.0, Impac		•			die		
on industry	4.0, Introduction to Internet of Things (IoT) and its applications, Smart supp							
		10	FAL:	45 P	ERI	JD		
	OUTCOMES: of the course, the students will be able to:							
COs	Course Outcome		Cogni	gnitive Level				
CO1	Appreciate concepts and basic framework necessary for smart manufacturin	a Rom	Remembering					
	The product concepts and basic mane work necessary for smart manufacturing		mber	ing				
	Illustrate current trends at system level in manufacturing organizations	-	erstan	<u> </u>				

CO3Use of Sensors and Selection of sensors for various applicationsRememberingCO4Construct IoT based manufacturing systemsApplyingCO5Discover the importance of industry 4.0 concepts at manufacturing systemsAnalyzing

TEXT BOOKS:

1. M. P. Grover "Automation, Production Systems and Computer-Integrated Manufacturing" Pearson Education, 4th Edition, 2016, ISBN: 978-0133499612

2. Bahga and V. Madisetti, Internet of Things, A hands-on approach, Create Space Independent Publishing 2. Platform, 1st edition, 2014, ISBN: 978-0996025515

REFERENCES:

- 1. S Jeschke, C. Brecher, H. Song, and D. B. Rawat, Industrial Internet of Things: Cyber manufacturing Systems, Springer, 1st edition, 2017, ISBN: 978-3319425580.
- 2. S. K. Saha, Introduction to Robotics, Tata Mcgraw Hill Education Private Limited, 2nd Edition, ISBN: 978-9332902800
- M. Skilton and F. Hovsepian, The 4th Industrial Revolution: Responding to the Impact of Artificial 3. Intelligence on Business, Springer Nature, 2017, ISBN: 978-3-319-62479-2

	Mapping of COs with POs and PSOs														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2		
CO1	3	2	2	3	2	1	-	-	-	-	-	2	3		
CO2	3	2	2	3	2	1	-	-	-	-	-	2	3		
CO3	3	2	2	3	2	1	-	-	-	-	-	2	3		
CO4	3	2	2	3	2	1	-	-	-	-	-	2	3		
CO5	3	2	2	3	2	1	-	-	-	-	-	2	3		
Avg.	3	2	2	3	2	1	-	-	-	-	-	2	3		
1-low,	2-mediu	m, 3-high	. <u>.</u>		•			•	•						

63

6.00 1000