K.S.R. COLLEGE OF ENGINEERING: TIRUCHENGODE - 637 215

(Autonomous)

DEPARTMENT OF INFORMATION TECHNOLOGY

M.Tech. - Information Technology (REGULATIONS 2024)

Vision of the Institution

IV	To become a globally renowned institution in engineering and management, committed to
	providing holistic education that fosters research, innovation and sustainable development.

Mission of the Institution

IM1	Deliver value-based quality education through modern pedagogy and experiential learning.
IM 2	Enrich engineering and managerial skills through cutting-edge laboratories to meet evolving global demands.
IM3	Empower research and innovation by integrating collaboration, social responsibility, and commitment to sustainable development.

Vision of the Department / Programme: Information Technology

DV	To nurture a generation of IT professionals empowered with technological expertise, innovation
	mindset, and commitment to global sustainability.

Mission of the Department / Programme: Information Technology

DM1	To deliver industry-ready curriculum enriched with emerging technologies, hands-on learning, and interdisciplinary exposure.
DM 2	To provide modern infrastructure and a collaborative environment that supports innovation, research and continuous learning
DM3	To empower ethical digital citizens contributing to inclusive and sustainable technological solutions.

Programme Educational Objectives (PEOs) of M.Tech. - Information Technology

PEO 1	Evaluate Solutions: Incorporate with necessary background and significantly contribute to contemporary research in information technology to investigate complex problems.
PEO 2	Novelty in Technology: Apply and disseminate intellectual ideas related to IT field and advance in their profession.
PEO 3	Successful Career: Enhancing the abilities for successful teaching/research careers in industry or academia.

Programme Outcomes (POs) of M.Tech.-Information Technology (Regulations 2024)

M.Tech. - Information Technology graduates will be able to:

PO1	An ability to independently carry out research /investigation and development work to solve practical problems.
PO2	An ability to write and present a substantial technical report/document.
PO3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.
PO4	Collaborate effectively in diverse teams, taking on leadership and contributory roles, to produce solutions using advanced technologies in multidisciplinary environments.
PO5	Engage in life-long learning for continuing education in doctoral level studies and professional development.

Department		K. S. R COLLEGE OF ENGINEERING An Autonomous Institution Approved by AICTE and Affiliated to Anna University, Chennai Accredited by NAAC ('A++' Grade)										Curriculum PG R - 2024		
		Department of Information Technology												
Prog	ramme	M.Tech Information Technol	ogy							en K				
			SEM	1ESTER	1									
S.	Course				Period	ds / Sei	meste	r	Credit	Max. Marks				
No.	Code	Course Title	Category	L	T	Р	SL	Tot	C = T/30	CA	ES	Tot		
HEOF	RY COURS	ES												
1	MA24T1	6 Operations Research	FC -	45	0	0	45	90	3	40	60	100		
2	IT24T11	Advanced Data Structures	PCC	45	0	0	45	90	3	40	60	100		
3	RM24T0	Research Methodology and IPR	RMC	45	0	0	45	90	3	40	60	100		
4	IT24T12	Software Engineering	PCC	45	0	0	45	90	3	40	60	100		
5		Professional Elective - I	PEC	45	0	0	45	90	3	40	60	100		
6	4 - 7	Professional Elective - II	PEC	45	0	0	45	90	3	40	60	100		
ABOF	RATORY C	OURSE		2							=			
7	IT24P11	Advanced Data Structures Laboratory	PCC	0	0	60	0	60	2	60	40	100		
8	IT24P12	XML and Web Services Laboratory	PCC	0	0	60	0	60	2	60	40	100		
1 1 1			TOTAL	270	0	120	270	660	22	e . Luden û	800	Tare.		

		K. S. R COLLEGE OF ENGINEERING An Autonomous Institution Approved by AICTE and Affiliated to Anna University, Chennai Accredited by NAAC ('A++' Grade)										Curriculum PG R - 2024			
Depa	artment	Department of Information Technology													
Programme		VI.Tech Information Technology													
			SEME	STER I	l										
o. Course				Period	ds / Ser	neste		Credit	Max. Marks						
No. Code	Course Title	Category	L	Τ.	Р	SL	Tot	C = T/30	CA	ES	Tot				
HEOF	RY COURSE	ES.		70 V								***			
1	IT24T21	Al and ML Learning Techniques	PCC	45	0	0	45	90	3	40	60	100			
2	IT24T22	Advanced Algorithm	PCC	45	0	0	45	90	3	40	60	100			
3	IT24T23	Soft Computing	PCC	45	0	0	45	90	3	40	60	100			
4	IT24T24	Full Stack Web Application Development	PCC	45	0	0	45	90	3	40	60	100			
5		Professional Elective - III	PEC	45	0	0	45	90	3	40	60	100			
6		Professional Elective - IV	PEC	45	0	0	45	90	3	40	60	100			
ABOF	RATORY CO	DURSES			# 5 A					10 and 10	* 1 6 P				
7	IT24P21	AI and ML Learning Techniques Laboratory	PCC	0	0	60	0	60	2	60	40	100			
8	IT24P22	Advanced Algorithm Laboratory	PCC	0	0	60	0	60	2	60	40	100			
9	IT24P23	Mini Project with Seminar	EEC	0	0	60	0	60	2	60	40	100			

600

TO THE REAL PROPERTY OF THE PARTY OF THE PAR		K. S Approved by AIC Acc		Curriculum PG R - 2024								
Dep	partment	Department of Information										
Programme		M.Tech Information Techr										
			SEM	ESTER I	II							
s.					Period	ls / Sem	Credit	t Max. Marks				
No.	Course Co	ode Course Title	Category	L	Т	P	SL	Tot	C = T/30	CA	ES	Tot
THEC	DRY COURS	S			e	- A		, p. 1	- 15 <u>- 3</u>	a.		11.
1	IT24T31	Advanced Computer Networks	PCC	45	0	0	45	90	3	40	60	100
2	IT24T32	Cloud Computing Technologies	PCC	45	0	0	45	90	3	40	60	100
3		Professional Elective - V	PEC	45	0	0	45	90	3	40	60	100
4		Professional Elective - VI	PEC	45	0	0	45	90	3	40	60	100
5	789 2 2 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	Audit course	AC	30	0	0	0	0	0	100	-	100
LABC	DRATORY C	OURSE			7.2					= + 2	<i>a</i>	
6	IT24P3:	Project Phase – I	EEC	0	0	180	0	180	6	60	40	100

			SE	MESTER	IV							
s.					Period	s / Sem	ester		Credit	Max. Marks		
No.	Course Code	Course Title	Category	L	T	Р	SL	Tot	C = T/30	CA	ES	Tot
ABO	RATORY COU	RSE			24 24 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	" a "			2 0 0			
1	IT24P41	Project Phase – II	EEC	0	0	360	0	360	12	60	40	100
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			TOTAL	0	0	360	0	360	12		100	
						TOT	AL C	REDITS	7	7	76	1, 0

210

TOTAL

180

180

540

18

TOTAL NUMBER OF CREDITS TO BE EARNED FORAWARD OF THE DEGREE = 76

Note: FC - Foundation Courses, RMC- Research Methodology Courses, PCC - Professional core courses, PEC - Professional Elective courses, EEC - Employability Enhancement Courses and AC - Audit courses.

STORY THE STORY OF		Approved by AICTE	K. S. R COLLEGE OF ENGINEERING An Autonomous Institution Approved by AICTE and Affiliated to Anna University, Chennai Accredited by NAAC ('A++' Grade)									
D	epartment	Department of Information	Гесhnology		7		, .		1, 1, a	- 2 .	- ·	
Pı	ogramme	M.Tech Information Techno	ology							e o		
S. No.	Course Title		Semester		Perio	ods / S	emes		Credit		/lax. N	F . 3
		FC	OUNDATION C	10.77		1	J SL	Tot	C = T/30	CA	ES	Tot
1	NAADATAG			JOOKS	L3 (F		1					
1	MA24T16	Operations Research	1 . 1	45	0	0	45	90	3	40	60	100
			TOTAL	45	0	0	45	90	3		-	· .
		EMPLOYABII	ITY ENHANC	EMEN	τ coι	JRSES	(EEC)					
1	IT24P23	Mini Project with Seminar	11	О	Το	60	0	60	2	60	40	100
2	IT24P31	Project Phase – I	III	0	0	180	0	180	6	60	40	100
3	IT24P41	Project Phase – II	IV	0	0	360	0	360	12	60	40	100
	Agric 1987		TOTAL	0	0	600	0	600	20	-	40	100
		RESEARCH	METHODOLO	OGY C	OURS		020100000					7.
1	RM24T09	Research Methodology and		45	0	0	45	90	3	40	60	100
		IPR		45						40	60	100
		PROFES	SIONAL CORE		0 RSFS	(PCC)	45	90	3	-	-	-
1	IT24T11	Advanced Data Structures		45	0	0	45	90	3	40	60	100
2	IT24T12	Software Engineering Methodologies	I a	45	0	0	45	90	3	40	60	100
3	IT24P11	Advanced Data Structures Laboratory		0	0	60	0	60	2	60	40	100
4	IT24P12	XML and Web Services Laboratory	1	0	0	60	0	60	2	60	40	100
5	IT24T21	Al and ML Learning Techniques	Ш	45	0	0	45	90	3	40	60	100
6	IT24T22	Advanced Algorithm		45	0	0	45	90	3	40	60	100
7	IT24T23	Soft Computing	II.	45	0	0	45	90	3	40	60	100
В	IT24T24	Full Stack Web Application Development	II .	45	0	0	45	90	3	40	60	100
9	IT24P21	Al and ML Learning Techniques Laboratory	II	0	0	60	0	60	2	60	40	100

		A.I		2 1 2	1,		_	12	Regulati	ions 202	4	
10	IT24P22	Laboratory		0	0	60	0	60	2	60	40	100
11	IT24T31	Advanced Computer Networks	Ш	45	0	0	45	90	3	40	60	100
12	IT24T32	Cloud Computing Technologies	III	45	0	0	45	90	3	40	60	100
			TOTAL	360	0	240	360	960	32	-	-	
		PROFESSIO	ONAL ELECTI	VE CO	URSE	S (PEC	·)					
		PROFESSIONAL	ELECT1VES -	·I and	II (S	EMEST	TER – I)				
1	IT24E01	Advanced Computer Architecture	I	45	0	0	45	90	3	40	60	100
2	IT24E02	Ad-Hoc and Sensor Networks	1	45	0	0	45	90	3	40	60	100
3	IT24E03	Computer Vision		45	0	0	45	90	3	40	60	100
4	IT24E04	Data Science		45	0	0,	45,	90	3	40	60	100
5	IT24E05	Scientific Computing		45	0	0	45	90	3	40	60	100
6	IT24E06	Digital Image Processing	I	45	0	0	45	90	3	40	60	100
7	IT24E07	XML and Web Services	L	45	0	0	45	90	3	40	60	100
8	IT24E08	Distributed Systems		45	0	0	45	90	3	40	60	100
9	IT24E09	Multimedia Communications	1	45	0	0	45	90	3	40	60	100
10	IT24E10	Information Retrieval Techniques	1	45	0	0	45	90	3	40	60	100
		PROFESSIONAL E	LECTIVES – II	I and	V (SI	EMEST	ER – II)				
1	IT24E11	Data Warehousing and Data Mining		45	0.	0	45	90	3	40	60	100
2	IT24E12	Network Management System	ÎI .	45	0	0	45	90	3	40	60	100
3	IT24E13	Object Oriented Programming in Python		45	0	0	45	90	3	40	60	100
4	IT24E14	Quantum Computing	II .	45	0	0	45	90	3	40	60	100
5	IT24E15	Block chain Technology and Applications	II .	45	0	0	45	90	3	40	60	100
6	IT24E16	Digital Forensics	П	45	0	0	45	90	3	40	60	100
7	IT24E17	Social Network Analysis	. U	45	0	0	45	90	3	40	60	100
8	IT24E18	Big Data and Analytics	Ш.	45	0	0	45	90	3	40	60	100
2 2 7												-,

Schairman (Bos)

10	IT24E20	Augmented Reality and Virtual Reality	II.	45	0	0	45	90	3	40	60	100
		PROFESSIONAL EL	ECTIVES - \	/ and	VI (SE	MEST	ER – II	I)				Contract Con
1	IT24E21	Applied Cyber security Analytics and Risk Management	III	45	0	0	45	90	3	40	60	100
2.	IT24E22	Deep Learning and Applications	Ш	45	0	0	45	90	3	40	60	100
3	IT24E23	Human Computer Interaction Techniques	ш	45	0	0	45	90	3	40	60	100
4	IT24E24	AWS Cloud Solution Architecture		45	0	0	45	90	3	40	60	100
5	IT24E25	Internet of Things	Ш	45	0	0	45	90	3	40	60	100
6	IT24E26	GPU Computing	Ш	45	0	0	45	90	3	40	60	100
7	IT24E27	Interactive and Digital Marketing	Ш	45	0	0	45	90	3	40	60	100
8	IT24E28	Cognitive Science	Ш	45	0	0	45	90	3	40	60	100
9	IT24E29	Data Visualization	ill	45	0	0	45	90	3	40	60	100
10	IT24E30	Advanced Business Analytics with R	Ш	45	0	0	45	90	3	40	60	100
		OPEN ELECTIVE CO	URSES OFF	ERED B	Y THI	E DEP	ARTMI	ENT				
1	IT24001	IoT for Smart System	Ш	45	0	0	45	90	3	40	60	100
2	IT24002	Machine Learning for Intelligent Multimedia Analytics	Ш	45	0	0	45	90	3	40	60	100
3	IT24003	DevOps and Micro services	ш	45	0	0	45	90	3	40	60	100
4	IT24004	Cyber security and Digital Awareness	III.	45	0	0	45	90	3	40	60	100
		AUDIT	COURSE (SEMES	TER –	III)						
1	AX24A01	Disaster Management	- 10	30	0	0	0	60	0	100	-	10
2	AX24A02	Value Education	Ш	30	0	0	0	60	0	100		10
3	AX24A03	Constitution of India	ш	30	0	0	0	60	0	100	=	10
3												

Chairman (Bos)

TOTAL NUMBER OF CREDITS=76

		Su	ımmary				
Name of the Programme: M. Tech Information Technology							
CATEGORY		İ	Ш	IV	TOTAL CREDITS	%	
FC	3				3	3.94	
EEC		2	6		8	10.52	
RMC	3		-	1	3	3.94	
PCC	10	16	6	<u>-</u>	32	42.10	
PEC	6	6	6	-	18	23.68	
OEC	-			12	12	15.78	
AC			√				
Total	22	24	18	12	76	100	

MA24T16	OPERATIONS RESEARCH	Category	L	T	P	SL	С
	- E V	FC	45	0	0	45	3

SEMESTER - I (M.E.: Common to CSE, BDA and M.Tech IT)

PREREQUISITE:

For Effective learning and applying resource management technique students must have a foundational understanding of optimization technique like linear programming and integer programming, basic knowledge of network programming, Queuing model.

OBJECTIVES:

To determine the most effective way to allocate the best value of linear programming, minimize the total transportation cost and to find the optimal way to assign a set of tasks, the optimal quantity of inventory to hold the balancing between excess and shortage, analyze the basic components and behavior of queuing systems, shortest path in PERT/CPM, Network design.

UNIT - I LINEAR PROGRAMMING

(9)

Formation of LPP - Graphical method - Simplex method - Big M Method - Dual simplex method.

UNIT - II TRANSPORTATION AND ASSIGNMENT PROBLEMS

(9)

Transportation Models (Minimizing and Maximizing Problems) – Balanced and unbalanced Problems – Initial Basic feasible solution by North West Corner Rule, Least cost and Vogel's approximation methods – Optimum solution by MODI Method –Assignment Models (Minimizing and Maximizing Problems) – Hungarian method - Balanced and Unbalanced Problems.

UNIT - III INVENTORY MODELS

(9)

Types of Inventory - Deterministic inventory models: Purchasing problem with no shortage and with shortages - Production problem with and without shortages - Purchase problem with price breaks - Probabilistic inventory model (excluding proof).

UNIT - IV QUEUING MODELS

(9)

Characteristics of Queuing Models – Kendall's notations - Little's formula - (M/M/1): $(\infty/FIFO)$ Single Server with infinite capacity – (M/M/C): (N/FIFO) Multi Server with infinite capacity - (M/M/1): (N/FIFO) Single Server with finite capacity - (M/M/C): (N/FIFO) Multi server with finite capacity .

UNIT - V PERT/CPM

(9)

Network Construction-Critical Path Method – Computation of earliest start time, latest start time, Total, free and independent float time-PERT Analysis – Computation of optimistic, most likely Pessimistic and expected time.

Lecture = 45, Tutorial = 0, Self Learning = 45; Total = 90 Periods

COURSE OUTCOMES: At the end of the course, the students will be able to

COs	Course Outcome	Cognitive Level
CO1	Apply the concepts of linear programming approach to solve the uncertain situations.	Apply
CO2	Analyze the transportation models and solve Assignment problems to minimize the costs.	Analyze
CO3	Apply the inventory models using EOQ and EBQ with and without shortage.	Apply
CO4	Analyze and interpret the key features of various queuing systems	Analyze
CO5	Perform optimistic and pessimistic analysis using PERT/CPM networks.	Apply

1. Taha H.A, "Operation Research", Pearson Education, Noida, 9th Edition, 2013 2. Vohra N D, "Quantitative Techniques in Management", Tata Mc Graw Hill, New Delhi, 6th Edition, 2021.

1. P.K.Gupta and Man Mohan, "Problems in Operations Research", S.Chand and Co, New Delhi, 12th Edition, 2014

2. Wayne. L. Winston, "Operations research applications and algorithms", Thomson learning, United States, 4th Edition, 2016.

3. Kalavathy S, "Operations Research", Vikas Publishing House, Ahmedabad, 6th Edition, 2019.

4. Hira and Gupta, "Problems in Operations Research", S.Chand and Co, New Delhi, 2nd Edition, 2012.

lapping of COs w	T The second second				
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	3	-	2	-	2
CO2	3	, -	2	-	2
CO3	3	= =	2	-	2
CO4	3	-	2	-	2
CO5	3	-	2	-	2

1 - Low, 2 - Medium, 3- High.

IT24T11 ADVANCED DATA STRUCTURES	Category	L	T	P	SL	С
	PCC	45	0	0	45	3

Basic Knowledge in Data Structures, Arrays ,Linked Lists, Stacks ,Queue, Tree, Hash Tables, Heap, Mathematics, Discrete Mathematics, Graph Theory, Probability and Statistics, Algorithm Analysis, Sorting and Searching Algorithms, Problem-Solving Techniques, Divide and Conquer, Greedy Algorithms, Dynamic Programming, Proficiency in a Programming Language and Dynamic Memory Management.

OBJECTIVES:

This course aims to provide a fundamental understanding of advanced data structures and their implementations using hashing, skip list and priority queues and trees. Also it covers pattern matching, text compression text processing.

UNIT - I HASHING (9)

General Idea – Hash Function – Separate Chaining – Hash Tables without linked lists: Linear Probing – Quadratic Probing – Double Hashing – Rehashing – Hash Tables in the Standard Library – Universal Hashing – Extendible Hashing.

UNIT - II SKIP LISTS AND PRIORITY QUEUES (HEAPS)

(9)

Skip Lists: Need for Randomizing Data Structures and Algorithms – Search and Update Operations on Skip Lists – Probabilistic Analysis of Skip Lists – Deterministic Skip Lists – Heap: Model – Simple implementations – Binary Heap: Structure Property – Heap Order Property – Basic Heap Operations: insert, delete, and Percolate down - Other Heap Operations.

UNIT - III TREES (9)

AVL Trees – Red Black Trees: Properties of red-black trees, Rotations, Insertion, and Deletion – 2-3 Trees - Searching for an Element in a 2-3 Tree - inserting a New Element in a 2-3 Tree - Deleting an Element from a 2-3 Tree – B-Trees – Splay Tree.

UNIT - IV TEXT PROCESSING

(9)

Text Processing: String Operations — Brute-Force Pattern Matching — The Boyer-Moore Algorithm — The Knuth-MorrisPratt Algorithm — Standard Tries — Compressed Tries — Suffix Tries — The Huffman Coding Algorithm — The Longest Common Subsequence Problem (LCS) — Applying Dynamic Programming to the LCS Problem.

UNIT - V COMPUTATIONAL GEOMETRY

(9)

Computational Geometry: One Dimensional Range Searching – Two Dimensional Range Searching – Constructing a Priority Search Tree – Searching a Priority Search Tree – Priority Range Trees – Quad trees – k-d Trees.

L= 45, T=0, P=0, \$1=45, TOTAL: 90 PERIODS

Eusimian (202)

COs	Course Outcome	Cognitive Level
CO1	Apply various hashing techniques to resolve collisions and efficiently manage key-value data in hash tables.	Apply
CO2	Develop skip lists and heap structures to perform efficient insertion, deletion, and search operations in dynamic and priority-based data management.	Apply
соз	Construct and manipulate balanced tree structures to support efficient searching, insertion, and deletion in hierarchical data.	Apply
CO4	Develop solutions for text and string processing using algorithms for example brute-force matching, Boyer-Moore, KMP, Huffman coding, and data structures like tries and suffix trees.	Apply
CO5	Deploy geometric structures to perform spatial data searches and multidimensional range queries effectively.	Apply

REFERENCES:

- 1. Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, 15th Edition, Pearson Education, 2023.
- 2. Thomas H Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, 4th Edition, The MIT Press, 2022.
- 3. M T Goodrich, Roberto Tamassia, Algorithm Design and Applications, 1st edition, John Wiley, 2014.
- 4. Alfred V. Aho and John E. Hopcroft, Jeffrey D. Ullman, Data Structures and Algorithms, Pearson Education, Reprint 2006.

		Mapping of COs			
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	3		2		1
CO2	3		2		1
CO3	3		2	THE WAY	1
CO4	3		2	un data e	1
CO5	3		2		1

RM24T09 RESEARCH METHODOLOGY AND IPR | Category | L | T | P | SL | C | RMC | 45 | 0 | 0 | 45 | 3

(Common to ALL)

PREREQUISITE:

Basic understanding of research methodology and general awareness of legal and innovation-related frameworks.

OBJECTIVE:

• To equip learners with the knowledge and skills to design and conduct research, analyze data effectively, and understand the fundamentals of intellectual property rights and patent processes.

UNII - I	RESEARCH DESIGN	(9)
Overview of r	esearch process and design – Use of seconda	ry and exploratory data to answer the

research question, Qualitative research, Observation studies – Experiments and surveys.

UNIT - II DATA COLLECTION AND SOURCES (9) Measurements: Measurement scales — Questionnaires and instruments — Sampling and Methods

Measurements: Measurement scales – Questionnaires and instruments – Sampling and Methods. Data – Preparing, Exploring, Examining and Displaying.

UNIT - III DATA ANALYSIS AND REPORTING (9)

Overview of multivariate analysis – Hypotheses testing and measures of association – Presenting insights and findings using written reports and oral presentation.

UNIT - IV INTELLECTUAL PROPERTY RIGHTS (9)

Intellectual Property – The concept of IPR, Evolution and development of the concept of IPR, IPR development process, Trade secrets, Utility models, IPR & Biodiversity, Role of WIPO and WTO in IPR establishments, Right of property, Common rules of IPR practices, Types and features of IPR agreement, Trademark, Functions of UNESCO in IPR maintenance.

UNIT - V PATENTS (9)

Patents – objectives and benefits of patent – Concept, features of patent, Inventive step, Specification – Types of patent application, process E-filling – Examination of patent – Grant of patent, Revocation, Equitable Assignments. Licenses – Licensing of related patents – Patent agents – Registration of patent agents.

LECTURE: 45, SELF LEARNING: 45, TOTAL: 90 PERIODS

101

COURS	SE OUT	COMES:				
At the	end of	the course, the s	tudents will be a	ble to:		
COs			Course Outco	ome		Cognitive Level
CO1	Deve	lop a suitable res	earch process to	solve real-tim	e problems.	Apply
CO2	1	/ appropriate met nalysis.	hods to collect qu	aalitative and	quantitative data	Apply
CO3	Apply appropriate statistical tools to analyze data and solve research problems.					
CO4	Describe the types and features of intellectual property and its role in IPR establishment.					
CO5	CO5 Illustrate the patent procedures, E-filling, register of patents, and licensing of patents.				Understand	
	SOOKS:	Donald R Schir	ndler Pamela S	and Sharma	IK "Rusiness Res	earch Methods"
Cooper Donald, R., Schindler Pamela, S., and Sharma, J.K., "Business Research M Tata McGraw Hill Education, Eleventh Edition, 2012.						Car or reaction was
2	Catherine J. Holland, Intellectual Property: Patents, Trademarks, C Secrets, Entrepreneur Press, 2007.			opyrights, Trade		
REFER	ENCES:		4			
1	David F 2007.	lunt, Long Nguyei	n, Matthew Rodg	ers, Patent Se	arching: Tools & Te	echniques, Wiley
2		•			y body under an <i>A</i> aw and Practice, S	
		,	Mapping of COs v	vith POs and	PSOs	A WANTER
COs	/ POs	PO 1	PO 2	PO 3	PO 4	PO 5
	01	3	3	-	=	3
C	02	3	3	-	-	3
C	D3	3	3	-		3
C	04	3	3	-	-	3
C	05	. 3	3		. -	3
1 - Lov	v, 2 - M	edium, 3 - High				

IT24T12	SOFTWARE ENGINEERING METHODOLOGIES	Category	L	T	Р	SL	
1124112	SOFTWARE ENGINEERING WETHODOLOGIES	PCC	45	0	0	45	3
				,- ,-			
PREREQUISI		. 1.,	PCT to				
Prerequisites	for Software Engineering Methodologies include	basic prograi	mmin	g skil	ls, kr	nowle	dge
of the softwa	are development life cycle			A	2		
OBJECTIVES:							
JBJECTIVES.						,	
Γο provide	students with a comprehensive understanding	of software	e eng	inee	ring	princ	iple
	es, and practices. It aims to familiarize learners w						
ncluding ge	neric, prescriptive, and agile development approa	aches such a	s Ext	reme	Pro	gramı	mir
Scrum, and t	he Dynamic Systems Development Method.					*	
JNIT - I	INTRODUCTION	4		, h		(9)	
Software En	gineering - Software Process - Generic process m	nodel – Pres	criptiv	ve Pr	oces	s mod	del
Agile develo	pment-Agile Process- Extreme Programming - O	ther Agile p	roces	s mo	odels	: Ada	pt
process mod	els ,Scrum, Dynamic - Systems Development Meth	od .	-11 -	-			
UNIT - II	REQUIREMENT ANALYSIS	. 1	-		i i	(9)	
	nd Non-Functional Requirements - User Requir						
	pecifications - Software Requirements Docum						
Processes -	Feasibility Studies- Elicitation and Analysis - Va	lidations - N	/lanag	geme	nt -	Syste	m
Models – Co	ntext - Behavioral - Data - Object - Structured.						
UNIT - III	OBJECT ORIENTED METHODOLOGIES	<u>-i-a - 1-4</u>	- 5,00			(9)	
	Methodology - Booch Methodology - Jacobson M						
Unified App	roach - Unified Modeling Language - Use Case -	Class Diagra	m - Ir	ntera	ctive	Diag	rar
Package Dia	gram - Collaboration Diagram-State Diagram - Acti	vity Diagram				# A A	
UNIT - IV	OBJECT ORIENTED ANALYSIS AND DESIGN					(9)	
	Use Cases - Object Analysis – Classification -						
Attributes a	nd Methods - Design Axioms - Designing Classes -	Access Layer	- Ob	ject S	Stora	ge –V	iev
Layer .		218	5			- 0-	
UNIT - V	SOFTWARE TESTING AND SOFTWARE QUALITYA		9		5	(9)	
Software Te	sting Fundamentals - Test Case Design - White Bo	ox - Black Bo	x - Te	esting	g for	Speci	ali
Environmen	ts, Architectures and Applications - Software Tes	sting Strateg	ies -	Appr	oach	– Iss	ue
Testing - Un	it - Integration - Validation System - Art of Debug	ging. Softwar	e Qua	ality C	once	pts - C	Qua

Software Testing Fundamentals - Test Case Design - White Box - Black Box - Testing for Specialized Environments, Architectures and Applications - Software Testing Strategies - Approach — Issues — Testing - Unit - Integration - Validation System - Art of Debugging. Software Quality Concepts - Quality Assurance - Software Technical Reviews - Formal Approach to Software Quality Assurance - Reliability - Quality Standards - Software Quality Assurance Plan - Software Maintenance - Software Configuration Management -SCM Standards.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

Chairman (BoS)

K.S.R. College of Engineering

16 Applicable for Students admitted from 2024 - 2025 Onwards

COURSE OUTCOMES:

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Implement different software development life cycle models	
	including prescriptive and agile methodologies to manage and	Apply
7 NH 2	execute software projects effectively.	
CO2	Demonstrate the process of gathering, documenting, and	
	validating functional and non-functional requirements using	Apply
	system models and structured analysis techniques.	
CO3	Develop object-oriented methodologies and construct UML	- I
	diagrams to represent software system structures and	Apply
	behaviours.	
CO4	Construct object-oriented design models by identifying use	
e je garaki	cases, class relationships, attributes, and methods to support	Apply
	modular and reusable software architecture.	
CO5	Apply testing techniques and quality assurance strategies to	*
	verify software functionality, ensure reliability, and manage	Apply
	configuration and maintenance activities.	

REFERENCES:

- 1.Roger S Pressman, "Software Engineering A Practitioner's Approach", 7th edition, McGraw Hill Education, 2014.
- 2. Ian Sommer ville, "Software engineering", Seventh Edition, Pearson Education Asia.
- 3. Wiegers, Karl, Joy Beatty, "Software requirements", Pearson Education, 2013.
- 4. Pankaj Jalote, Software Engineering, A Precise Approach, Wiley India, 2010.

		Mapping of COs	with 1 03 and 1	1 3 0 3	
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	3		2	-	
CO2	3		2	-	-
CO3	3		2		- 10
CO4	3		2	-	
CO5	3	, i = 1	2	-	- 1 1 L

1704044	ADVANCED DATA CEDUCTURES LABORATORY	Category	L	T	P	SL	С
IT24P11	ADVANCED DATA STRUCTURES LABORATORY	PCC	0	0	60	0	2

Basic knowledge of data structures and algorithms, including trees, graphs, and recursion. Proficiency in a programming language such as C++, Java, or Python is required.

OBJECTIVES:

Students will learn to analyze and evaluate the time and space complexity associated with various data structures, enabling them to choose the most efficient solutions for different problems. The course aims to strengthen problem-solving skills by applying appropriate data structures to real-world challenges. In addition, it focuses on enhancing students coding and implementation abilities, including debugging and testing techniques.

List of Exercise/Experiments:

Implementation of

- 1. Depth-First Search (DFS) and Breadth-First Search (BFS).
- 2. Dijkstra's Algorithm for shortest paths in weighted graphs.
- 3. Floyd-Warshall Algorithm for all-pairs shortest paths.
- 4. Minimum Spanning Tree using Prim's algorithms.
- 5. Randomized quick sort algorithm.
- 6. Hash functions and associated algorithms.
- 7. Splay trees and its functions.
- 8. Find the solution for the knapsack problem using the greedy method.
- 9. Operations on Fibonacci heaps.
- 10. Operations on binary heaps.
- 11. Operations on B-Trees.
- 12. N Queen's problem using Back Tracking algorithm 0-1 knapsack problem using dynamic programming.
- 13. Single source shortest path for a given graph.
- 14. Find minimum cost spanning tree using Kruskal's algorithm.

L= 0, T=0, P=60, SL=0, TOTAL: 60 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Implement List ADTs and their operations.	Apply
CO2	Develop programs for sorting, hash functions	Apply
CO3	Apply Greedy, divide and conquer algorithms	Apply
CO4	Apply dynamic programming concept in real time problems	Apply
CO5	Analyze and Apply various advanced data structures	Apply
	algorithms in real time applications	gineering, Tire

S. M

REFERENCES:

- 1. Thomas H. Cormen, Charles E"Introduction to Algorithms" 3rd Edition, MIT Press, 2009
- 2. Steven S. Skiena "The Algorithm Design Manual" 2nd Edition, Springer, 2008.

Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PO4	PO5			
CO1	3	· · · · · · · · · · · · · · · · · · ·	2	1	2			
CO2	3		2	1	2			
CO3	3		2	1	2			
CO4	3		2	1	2			
CO5	3		2	1	2			

IT2 4D42		Category	. L .	Т	Р	SL	С
IT24P12	XML AND WEB SERVICES LABORATORY	PCC	0	0	60	0	2

A Basic knowledge in programming languages Java, Python, or C#.Familiarity with Integrated Development Environments (IDEs) like Eclipse, IntelliJ, or Visual Studio.

OBJECTIVES:

This course aims to equip students with the skills to design and develop dynamic, data-driven web applications. Students will learn to create well-structured HTML pages enhanced with CSS for styling and JavaScript for client-side interactivity, including form validation and date handling. The course covers server-side programming using ASP/JSP and Servlets, enabling learners to build robust online applications that manage sessions, cookies, and database connectivity.

List of Exercise/Experiments:

- 1. Creation of HTML pages with frames links, tables and other tags
- 2. Usage of internal and external CSS along with HTML pages
- 3. Client side Programming
 - i) JavaScript for displaying date and comparing two dates
 - ii) Form Validation including text field, radio buttons, check boxes, list box and other controls.
- 4. Usage of ASP/JSP objects Response, Request, Application, Session, Server, ADO etc
 - i) Writing online applications such as shopping, railway/air/bus ticket reservation system with set of ASP/JSP pages
 - ii) Using sessions and cookies as part of the web application
- 5. Writing Servlet Program using HTTP Servlet
- 6. Any online application with database access
- 7. Creation of XML document for a specific domain
- 8. Writing DTD or XML schema for the domain specific XML document
- 9. Parsing an XML document using DOM and SAX Parsers
- 10. Connect an Xml web page to any database engine.

L= 0, T=0, P=60, SL=0, TOTAL 60 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Design and develop static web pages using HTML elements such as frames, links, tables, and other tags.	Apply
CO2	Apply internal and external CSS styles to enhance the layout and presentation of web pages.	Apply
CO3	Develop dynamic web applications using server-side scripting with ASP/JSP, utilizing objects such as Response, Request, Session, and Application.	Apply
CO4	Build interactive online applications (e.g., shopping cart or ticket booking system) using ASP/JSP with session handling and cookies.	Apply
CO5	Connect XML-based web pages with database systems to enable dynamic data-driven content.	Apply

REFERENCES:

1. Schmelzer, XML and Web Services Unleashed, Pearson India, January 2008.

2. Claudia Zentner, Dieter Koenig, Doug Davis, Glen Daniels, Building Web Services with Java: Making Sense of XML, SOAP, WSDL, and UDDI, Sams Publishing, June 2004.

		Mapping of COs v	with POs and P	SOs	
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	3		2	1	2
CO2	3		2	1	2
CO3	3	=	2	1	2
CO4	3		2	1	2
CO5	3		2	1	2

1-low, 2-medium, 3-high

170 4704	and ML LEARNING TECHNIQUES	Category	L	1	P	2L	C
IT24T21 Al	and MIL LEARNING TECHNIQUES	PCC	45	0	0	45	3

Proficiency in programming languages like Python and familiarity with libraries NumPy, Pandas, TensorFlow, and Scikit-learn are essential for implementation. Basic knowledge of machine learning concepts supervised and unsupervised learning, as well as algorithms like linear regression and clustering, is crucial.

OBJECTIVES:

This course aims to provide a foundational understanding of Artificial Intelligence (AI) and Machine Learning (ML), covering their historical evolution and key applications across various domains. Students will learn essential mathematical concepts including linear algebra, probability theory, and calculus needed for AI/ML algorithms.

UNIT - I FOUNDATIONS OF AI AND MACHINE LEARNING (9)

Introduction to AI and ML - Historical perspective and evolution - Key applications in various domains - Basic linear algebra: Vectors, matrices - Probability theory: Bayes' theorem- Basic calculus: Derivatives and integrals.

UNIT - II SUPERVISED LEARNING TECHNIQUES (9)

Introduction to Supervised Learning - Supervised vs. unsupervised learning - Basic terminology: Training, testing, validation - Linear regression - Logistic regression - k-Nearest Neighbors - Decision Trees and Random Forests - Support Vector Machines.

UNIT - III UNSUPERVISED LEARNING TECHNIQUES (9)

Clustering - k-Means clustering - Hierarchical clustering - Dimensionality Reduction - Principal Component Analysis - Applications of Principal Component Analysis in data visualization.

UNIT - IV NEURAL NETWORKS AND DEEP LEARNING (9)

Basic concepts of neural networks - perceptrons and multi layer perceptrons - Introduction to CNNs - Convolution and pooling operations - Data preprocessing and feature engineering - Model selection and hyper parameter tuning - Cross validation.

UNIT - V ADVANCED TOPICS AND ETHICAL CONSIDERATIONS (9)

Model Deployment and Monitoring - Saving and loading models - Model deployment basics - Ethics and Fairness in AI - Ethical implications of AI - Bias in machine learning algorithms.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

Chairman (BoS)

K.S.R. College of Engineering 22 Applicable for Students admitted from 2024 + 2025 Onwards

COURSE OUTCOMES:

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Apply foundational mathematical concepts and implement basic Al and ML techniques across real-world domains.	Apply
CO2	Implement supervised learning to solve classification and regression problems.	Apply
CO3	Prepare unsupervised learning techniques like k-means, hierarchical clustering, and principal component analysis to discover patterns and reduce dimensionality in data.	Apply
CO4	Construct and train neural network models including perceptrons and convolutional neural networks (CNNs), using feature engineering and hyper parameter tuning strategies.	Apply
CO5	Demonstrate the ability to deploy machine learning models while recognizing and addressing ethical concerns, such as bias and fairness in AI systems.	Apply

REFERENCES:

- 1. Stuart Russell and Peter Norvig , Artificial Intelligence: A Modern Approach" ,2024.
- 2. Christopher Bishop, "Pattern Recognition and Machine Learning", 2016.
- 3. Marc Peter Deisenroth, Mathematics for Machine Learning", 2020.
- 4. Good fellow, Yoshua Bengio, and Aaron Courville, "Deep Learning", 2016.

Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PO4	PO5			
CO1	3	-	2	-	2			
CO2	3	15 m	2		2			
CO3	3		2	_	2			
CO4	3		2	-	2			
CO5	3	·	2		2			

IT24T22	ADVANCED ALGORITHM	Category	L	Т	Р	SL	С
1124122	ADVANCED ALGORITHM	PCC	45	0	0	45	3
		122					

Basic knowledge in data structure and algorithm concepts dynamic programming, tree traversal, string manipulation and string handling algorithms.

OBJECTIVES:

This course aims to provide an understanding of fundamental and advanced algorithms concepts and their implementations using dynamic programming, basic search and traversal, network flow theory, string matching, approximation and probabilistic and randomized algorithms.

UNIT - I	OVERVIEW	(9)
Overview of	Divide and Conquer - Greedy and Dynamic Programming strategies	- Basic search
and traversa	l techniques for graphs — Backtracking - Branch and Bound.	
UNIT - II	FLOWS IN NETWORK	(9)

Basic Concepts – Maxflow mincut theorem – Ford and Fulkerson augmenting path Method – integral flow theorem – maximum capacity augmentation - Edmond Karp method – Dinic's method and its analysis - Strassen's algorithm.

UNIT - III STRING MATCHING ALGORITHM (9)

Introduction to string-matching problem - Naïve or Brute force algorithm - String matching with finite automata - Rabin Karp algorithm - Knuth Morris Pratt Algorithm - BoyerMoore algorithms - Longest Common Substring/Subsequence - Shortest Common Superstring - Bipartite Matching - complexity analysis.

UNIT - IV APPROXIMATION ALGORITHMS (9)

Introduction - Combinatorial Optimization - approximation factor - PTAS, FPTAS - Approximation algorithms for vertex cover, set cover, TSP, knapsack, bin packing, subset-sum problem - Analysis of the expected time complexity of the algorithms - Theory of NP- Hard and NP-Complete Problems.

UNIT - V PROBABILISTIC AND RANDOMIZED ALGORITHMS (9)

Numerical probabilistic algorithms - Las Vegas and Monte Carlo algorithms - Randomized algorithm - Game-theoretic techniques - Circuit Satisfiability Problem - Approximation Algorithms - Randomized Algorithms - Multithreaded Algorithms - Parallel Algorithms - Amortized Analysis and Its Applications.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Implement divide and conquer, greedy, dynamic programming, backtracking, and branch-and-bound strategies to solve computational problems.	Apply
CO2	Implement network flow algorithms including Ford-Fulkerson, Edmond-Karp, and Dinic's methods to solve maximum flow problems.	Apply
CO3	Develop string matching solutions using algorithms like Rabin-Karp, KMP, and Boyer-Moore, and apply techniques for longest common subsequence, shortest common superstring, and bipartite matching.	Apply
CO4	Apply approximation techniques and heuristics to solve combinatorial optimization problems for vertex cover, set cover, TSP, and knapsack with known approximation bounds.	Apply
CO5	Deploy probabilistic, randomized, and parallel algorithm techniques including Las Vegas and Monte Carlo methods to solve problems like SAT, subset-sum, and bin packing with improved efficiency.	Apply

REFERENCES:

- 1. Ellis Horowitz, Sartaj Sahni, and Sanguthevar Rajasekaran, "Fundamentals of Computer Algorithms", 2nd Edition, University Press, 2018.
- 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, "Introduction to Algorithms", 4th Edition, MIT Press, 2022.
- 3. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, "Introduction to Algorithms", 4th Edition, MIT Press, 2022.

COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	3	7.2 ° 7.	2	-	-
CO2	3	-	2	_	_
CO3	3		2		V 1 4 2 2
CO4	3		2		
CO5	3		2		

IT24T22	SOFT COMPUTING	Category	L	T	P	SL	С
IT24T23	SOFI COMPOTING	PCC	45	0	0	45	3
, 4 1							

A basic mathematics, particularly in areas like linear algebra, probability, and calculus, as these are essential for understanding algorithms in soft computing. Additionally knowledge in artificial intelligence (AI), neural networks, and optimization methods, including genetic algorithms and fuzzy logic.

OBJECTIVES:

This course aims to provide an understanding of the evolution of computing from conventional AI to modern computational intelligence techniques. It focuses on fuzzy logic, neural networks, and genetic algorithms, enabling students to apply these soft computing methods to real-world problems using tools like MATLAB or Python.

	THE STATE OF THE SOUTH CONTRACT AND NELLOAD NETWORKS	(9)
UNIT - I	INTRODUCTION TO SOFT COMPUTING AND NEURAL NETWORKS	(9)
Evolution of	of Computing: Soft Computing Constituents – From Conventional AI to	o Computational
Intelligence	e: Machine Learning Basics.	

UNIT - II FUZZY LOGIC (9)

Fuzzy Sets— Operations on Fuzzy Sets — Fuzzy Relations — Membership — Functions: Fuzzy Rules and Fuzzy Reasoning — Fuzzy Inference Systems — Fuzzy Expert Systems — Fuzzy Decision Making.

UNIT - III NEURAL NETWORKS (9)

Machine Learning Using Neural Network – Adaptive Networks – Feed forward Networks – Supervised Learning Neural Networks – Radial Basis Function Networks: Reinforcement Learning – Unsupervised Learning Neural – Networks – Adaptive Resonance architectures – Advances in Neural networks.

UNIT - IV GENETICAL ALGORITHM (9)

Introduction to Genetic Algorithms (GA) – Applications of GA in Machine Learning: Machine Learning Approach to Knowledge acquisition.

UNIT - V MATLAB/PYTHON LIB (9)

Introduction to Matlab / Python – Arrays and array operations – Functions and Files – Study of neural network toolbox and fuzzy logic toolbox – Simple implementation of Artificial Neural Network and Fuzzy Logic – Recent Trends in deep learning – various classifiers – Neural networks and genetic algorithm – Implementation of recently proposed soft computing techniques.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

Chairman (BoS)

K.S.R. College of Engineering 26 Applicable for Students admitted from 2024 2025 Onwards

COURSE OUTCOMES:

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Discuss soft computing techniques and their roles in overcoming the limitations of conventional AI, leading to advancements in computational intelligence.	Understand
CO2	Assess fuzzy logic and reasoning techniques to handle uncertainty and solve engineering problems, enhancing decision-making in complex environments.	Analyze
CO3	Apply neural network architectures feed forward, RBF, and adaptive networks to solve real-world problems using advanced neural computing techniques.	Apply
CO4	Demonstrate the genetic algorithms to machine learning tasks and utilize them for effective knowledge acquisition and problem-solving.	Apply
CO5	Implement fuzzy logic systems using MATLAB for decision- making in uncertain environments and use neural network toolboxes to solve classification problems.	Apply

REFERENCES:

- 1. Jyh Shing Roger Jang, Chuen Tsai Sun, EijiMizutani, Neuro:Fuzzy and Soft Computing, 2nd Edition, Prentice Hall of India, 2019.
- 2. George J, Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, 4th Edition Prentice Hall, 2015.
- 3. Prof. Prasun Chakraborty Kuntal Bara , Fundamentals of Soft Computing, BpB publication, January 2017.
- 4. Samir Roy ,Soft Computing: Neuro-Fuzzy and Genetic Algorithms,Pearson publication, January 2013.

COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2	-		<u>- 21061 d 161 ud</u>	
CO2	3				1
CO3	3		2	· ·	1
CO4	3	-	2	_	1
CO5	3		2		1

S. CATTX+

IT24T24	FULL STACK WEB APPLICATION	Category	L	Т	P	SL	С
	DEVELOPMENT	PCC	45	0	0	45	3

Students should have a foundational understanding of web development concepts, including the distinction between server-side and client-side web applications. Exposure to Object-Oriented Programming (OOP) concepts (e.g., classes, inheritance, interfaces, and generics) is beneficial, as these are integral to Type Script.

OBJECTIVES:

This course introduces full-stack web development using Type Script, Angular, Node.js, Express.js, and MongoDB. It enables students to build dynamic web applications with client-side and server-side integration, RESTful APIs, and NoSQL databases. Emphasis is placed on modern web technologies, asynchronous programming, and scalable application design.

UNIT - I FUNDAMENTALS & TYPESCRIPT LANGUAGE (9)

Server-Side Web Applications - Client-Side Web Applications - Single Page Application - About TypeScript - Creating TypeScript Projects - TypeScript Data Types - Variables- Expression and Operators - Functions - OOP in Typescript - Interfaces - Generics. Modules - Enums - Decorators - Enums - Iterators - Generators.

UNIT - II ANGULAR (9)

About Angular. Angular CLI - Creating an Angular Project — Components: Components Interaction – Dynamic Components - Angular Elements - Angular Forms - Template Driven Forms - Property, Style, Class and Event Binding - Two way Bindings - Reactive Forms - Form Group - Form Controls - About Angular Router: Router Configuration - Router State - Navigation Pages - Router Link - Query Parameters - URL matching - Matching Strategies — Services -Dependency Injection — HttpClient - Read Data from the Server - CRUD Operations - Http Header Operations - Intercepting requests and responses.

UNIT - III NODE.Js (9)

Node.js Configuring - Node.js environment - Node Package Manager NPM - Modules - Asynchronous Programming - Call Stack and Event Loop - Callback functions - Callback errors - Abstracting callbacks - Chaining callbacks - File System - Synchronous vs. asynchronous I/O - Path and directory operations - File Handle - File Synchronous API - File Asynchronous API - File Callback API - Timers. - Scheduling Timers - Timers Promises API - Node.js Events - Event Emitter - Event Target and Event API - Buffers: Buffers and Typed Arrays - Buffers and iteration - Using buffers for binary data - Flowing vs. non-flowing streams. JSON.

UNIT - IV EXPRESS.Js (9)

Express.js: How Express.js Works - Configuring Express.js - App Settings - Defining Routes - Starting the App - Express.js Application Structure— Configuration — Settings — Middleware - body-parser - cookie-parser - express-session - response-time - Template Engine Jade EJS. Parameters — Routing — router -route(path) - Router Class - Request Object - Response Object - Error Handling - RESTful.

UNIT - V MONGODB

Introduction to MongoDB – Documents – Collections – Subcollections – Database - Data Types – Dates – Arrays - Embedded Documents - CRUD Operations - Batch Insert - Insert Validation - Querying The Documents - Cursors. Indexing - Unique Indexes - Sparse Indexes - Special Index and Collection Types - Full-Text Indexes - Geospatial Indexing - Aggregation framework.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Implement basic and advanced features of TypeScript to develop structured, object-oriented, and modular web applications.	Apply
CO2	Construct Angular CLI to create projects, implement component-based architecture, manage forms, configure routing.	Apply
CO3	Apply Node.js to build server-side applications by working with modules, asynchronous programming, file handling, events, buffers, and streams.	Apply
CO4	Develop server-side web applications using Express.js by configuring routes, middleware, template engines, and handling HTTP requests, responses, and RESTful APIs.	Apply
CO5	Implement database operations in MongoDB including CRUD, indexing, document querying, and aggregation for efficient data management in web applications.	Apply

REFERENCES:

- 1. Adam Freeman, Essential TypeScript, Apress, 2019.
- 2. Mark Clow, Angular Projects, Apress, 2018.
- 3. Alex R. Young and Marc Harter, Node.js in Practice, Manning Publications, 2014.
- 4. Azat Mardan, Pro Express.js, Apress, 2015.
- 5. Kyle Banker, Peter Bakkum, Shaun Verch, Douglas Garrett, and Tim Hawkins, MongoDB in Action, 2nd Edition, Manning Publications, 2016.

	ľ	Vapping of COs	with POs and PSO	S	1200
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	3		2		2
CO2	3		2	how is 1370 stores	2
CO3	3		2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2
CO4	3		2		2
CO5	3		2		2

1-low, 2-medium, 3-high

IT24P21	AI and ML LEARNING TECHNIQUES	Category	- L.	T	Р	SL	С
1124721	LABORATORY	PCC	0	0	60	0	2

Mathematics and Statistics, Linear Algebra, Calculus, Probability and Statistics, Programming Skills, Libraries and Frameworks, Code Debugging and Optimization, Basic Machine Learning Concepts, Supervised Learning, Unsupervised Learning, Model Evaluation, Data Preprocessing and Feature Engineering, Data Cleaning, Feature Scaling and Transformation, Feature Selection, Artificial Intelligence Fundamentals, concepts of Neural Networks.

OBJECTIVES:

In this course Students will gain hands-on experience using AI and ML tools and algorithms, prepare datasets for analysis, and understand the applications of AI and ML techniques. They will also explore advanced machine learning methods to solve complex problems.

List of Exercise/Experiments:

- 1. Perform data manipulation using NumPy and Pandas and, data visualization using matplotlib.
- 2. Implement Naive Bayes classification and predict the class label for a given data.
- 3. Implement linear models to approximate the given data.
- 4. Implement multi-layer perceptron algorithm for the specified data.
- 5. Implement KNN algorithm for the specified data.
- 6. Implement SVM algorithm for the given data.
- 7. Implement the concept of decision tree with suitable dataset.
- 8. Implement K-means clustering algorithm for the given data and visualize and interpret the result.
- 9. Implement genetic operators and Q-learning for the given data.
- 10. Build a supervised model / unsupervised model using appropriate dataset in cloud framework.

L= 0, T=0, P=60, SL=0, TOTAL: 60 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Apply probabilistic based and supervised learning algorithms to analyze and solve classification problems with given data.	Apply
CO2	Analyze the architecture and working mechanism of the multilayer perceptron algorithm on provided datasets.	Analyze
CO3	Develop and implement K-NN and SVM algorithms to classify data and evaluate their performance.	Apply
CO4	Analyze and compare the practical applications and decision making scenarios for decision trees and K-means clustering algorithms.	Analyze
CO5	Create and deploy machine learning models on cloud platforms to solve real-world problems using appropriate frameworks.	Create

REFERENCES:

- 1. Russell/Norvig, Artificial Intelligence: A Modern Approach, Pearson Education, May 2022.
- 2. Vinod chandra S.S, Anand hareendran S., Artificial Intelligence and Machine Learning, PHI learning, March 2014.

COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	3		2	1	1
CO2	3	# _	1		1
CO3	3	**	2	1	1
CO4	3		1	-	1
CO5	3		1	-	1

	A DODATORY	Category	L	T	P	SL	С
IT24P22	ADVANCED ALGORITHM LABORATORY	PCC	0	0	60	0	2

The students should have the Knowledge on basic algorithmic concepts, including searching and sorting algorithms, and their time and space complexities and should Familiar with basic graph concepts including types of graphs (directed, undirected, weighted, unweighted), graph traversal methods, and properties.

OBJECTIVES:

In this course students will implement and evaluate graph, searching, and sorting algorithms, including DFS, BFS, binary search, quicksort, and more. They will also explore optimization and heuristic techniques while analyzing algorithm efficiency and practical use cases.

List of Exercise/Experiments:

- 1. Implement the Bellman-Ford algorithm to find the shortest paths from a single source to all vertices in a graph with potentially negative edge weights. Test your implementation with graphs that contain negative weight cycles.
- 2. Implement Dijkstra's algorithm to find the shortest paths from a single source to all other vertices in a graph with non-negative edge weights. Compare its performance with Bellman-Ford on different types of graphs.
- 3. Implement Prim's algorithm to find the minimum spanning tree of a weighted, undirected graph. Visualize the resulting minimum spanning tree and compare it with the output of Kruskal's algorithm if implemented.
- 4. Implement Warshall's algorithm to compute the transitive closure of a directed graph. Verify the results by comparing with the adjacency matrix of the original graph.
- 5. Implement the Monte Carlo algorithm to estimate the value of π or solve an optimization problem (e.g., finding the approximate solution to a large-scale optimization problem). Analyze the accuracy and performance of your implementation.
- 6. Develop a menu-driven program that allows users to choose from various searching algorithms (e.g., binary search, interpolation search) and apply them to search in different types of data structures (arrays, linked lists).
- 7. Implement and compare various sorting algorithms (e.g., quicksort, mergesort, heapsort) for different datasets. Measure their performance and analyze the results based on time complexity and space complexity.
- 8. Implement a solver for linear modular equations of the form ax=b(mod m). Test your implementation with various equations and modulus values, and verify correctness using different input scenarios.
- 9. Create a menu-driven program to perform Depth-First Search (DFS) and Breadth-First Search (BFS) on a graph. Allow users to input the graph, choose the traversal algorithm, and visualize the traversal order.
- 10. Implement the Euclidean algorithm to compute the greatest common divisor (GCD) of two integers. Extend the implementation to handle multiple integers and verify its correctness

K.S.R. College of Engineering 32 Applicable for Students admitted from 2024 + 2025 Onwards

with different test cases.

- 11. Implement algorithms such as Johnson's algorithm for finding all pairs shortest paths or the Edmonds-Karp algorithm for solving the maximum flow problem.
- 12. Implement and experiment with advanced data structures such as AVL trees, Red-Black trees, or B-trees, and evaluate their performance in various scenarios.
- 13. Implement advanced string matching algorithms like the Knuth-Morris-Pratt (KMP) algorithm or the Boyer-Moore algorithm and compare their performance with naive string matching approaches

L= 0, T=0, P=60, SL=0, TOTAL: 60 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Demonstrate and implement the Bellman-Ford algorithm to	Apply
	find shortest paths in weighted graphs.	
CO2	Apply linear modulo operations to design efficient algorithms	Apply
	for computational problems.	
CO3	Construct and implement Dijkstra's algorithm for computing	Apply
	the shortest path in graphs.	
CO4	Design and develop various sorting algorithms to organize	Apply
	data effectively.	
CO5	Analyze and illustrate the working of different searching	Apply
	algorithms for efficient data retrieval.	

REFERENCES:

1.https://www.khanacademy.org/computing/computer-science/algorithms

2.https://www.coursera.org/specializations/algorithms

PO3 2	PO4 1	PO5 1
2	1	1
2	1	1
_	THE STATE OF THE S	, L
2	1	1
2	1	1
2	1	1
	2 2 2	2 1 2 1 2 1

IT24P23	MINI PROJECT WITH SEMINAR	Category	L	Т	Р	SL	С
	WINT ROSECT WITH SEIVINGAR	PCC	0	0	60	0	2

Students should start by conducting thorough research on their chosen topic, reviewing recent journals and conference papers. They must select their topic with guidance from faculty to ensure relevance. Additionally, students need to develop strong presentation skills to clearly and effectively communicate their findings, using appropriate visual aids.

OBJECTIVES:

In this course students will identify core research knowledge, explore project opportunities, and integrate acquired skills into practical implementations. They will write technical papers, create video pitches, and present their projects for feedback and improvement.

Guidelines:

- 1. Students will engage in mutual discussions with faculty to select a specific area within personal finance management for their project.
- 2. Throughout the project duration, students will deliver weekly seminars on their chosen topic, sharing progress updates, insights gained from research, and challenges encountered.
- 3. One week before the final presentation, students will submit a comprehensive technical report to the corresponding faculty member.
- 4. The report should be between 30 to 50 pages in length and encompass project objectives, methodology, implementation details, results, and future recommendations.
- 5. References to recent journals, conference proceedings, and other scholarly sources must be cited appropriately to support the project findings.
- 6. The final presentation will serve as a culmination of the project, where students will showcase the developed personal budgeting application and present key findings from their research.
- 7. A Q&A session will follow the final presentation, allowing faculty and peers to engage with the student presenters, ask questions, and provide feedback.
- 8. The students should have published their project paper in journals or conference.
- 9. The student has to submit a technical report having 30 50 pages to the corresponding faculty one week before the final presentation.

L=0, T=0, P=60, SL=0, TOTAL: 60 PERIODS

S. Chairman (Bos)

COL	IDCE	OIL	ICON	TEC.
	IKSE			

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Employ various technical resources available from multiple fields.	Apply
CO2	Analyze the importance of intonation, word and sentence stress for improving communicative.	Analyze
CO3	Identify and overcome problem sounds.	Apply
CO4	Demonstrate technical knowledge to enhance leadership skills.	Apply
CO5	Build report and present oral demonstrations.	Create

		Mapping of COs	with POS and PSC	JS	
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	3	3		,	
CO2	3	3		a -	-
CO3	3	3	= 1		
CO4	3	3	10 g = 11 1	-	* * -
CO5	3	3	5		-

IT24T31	ADVANCED COMPUTER NETWORKS	Category	L	T	P	SL	С
		PCC	45	0	0	45	3

Students should have a basic understanding of computer networks, including knowledge of network models (like the OSI model), IP addressing, and network devices. Familiarity with data communication concepts and fundamental programming skills.

OBJECTIVES:

This course aims to provide a comprehensive understanding of modern networking concepts, including wired and wireless communication, network devices, and protocols. It covers wireless technologies from 4G to 6G, software-defined networking (SDN), and network function virtualization (NFV). Students will gain insight into network architectures, virtualization, and simulation of network services using emerging technologies.

UNIT - I NETWORKING IDEAS

(9)

Peer To Peer Vs Client-Server Networks - Network Devices - Network Terminology - Network Speeds - Network throughput — delay - OSI Model — Packets — Frames and Headers - Collision and Broadcast Domains - LAN Vs WAN - Network Adapter - Hub. Switch. Router. Firewall - IP addressing.

UNIT – II WIRELESS NETWORKS

(9)

Wireless access techniques - IEEE 802.11a - 802.11g - 802.11e - 802.11n/ac/ax/ay/ba/be - QoS - Bluetooth - Protocol Stack - Security - Profiles - zigbee.

UNIT - III GENERATION OF WIRELESS NETWORKS

(9)

4G Networks and Composite Radio Environment – Protocol Boosters – Hybrid 4G Wireless Networks Protocols – Green Wireless Networks – Physical Layer and Multiple Access – Channel Modeling for 4G – Concepts of 5G – channel access – air interface - Cognitive Radio spectrum management – C-RAN architecture - Vehicular communications protocol – Network slicing – MIMO - mmWave - Introduction to 6G.

UNIT - IV SOFTWARE DEFINE NETWORKS

(9)

SDN Architecture. Characteristics of Software - Defined Networking - SDN and NFV Related Standards - SDN Data Plane - Data Plane Functions - Data Plane Protocols — Open Flow Logical Network Device - Flow Table Structure - Flow Table Pipeline - The Use of Multiple Tables - Group Table — Open Flow Protocol - SDN Control Plane Architecture - Control Plane Functions - Southbound Interface - Northbound Interface — Routing - ITU-T Model — Open Daylight- Open Daylight Architecture — Open Daylight Helium - SDN Application Plane Architecture - Northbound Interface.

UNIT - V NETWORK SERVICE SIMULATION

(9)

Motivation Virtual Machines — NFV benefits requirements — architecture - NFV Infrastructure - Virtualized Network Functions - NFV Management and Orchestration - NFV Use Cases - NFV and SDN — Network virtualization — VLAN and VPN.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

S. Chairman (Bos)

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Identify peer-to-peer and client-server models and demonstrate the roles of switches, routers, firewalls, and	Understand
CO2	evaluate network speeds, delays, and address structures. Interpret wireless communication technologies by analyzing quality of service and security features in IEEE 802.11 standards, Bluetooth and Zigbee protocols.	Apply
CO3	Demonstrate the evolution of wireless networks by illuminating the architecture, protocols, and features of 4G, 5G, and 6G technologies including MIMO, mmWave, and network slicing.	Apply
CO4	Apply the principles of Software Defined Networking by working with SDN architecture, OpenFlow protocol, control and data planes, and interfaces for programmable networking.	Apply
CO5	Implement network service virtualization by simulating NFV architecture, managing virtual network functions, and integrating SDN with VLAN, VPN, and virtual machines.	Apply

REFERENCES:

- 1. James Bernstein, "Networking made Easy", 2018.
- 2. HoudaLabiod, Costantino de Santis, HossamAfifi "Wi-Fi, Bluetooth, Zigbee and WiMax", Springer 2007.
- 3. Erik Dahlman, Stefan Parkvall, Johan Skold, 4G: LTE/LTE-Advanced for Mobile Broadband, Academic Press, 2013.
- 4. Saad Z. Asif "5G Mobile Communications Concepts and Technologies" CRC press 2019.
- 5. William Stallings "Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud" 1st Edition, Pearson Education, 2016.

Mapping of COs with POs and PSOs								
COs/ POs	PO1	PO2	PO3	PO4	PO5			
CO1	2		i i i i i i i i i i i i i i i i i i i	e gi negjiriyi	es migri _d ers f			
CO2	3		2		546 19 1 56			
CO3	3		2		. v = 11 1 0			
CO4	3		2		1			
CO5	3		2	- M 1 1 4 - 2011 1 28	1			
low, 2-mediu	ım, 3-high							

				0			
IT24T32	CLOUD COMPUTING TECHNOLOGIES	Category	L	Т	Р	SL	С
	20.1101000123	PCC	45	0	0	45	3
PREREQUISIT	E:	a v					
Students sho	uld have a basic understanding of compu	ter networks	, ope	rating	syst	ems,	and
fundamental	programming concepts. Prior exposure to	system arcl	hitecti	ure a	nd d	istribu	ited

computing will be beneficial for understanding virtualization and cloud infrastructure. **OBJECTIVES:**

This course aims to provide students with a comprehensive understanding of virtualization technologies, cloud computing architectures, and cloud service models. It focuses on popular cloud platforms resembling Amazon Web Services (AWS) and Microsoft Azure, enabling learners to manage resources, deploy applications, and the distributed programming models using

frameworks includes Hadoop and Aneka to build scalable cloud applications. UNIT - I VIRTUALIZATION AND VIRTUALIZATION INFRASTRUCTURE (9)Basics of Virtual Machines - Process Virtual Machines - System Virtual Machines - Emulation -Interpretation - Binary Translation - Taxonomy of Virtual Machine - Virtualization - Management Virtualization - Hardware Maximization - Architectures - Virtualization Management - Storage Virtualization - Network Virtualization - Implementation levels of virtualization - virtualization structure – virtualization of CPU - Memory and I/O devices – virtual clusters and Resource. UNIT - II **CLOUD PLATFORM ARCHITECTURE** (9)Cloud Computing: Definition - Characteristics - Cloud deployment models: public, private, hybrid, community - Categories of cloud computing: Infrastructure, platform, software - A Generic Cloud

Architecture Design - Layered cloud Architectural Development - Architectural Design Challenges.

UNIT - III **AWS CLOUD PLATFORM - IAAS**

Amazon Web Services: AWS Infrastructure - AWS API - AWS Management Console - Setting up AWS Storage - Stretching out with Elastic Compute Cloud - Elastic Container Service for Kubernetes - AWS Developer Tools: AWS Code Commit - AWS Code Build - AWS Code Deploy - AWS Code Pipeline - AWS code Star - AWS Management Tools: Cloud Watch - AWS Auto Scaling - AWS control Tower - Cloud Formation - Cloud Trail - AWS License Manager.

UNIT-IV PAAS CLOUD PLATFORM (9)

Windows Azure: Origin of Windows Azure – Features - The Fabric Controller – First Cloud APP in Windows Azure - Service Model and Managing Services: Definition and Configuration - Service runtime API - Windows Azure Developer Portal - Service Management API - Windows Azure Storage Characteristics - Storage Services - REST API - Blops.

UNIT - V PROGRAMMING MODEL (9)

Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions specifying input and output parameters - configuring and running a job - Developing Map Reduce Applications - Design of Hadoop file system - Setting up Hadoop Cluster- Aneka: Cloud Application Platform - Thread Programming - Task Programming and Map Reduce Programming in Aneka.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Discuss virtualization concepts including virtual machines, CPU virtualization, and virtual clusters enhance hardware utilization.	Understand
CO2	Identify cloud computing deployment models and layered architectures, and describe cloud service categories with a clear understanding of cloud platform design.	Apply
CO3	Apply Amazon Web Services (AWS) to manage infrastructure services, storage, compute resources, and developer tools for setting up, monitoring, and maintaining cloud-based applications.	Apply
CO4	Create and manage Azure-based cloud applications and demonstrate knowledge of Azure's storage and service management capabilities.	Apply
CO5	Apply distributed computing models using Hadoop and Aneka platforms for scalable cloud application development.	Apply

REFERENCES:

- 1. Bernard Golden, Amazon Web Service for Dummies, John Wiley & Sons, 2013.
- 2. Raoul Alongi, AWS: The Most Complete Guide to Amazon Web Service from Beginner to Advanced Level, Amazon Asia- Pacific Holdings Private Limited, 2019.
- 3. Sriram Krishnan, Programming: Windows Azure, O'Reilly, 2010.
- 4. Rajkumar Buyya, Christian Vacchiola, S.Thamarai Selvi, Mastering Cloud Computing, MCGraw Hill Education (India) Pvt. Ltd., 2013.

		Mapping of COs w	ith POs and PS	Os	
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2				-
CO2	3	-,	2	-	1
CO3	3		2	-	1
CO4	3		2	-	1
CO5	3		2	A A	1

S. Mary X+
Chairman (bus)

IT24P31	PROJECT PHASE-I	Category	L	T	Р	SL	С
		EEC	0	0	180	0	6

Students should have foundational knowledge in finance or economics, basic understanding of budgeting principles, and proficiency in programming or application development. Familiarity with data analysis tools, spreadsheet software, and research methodology is also recommended.

OBJECTIVES:

This project is to enable students to gain in-depth knowledge and hands-on experience in a specific area of personal finance management through independent research and practical application. Students will engage in discussions with faculty to select a focused project topic and will deliver weekly seminars to communicate progress, research insights, and encountered challenges. The project culminates in the development and presentation of a personal budgeting application.

Guidelines:

- 1. Students will engage in mutual discussions with faculty to select a specific area within personal finance management for their project.
- 2. Throughout the project duration, students will deliver weekly seminars on their chosen topic, sharing progress updates, insights gained from research, and challenges encountered.
- 3. One week before the final presentation, students will submit a comprehensive technical report to the corresponding faculty member.
- 4. The report should be between 45 to 90 pages in length and encompass project objectives, methodology, implementation details, results, and future recommendations.
- 5. References to recent journals, conference proceedings, and other scholarly sources must be cited appropriately to support the project findings.
- 6. The final presentation will serve as a culmination of the project, where students will showcase the developed personal budgeting application and present key findings from their research.
- 7. A Q&A session will follow the final presentation, allowing faculty and peers to engage with the student presenters, ask questions, and provide feedback.
- 8. The students should have published their project paper in journals or conference.
- 9. The student has to submit a technical report having 30 50 pages to the corresponding faculty one week before the final presentation.

L= 0, T=0, P=180, SL=, TOTAL: 180 PERIODS

S. Mary

3

3

CO3

CO4

CO5

1-low, 2-medium, 3-high

COs		Course Outco	me	×** ***	Cognitive Level
CO1	Formulate a real-we apply design princip			4	Apply
CO2	Identify and apply a methodologies relev		The state of the s	egies, and	Apply
CO3	Utilize suitable tools, algorithms, and techniques to implement and refine the project solution.	Apply			
CO4	Test and validate functionality and and	ensuring	Apply		
CO5	Build a compreher structured oral p outcomes.				Apply
History III		Mapping of COs	with POs and PS	Os	
COs/ P	Os PO1	PO2	PO3	PO4	PO5
CO1	3	3		-	
CO2	3	3		4	

3

3

3

IT24P41	PROJECT PHASE-II	Category	L	T	Р	SL	С
		EEC	0	0	360	0	12

Students should have foundational knowledge in finance or economics, basic understanding of budgeting principles, and proficiency in programming or application development. Familiarity with data analysis tools, spreadsheet software, and research methodology is also recommended.

OBJECTIVES:

This project is to enable students to gain in-depth knowledge and hands-on experience in a specific area of personal finance management through independent research and practical application. Students will engage in discussions with faculty to select a focused project topic and will deliver weekly seminars to communicate progress, research insights, and encountered challenges. The project culminates in the development and presentation of a personal budgeting application.

Guidelines:

- 1. Students will engage in mutual discussions with faculty to select a specific area within personal finance management for their project.
- 2. Throughout the project duration, students will deliver weekly seminars on their chosen topic, sharing progress updates, insights gained from research, and challenges encountered.
- 3. One week before the final presentation, students will submit a comprehensive technical report to the corresponding faculty member.
- 4. The report should be between 70 to 90 pages in length and encompass project objectives, methodology, implementation details, results, and future recommendations.
- 5. References to recent journals, conference proceedings, and other scholarly sources must be cited appropriately to support the project findings.
- 6. The final presentation will serve as a culmination of the project, where students will showcase the developed personal budgeting application and present key findings from their research.
- 7. A Q&A session will follow the final presentation, allowing faculty and peers to engage with the student presenters, ask questions, and provide feedback.
- 8. The students should have published their project paper in journals or conference.

L= 0, T=0, P=360, SL=, TOTAL: 360 PERIODS

Chairman (Bos)

1-low, 2-medium, 3-high

COs		Course Outco	me	* 1	Cognitive Leve									
CO1		apply design principles to develop effective solutions.		Formulate a real-world problem, identify requirements, and apply design principles to develop effective solutions. Identify and apply appropriate technical ideas, strategies, and methodologies relevant to the project domain.			Apply							
CO2	Identify and apply a	methodologies relevant to the project domain.											ate technical ideas, strategies, and	
CO3	Utilize suitable tools, algorithms, and techniques to implement and refine the project solution.		Utilize suitable tools, algorithms, and techniques to implement Ap		Apply									
CO4	Test and validate functionality and an	ensuring	Apply											
CO5	Build a comprehe	er clear.	Apply											
	structured oral poutcomes.				,,,,,									
	structured oral poutcomes.	resentations to		project	, pp.,									
COs/ Po	structured oral poutcomes.	resentations to	o communicate	project	PO5									
COs/ P	structured oral poutcomes. Os PO1	Mapping of COs	o communicate with POs and PS	project Os										
	structured oral poutcomes. Os PO1 3	Mapping of COs	o communicate with POs and PS	project Os										
CO1	outcomes. Os PO1 3 3	Mapping of COs PO2 3	o communicate with POs and PS	project Os										
CO1	structured oral poutcomes. Os PO1 3 3 3 3	Mapping of COs PO2 3 3	o communicate with POs and PS	project Os										

Chairman (BoS)

IT24E01	ADVANCED COMPUTER ARCHITECTURE	Category	L	T	Р	SL	
	(PROFESSIONAL ELECTIVES – I and II)	PEC	45	0	0	45	3
			100	٠	7.		-
PREREQUISI	ΓE:						
		a ser enden					
Basic knowle	dge in processor design, memory hierarchy, di	gital logic, as	sembl	y lang	guage,	. Mem	or
	edge in processor design, memory hierarchy, di I Data structure concepts.	gital logic, as	sembl	y lang	guage	, Mem	or

Exploiting. It focuses on Memory optimization and issues in multi-processor. It also focuses on architecture of intel core, SUN CMP architecture, IBM Cell Architecture. Students will also know the architecture of vector, SIMD and GPU.

UNIT - I FUNDAMENTALS OF COMPUTER DESIGN (9) Fundamentals of Computer Design - Measuring and Reporting Performance - Instruction Level

Parallelism and its Exploitation - Concepts and Challenges - Exposing ILP - Advanced Branch Prediction - Dynamic Scheduling - Hardware-Based Speculation - Exploiting ILP - Instruction Delivery and Speculation - Limitations of ILP - Multithreading

UNIT - II MEMORY HIERARCHY DESIGN (9)

Introduction - Optimizations of Cache Performance - Memory Technology and Optimizations - Protection: Virtual Memory and Virtual Machines - Design of Memory Hierarchies - Case Studies.

UNIT - III MULTIPROCESSOR ISSUES (9)

Introduction- Centralized, Symmetric and Distributed Shared Memory Architectures - Cache Coherence Issues - Performance Issues - Synchronization - Models of Memory Consistency - Case Study - Interconnection Networks - Buses, Crossbar and Multistage Interconnection Networks

UNIT - IV MULTICORE ARCHITECTURES (9)

Homogeneous and Heterogeneous Multicore Architectures - Intel Multicore Architectures - SUN CMP architecture - IBM Cell Architecture. Introduction to Warehouse - Scale computers - Architectures - Physical Infrastructure and Costs - Cloud Computing - Case Study: Google Warehouse - Scale Computer.

UNIT - V VECTOR, SIMD AND GPU ARCHITECTURES TLE (9)

Introduction - Vector Architecture - SIMD Extensions for Multimedia - Graphics Processing Units - Case Studies - GPGPU Computing - Detecting and Enhancing Loop Level Parallelism - Case Studies.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

K.S.R. College of Engineering 44 Applicable for Students admitted from 2024 / 2025 Onwards

6.

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Interpret the techniques to exploit Instruction Level	Understand
	Parallelism (ILP) and dynamic scheduling, speculation, and multithreading.	Onderstand
CO2	Discuss memory hierarchy design, including cache	Understand
	performance, virtual memory, and memory technologies for efficient data access.	
CO3	Implement shared memory architectures, cache coherence,	Apply
	and interconnection networks for efficient multiprocessor system design.	, , , , ,
CO4	Apply the principles of homogeneous and heterogeneous	Apply
	multicore architectures to analyze performance characteristics in Intel, SUN CMP, and IBM Cell processors.	,,,,,,
CO5	Exploit vector and SIMD architectures to boost multimedia and	Apply
	parallel computing performance using GPGPU and GPU technologies.	

REFERENCES:

- 1. Darryl Gove, Multicore Application Programming: For Windows, Linux, and Oracle Solarisl, Pearson, 2011.
- 2. John L Hennessey and David A Patterson "Computer Architecture A quantitative approach" Morgan Kaufmann Elsevier 5th Edition 2012.
- 3.David B. Kirk, Wen-mei W. Hwu, -Programming Massively Parallel Processorsl, Morgan Kauffman, 2010.
- 4. William Stallings "Computer Organization and Architecture Designing for Performance" Pearson Education 8th Edition 2010.

		Mapping of COs	with POs and PS	Os	
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2			_	
CO2	2		_		
CO3	3	* * * * * * * * * * * * * * * * * * *	2		
CO4	3	<u> </u>	2		
CO5	3		2		-
-low, 2-mediu	m, 3-high		_		

IT24E02	AD-HOC AND SENSOR NETWORKS	Category	L	T	Р	SL	С
	(PROFESSIONAL ELECTIVES – I and II)	PEC	45	0	0	45	3

Basic understanding of computer networks including network topologies, routing protocols, and wireless communication principles. Familiarity with network protocols, TCP/IP model, and routing algorithms is essential. Basic knowledge of programming, operating systems, and distributed systems.

OBJECTIVES:

This course aims to provide a comprehensive understanding of ad-hoc and sensor network fundamentals, including their architecture, protocols, and applications. It focuses on energy-efficient protocols, data aggregation, and secure communication in wireless sensor networks (WSNs). Students gain insights into security challenges, including various attacks across network layers.

UNIT - I AD HOC NETWORKS –INTRODUCTION AND ROUTING PROTOCOLS (9)

Elements of Ad-hoc Wireless Networks — Issues in Ad-hoc wireless networks — Example commercial applications of Ad-hoc networking — Ad-hoc wireless Internet — Classifications of Routing Protocols — Table Driven Routing Protocols — Destination Sequenced Distance Vector (DSDV) — On—Demand Routing protocols — Ad-hoc On—Demand Distance Vector Routing (AODV).

UNIT - II SENSOR NETWORKS — INTRODUCTION & ARCHITECTURES (9)

Issues – Classifications of routing protocols – Hierarchical and Power aware – Multicast routing – Classifications –Tree based – Mesh based – Ad Hoc Transport Layer Issues – TCP Over Ad Hoc – Feedback based – TCP with explicit link – TCP BuS – Ad Hoc TCP and Split TCP.

UNIT - III WSN NETWORKING AND PROTOCOLS

(9)

Physical Layer and MAC Protocols — Network layer protocol — Transport layer protocol — Energy efficiency in WSNs — Data aggregation and management — Security in WSNs — Case Study: Smart Cities and Healthcare.

UNIT - IV SENSOR NETWORK SECURITY

(9)

Network Security Requirements – Issues and Challenges in Security Provisioning – Network Security Attacks – Layer wise attacks in wireless sensor networks – possible solutions for jamming – tampering – black hole attack – flooding attack – Key Distribution and Management – Secure Routing – SPINS

UNIT - V MESH NETWORKS

(9)

Necessity for Mesh Networks – MAC enhancements – IEEE 802.11s Architecture – Opportunistic routing – Self configuration and Auto configuration – Capacity Models – Fairness – Heterogeneous Mesh Networks – Vehicular Mesh Networks.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

S. Chairman (805)

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Interpret the basic structure, challenges, applications of adhoc wireless networks and routing protocols like DSDV and AODV.	Understand
CO2	Summarize routing protocols in sensor networks, transport layer challenges and ad-hoc TCP.	Understand
CO3	Describe layered protocol in wireless sensor networks, focusing on energy-efficient communication, data aggregation, and security mechanisms	Understand
CO4	Interpret the knowledge of security requirements and challenges in wireless sensor networks, key management techniques, and secure routing protocols.	Understand
CO5	Interpret the need for mesh networks, key enhancements routing strategies, and design of heterogeneous and vehicular mesh network architectures.	Understand

REFERENCES:

- 1. Feng Zhao and Leonidas Guibas, "Wireless Sensor Networks", Morgan Kaufman Publishers, 2011.
- 2. C.Siva Ram Murthy and B.Smanoj, Ad Hoc Wireless Networks Architectures and Protocols, Pearson Education, 2011.
- 3. C.K.Toh," Ad Hoc Mobile Wireless Networks", 3rd Edition, Pearson Education, 2011.
- 4. Thomas Krag and SebastinBuettrich," Wireless Mesh Networking, O'Reilly Publishers", 2007.

A	Ņ	lapping of COs	with POs and PS	SOs	The Art State Stat
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2	19 2 16 18 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	_	-
CO2	2		-		· ·
CO3	2		-	_	
CO4	2	- 1		_	<u> </u>
CO5	2			_	<u> </u>

S. Maryxt
Chairman (Bos)

IT24E03	COMPUTER VISION	Category	L	T	P	SL	C
	(PROFESSIONAL ELECTIVES – I and II)	PEC	45	0	0	45	3

Strong foundation in mathematics, especially linear algebra, calculus, and probability. Proficiency in Python and libraries like OpenCV and NumPy. Basic knowledge of image processing techniques and machine learning concepts and deep learning.

OBJECTIVES:

This course aims to provide a basic understanding of image processing methods and shape and region analysis including object labeling, shape descriptors, and deformable. It focuses on Hough Transform and its variants. Students will learn 3D vision and motion analysis through projection models, surface reconstruction, and motion estimation techniques and applications.

UNIT - I IMAGE PROCESSING FOUNDATIONS

(9)

Review of image processing techniques – classical filtering operations – Thresholding techniques – edge detection techniques – corner and interest point detection – mathematical morphology – texture.

UNIT - II SHAPES AND REGIONS

(9)

Binary shape analysis – connectedness – object labeling and counting – size filtering – distance functions – skeletons and thinning – deformable shape analysis – boundary tracking procedures – active contours – shape models and shape recognition – centroidal profiles – handling occlusion – boundary length measures – boundary descriptors – chain codes – Fourier descriptors – region descriptors – moments.

UNIT - III HOUGH TRANSFORM

(9)

Line detection – Hough Transform (HT) for line detection – foot-of-normal method – line localization – line fitting – RANSAC for straight line detection – HT based circular object detection – accurate center location – speed problem – ellipse detection – Case study: Human Iris location – hole detection – generalized Hough Transform (GHT) – spatial matched filtering – GHT for ellipse detection – object location – GHT for feature collation.

UNIT - IV 3D VISION AND MOTION

(9)

Methods for 3D vision – projection schemes – shape from shading – photometric stereo – shape from texture – shape from focus – active range finding – surface representations – point-based representation – volumetric representations – 3D object recognition – 3D reconstruction – introduction to motion – triangulation – bundle adjustment – translational alignment – parametric motion – spline-based motion – optical flow – layered motion.

UNIT - V APPLICATIONS

(9)

Application: Photo album – Face detection – Face recognition – Eigen faces – Active appearance and 3D shape models of faces Application: Surveillance – foreground-background separation – particle filters – Chamfer matching, tracking, and occlusion – combining views from multiple cameras – human gait analysis Application: In-vehicle vision system: locating roadway – road markings – identifying road signs – locating pedestrians.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

S. Chairman (Bos)

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Interpret fundamental image processing techniques and extract meaningful features, effective analysis of textures and	Understand
	structures in digital images.	
CO2	Interpret the principles of binary shape analysis, shape descriptors, contour models, and deformable shape analysis.	Understand
CO3	Implement Hough Transform and its variants, RANSAC, foot- of-normal method, and spatial matched filtering for accurate object localization.	Apply
CO4	Develop 3D vision techniques, representation and reconstruction of 3D objects, and build applications.	Apply
CO5	Demonstrate the applications of photo management face detection and recognition, surveillance techniques and develop in vehicle vision systems.	Apply

REFERENCES:

- 1. D. L. Baggio et al., —Mastering OpenCV with Practical Computer Vision Projects , Packt Publishing, 2012.
- 2. E. R. Davies, —Computer & Machine Vision, Fourth Edition, Academic Press, 2012.
- 3. Jan Erik Solem, —Programming Computer Vision with Python: Tools and algorithms for analyzing images, O'Reilly Media, 2012.
- 4. Mark Nixon and Alberto S. Aquado, —Feature Extraction & Image Processing for Computer Vision , Third Edition, Academic Press, 2012.

	Mapping of COs	with POs and P	SOs	
PO1	PO2	PO3	PO4	PO5
2				-
2	_			
3		2		
3		2		
3		3		-
	2 2 3 3	PO1 PO2 2 - 2 - 3 - 3 -	PO1 PO2 PO3 2 - - 2 - - 3 - 2 3 - 2 3 - 2	2

Chairman (Bos)

IT24E04	DATA SCIENCE	Category	L	T	Р	SL	С
	(PROFESSIONAL ELECTIVES – I and II)	PEC	45	0	0	45	3

PREREQUISITE:

Solid understanding of statistics, probability, and linear algebra. Proficiency in Python or, along with data handling using libraries such as Pandas and NumPy. Basic understanding of databases, data visualization, and machine learning, analytical thinking and problem-solving skills.

OBJECTIVES:

This course aims to provide the fundamental concepts, tools, and processes in data science. It focuses on data collection from various sources, data cleaning, and effective management. Students will learn core statistical concepts and machine learning algorithms. Students will gain hands-on experience with Python libraries such as NumPy and Pandas for data manipulation and wrangling and to create insightful visualizations using tools like Seaborn and Bokeh.

UNIT - I	(9)	
Introductio	n – Terminology – Data science process – Data science toolkit – T	Types of data -
Exploratory	Data Analysis Example applications.	

UNIT - II DATA COLLECTION AND MANAGEMENT (9)

Introduction - Sources of Data - Data collection and APIs - Exploring and fixing data - Data storage and management -Using Multiple Data Sources

UNIT - III **DATA ANALYSIS** (9)

Introduction - Terminology and concepts - Introduction to statistics - Central tendencies and distributions - Variance - Distribution properties and arithmetic - Samples/CLT- Basic machine learning algorithms - Linear regression - SVM -Naive Bayes.

UNIT-IV PYTHON LIBRARIES FOR DATA WRANGLING (9)

Basics of Numpy Arrays – Aggregations – Computations on Arrays – Comparisons, Masks, Boolean logic - Fancy Indexing - Structured Arrays - Data Manipulation with Pandas - Data Indexing and Selection – Operating on Data – Missing Data.

UNIT-V DATA VISUALISATION AND APPLICATIONS (9)

Introduction - Types of data visualization - Data for visualization - Data types - Data encodings -Retinal variables -Mapping variables to encodings - Visual Encodings- Visualization with Seaborne. Applications: Technologies for Visualization — Bokeh (Python) Recent trends in various Data Collection and Analysis Techniques — Application Development Methods of Used in Data Science.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

Chairman (Bos)

At the end of the course.	tho ct	udonte	:	 . i.
COURSE OUTCOMES:	. 1			

COs	Course Outcome	Cognitive Level
CO1	Interpret the core concepts and terminology of data science and recognize the potential applications.	Understand
CO2	Interpret data sources and effective techniques for data collection, methods and ability to integrate and utilize multiple data sources.	Understand
CO3	Implement basic machine learning algorithms and apply foundational predictive models in data-driven applications.	Apply
CO4	Demonstrate manipulating data using NumPy and Pandas, efficient data preprocessing, handling of missing values.	Apply
CO5	Implement the techniques of effective data visualization and tools like Seaborne and Bokeh in Python	Apply

REFERENCES:

- 1. Luca Massaron John Paul Mueller, "Python Data Science Handbook", 2nd Edition, Wiley 2019.
- 2. Cathy O'Neil and Rachel Schutt. "Doing Data Science", Straight Talk From The Frontline, First Edition, O'Reilly, 2013.
- 3. Foster Provost, Tom Fawcet, "Data Science for Business", 1st Edition, O'Reilly Publishers, 2013
- 4. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", 1st Edition, John Wiley & Sons, 2012

COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		-	1
CO2	2		, <u>-</u> . ,		- 1
CO3	3	1 2	2		1
CO4	3	-	2	<u>.</u>	1
CO5	3	_	2		

S. My X+
Chairman (BoS)

111110011. 17	formation Technology		Reg	gulat	ions 2	2024	
IT24E05	SCIENTIFIC COMPUTING	Category	L	Т	Р	SL	С
	(PROFESSIONAL ELECTIVES – I and II)	PEC	45	0	0	45	3
e de participa			1 2 7				
PREREQUIS	ITE:		1 1		2 ×		
A solid fou	ndation in calculus, linear algebra, and basic pr	ogramming	conc	epts	is e	essent	tial.
Familiarity	with statistical methods, particularly in underst	tanding rand	omn	ess	and	rand	lom
number gei	neration, is also important. Additionally, exposu	ure to math	emat	ical	soft	tware	or
programmin	ig languages like Python, MATLAB, or R will be ben	eficial for sim	ulati	on a	nd n	umer	ical
methods.							
OBJECTIVES		F N					9 7
This course	aims to introduce system modeling principles, sir	nulation tech	niqu	es, a	and	scient	tific
	strategies. It develops skills in optimization, sol	ving equatio	ns, a	nd	inte	polat	ion
methods for	engineering applications.						
UNIT - I	INTRODUCTION TO SYSTEM MODELING					(9)	
Modelling a	nd general systems theory - Concepts of sim	ulation – Ty	/pes	of	simu	lation	1 -
Experimenta	ıl design consideration – Comparison and sele	ction of sin	nulati	on	lang	uages	s' —
Developmen	t of simulation models using any one of the	languages for	or so	me	pro	blems	s —
software for	mulation — Randomness and random numbers generating random numbers.	– Random r	numb	er (gene	rators	s —
UNIT - II	APPROXIMATIONS IN SCIENTIFIC COMPUTING					(9)	
Overview o	f Scientific Computing – Importance of Appro	oximations -	Gen	eral	Str		, _
Approximati	ons in Scientific Computation – Mathematical Sc	oftware – M	ather	nati	cal S	Softwa	are
Libraries – So	cientific Computing Environments – Extended Arith	metic Packag	es.) 13 1	<u>.</u>	
UNIT - III	OPTIMIZATION				7	(9)	
Optimization	Problems – Existence and Uniqueness – Convexity	/ – Optimizat	ion ir	n On	e Di	mensi	ion
Programming	ensional Unconstrained Optimization – Cons	strained Op	timiz	atio	n _	Line	ear
riogrammin	T	TION AND			-	19	
UNIT - IV	ROOTS OF EQUATION LINEAR ALGEBRAIC EQUA- INTERPOLATION	HON AND				(9)	
Graphical Me	ethod – Iterative Methods – Newton Raphson Met	hod - Brook I	Evon	Ana	lycic	Car	
	- Solution Of Linear Systems By Gaussian – Gauss						
	Matrix Inversion – Gauss – Jordan Method – Lea						
	ference Interpolating Polynomials – Lagrange's pol						
	ference Formula – Stirling's and Bessel's Central Di			.14			
UNIT - V	NUMERICAL ORDINARY AND PARTIAL DIFFERENT			T	- 2		
OIVII - V	INTEGRATION					(9)	
	fferentiation: Runge – Kutta Methods – Boundary						
	erential Equation — Elliptic Equation — Parabolic E						
Trapezoidal a	and Simpson's Rules – Two and Three Point Gauss	ian Quadratu	ire Fo	ormi	ıla –	Doub	ble

K.S.R. College of Engineering

Integral Using Trapezoidal and Simpson's Rule.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Explain the concepts of system modeling and various	Understand
	simulation techniques, including stochastic simulation and	
	random number generation.	
CO2	Apply simulation models using suitable software tools to solve	Apply
	real-world scientific problems.	
CO3	Illustrate the optimization methods to solve one dimensional	Apply
	and multidimensional problem, including constrained and	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	unconstrained optimization.	*
CO4	Analyze various methods for solving algebraic and	Analyze
	transcendental equations, and compare interpolation	
	techniques for data approximation.	· · · · · · · · · · · · · · · · · · ·
CO5	Distinguish the numerical techniques for differentiation and	Analyze
	integration, and interpret their effectiveness in solving	
	boundary and partial differential equations.	*

REFERENCES:

- 1. Steven C, Chapra Raymond P Canale, Numerical Methods for Engineering, 8th Edition, McGraw-Hill 2021.
- George F. Pinder, Numerical Methods for Solving Partial Differential Equations: A Comprehensive Introduction for Scientists and Engineers, 1st Edition, Wiley 2019.
- 3. Norbert Schorghofer, Lessons in Scientific Computing, 1st Edition, CRC Press, 2018.
- 4. Jerry Banks and John Carson, Discrete Event System Simulation, 5th Edition, Pearson Education India, 2013.

COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2		-	-	
CO2	3	* * * * * * * * * * * * * * * * * * *	2	-	
CO3	3		2	<u>-</u>	
CO4	3		2		
CO5	3		2	A	· · ·

Chairman (Bos)

IT24E06	DIGITAL IMAGE PROCESSING	Category	L	Т	Р	SL	С
1124200	(PROFESSIONAL ELECTIVES – I and II)	PEC	45	0	0	45	3

Understanding of linear algebra and calculus, particularly concepts related to matrices, transformations, and functions. Knowledge of signal processing fundamentals, including continuous and discrete signals, Fourier analysis, and filtering techniques. To know how imaging systems work, including sensors, optics, and the capture of images.

OBJECTIVES:

The course aims to introduce the fundamentals of digital image processing, including image representation and pixel relationships. It enables students to apply image enhancement, restoration, and segmentation techniques in both spatial and frequency domains.

UNIT - I INTRODUCTION TO DIGITAL IMAGING

(9)

Introduction to Digital Image Processing – Elements of Digital Image Processing System - Visual perception and properties of human eye - Image Representation - A Simple Image Model - Basic Relationship Between Pixels – Image Geometry.

UNIT - II IMAGE OPTIMIZATION

19

Spatial Domain: Gray Level Transformations – Histogram Processing – Basics of Spatial Filtering – Smoothing and Sharpening – Frequency Domain: DFT (Discrete Fourier Transform) – FFT (Fast Fourier Transform) – DCT (Discrete Cosine Transform) - Smoothing and Sharpening frequency domain filters – Gaussian Filters – Homomorphism Filtering – Multi Spectral Image Enhancement – Color Image Enhancement.

UNIT - III IMAGE RESTORATION

(9)

Image Restoration Model – Properties – Noise Models - Inverse and Wiener Filtering - Finite Impulse Response (FIR) Wiener Filtering - Geometric Mean Filter - Constrained Least Squares Filtering- Image Reconstruction from Projections.

UNIT - IV IMAGE ANALYSIS AND SEGMENTATION

(9)

Spatial Feature Extraction - Edge Detection - Boundary Extraction — Scale Invariant Feature Transform (SIFT) - Thresholding - Region Based Segmentation — Region Growing — Region Splitting and Merging - Region Segmentation Using Clustering and Super pixels - Morphological Watersheds - Motion in Segmentation.

UNIT - V IMAGE COMPRESSION AND RECOGNITION

(9)

Need for Data Compression – Huffman – Run Length Encoding – Shift Codes – Arithmetic Coding – JPEG Standard – MPEG Standard – Boundary Representation – Boundary Description – Regional Descriptors – Topological Feature – Recognition based on Matching- Application of Image Processing.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

Chairman (Bos)

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Explain the fundamental concepts of digital image	Understand
	processing, image representation, and relationships between pixels and geometry.	
CO2	Implement spatial filtering techniques such as smoothing	Apply
	and sharpening to improve image quality.	
CO3	Apply spatial and frequency domain techniques like	Apply
	histogram processing, filtering, and transforms for image	1 4 7 7 8 8 9 5 9 5
	enhancement.	
CO4	Analyze different image segmentation methods including	Analyze
	region growing, clustering, SIFT, and morphological	
	techniques for feature extraction.	* · · · · · · · · · · · · · · · · · · ·
CO5	Compare the image compression methods and recognition	Analyze
	techniques, and interpret their effectiveness in practical	
	image processing applications.	<u> </u>

REFERENCES:

- 1. Rafael C. Gonzalez, Richard Eugene Woods, Digital Image Processing, 4th Edition, Pearson Education 2018.
- 2. Anil K. Jain, Fundamentals of Digital Image Processing, 1st Edition, Pearson Education 2015.
- 3. S Jayaraman, S Esakkirajan, T Veerakumar, Digital Image Processing, 2nd Edition, McGraw Hill 2020.
- 4. Alasdair McAndrew, A Computational Introduction to Digital Image Processing, 2nd Edition, Taylor & Francis Group, CRC Press, 2016.

COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2	x, .; .		· · · · · · · · · · · · · · · · · · ·	
CO2	3		2	-	
CO3	3	2	2		ati a i
CO4	3		2		
CO5	3	-,· .	2		

S. My XX Chairman (Bos)

IT24E07	XML AND WEB SERVICES	Category	L	Т	Р	SL	С
	(PROFESSIONAL ELECTIVES – I and II)	PEC	45	0	0	45	3

A foundational knowledge of programming languages such as Java, Python, or C# is essential, as these are commonly used to implement and interact with web services. A basic understanding of web technologies, including HTTP, HTML, and CSS, is crucial for comprehending how web services operate over the internet. Additionally, familiarity with data formats like XML and JSON is important for understanding how data is structured and exchanged between systems.

OBJECTIVES:

This course aims to introduce XML technologies and their role in data representation, processing, and web integration. To understand and implement web services using SOAP, WSDL, and SOA concepts. It also explores XML applications in e-business and content management through semantic web.

WNIT-I XML TECHNOLOGY FAMILY XML – benefits – Advantages of XML over HTML – EDI (Electronic Data Interchange) – Databases – XML based standards – DTD (Document Type Declaration) – XML Schemas – XML Files – XML processing – DOM (Document Object Model) – SAX (simple API for XML) – Presentation technologies – XSL (XML Style sheet Language) – XFORMS – XHTML – Voice XML.

UNIT-II ARCHITECTING WEB SERVICES [9]

Business motivations for web services – B2B (Business to Business) – B2C (Business to Customer) – Technical motivations – Limitations of CORBA and DCOM – Service Oriented Architecture (SOA) – Architecting web services – Implementation view – Web services technology stack – Logical view – Composition of web services – Deployment view from application server to peer – Process view – Life in the runtime..

UNIT-III WEB SERVICES: SOAP & WSDL [9]

Web Services SOAP: – Structure of SOAP – SOAP Namespaces – SOAP Headers – SOAP Body – SOAP Messaging Modes – SOAP Faults – SOAP over HTTP. WSDL: Structure of WSDL – WSDLDeclarations – WSDL Abstract Interface – Messaging Exchange patterns – WSDL Implementation.

UNIT-IV IMPLEMENTING XML IN E-BUSINESS [9]

B2B – B2C Applications – Different types of B2B interaction – Components of e- business XML systems – ebXML– Rosetta Net Applied XML in vertical industry – Web services for mobile devices.

UNIT-V XML AND CONTENT MANAGEMENT [9]

Semantic Web – Role of Meta data in web content – Resource Description Framework – RDF schema – Architecture of semantic web – Content management workflow.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

neering. Tiruc

Chairman (1905)

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Describe the structure and significance of XML technologies, including DTD, XML Schema, DOM, SAX, and their role in web data exchange.	Understand
CO2	Apply SOA principles to develop and deploy web services using the appropriate technology stack and architectural views.	Apply
CO3	Sketch web services using SOAP and WSDL standards to enable effective communication between distributed systems.	Apply
CO4	Analyze different B2B and B2C XML-based e-business models and evaluate the use of standards like ebXML and RosettaNet in real-world scenarios.	Analyze
CO5	Compare the role of metadata, RDF, and content management workflows in building semantic web applications.	Analyze

REFERENCES:

- 1. Ron schmelzer et al, XML and Web Services, Pearson Education, 3rd Edition, 2012.
- 2. Richard Monson-Haefel, "J2EE Web Services", 8th Edition, Person Education, 2012.
- 3. Deitel. H.H, P.J.Deitel, T.R.Nieto, T.M.Lin, XML How to Program, Pearson Education, 2012.
- 4. Frank P, Coyle, XML, Web Services and the Data Revolution, Pearson Education, 2011.

		Viapping of COs	with POs and PSO	S	
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2	- 1		-	-
CO2	3		2	-	
CO3	3	<u> </u>	2		3 × × × × × × × × × × × × × × × × × × ×
CO4	3		2	, ** + * * * * * * * * * * * * * * * * *	-
CO5	3	- · · · ·	2	, , , , , , ,	

IT24F08	DISTRIBUTED SYSTEMS	Category	. L.	T	P	SL	С
IT24E08 (PF	(PROFESSIONAL ELECTIVES – I and II)	PEC	45	0	0	45	3

Students are expected to have a basic understanding of operating system concepts like processes, threads, and memory management, along with foundational knowledge of computer networks and protocols.

OBJECTIVES:

This course aims to provide a comprehensive understanding of distributed systems, their architecture, and inter-process communication models.

UNIT - I BASIC CONCEPTS

(9)

Definition of a distributed systems — Examples - Resource sharing and the Web — Challenges - System models - Architectural and fundamental models - Networking Inter process communication - External data representation and marshalling — Client server and Group communication.

UNIT - II DISTRIBUTED OBJECTS AND PROCESS

(9)

Distributed objects and remote invocation - Communication between distributed objects - Remote procedure call - Events and notifications - The operating system layer — Protection - Processes and Threads - Communication and invocation - OS Architecture - Security techniques - Cryptographic algorithms - Access control - Digital signatures - Cryptography pragmatics — Needham Schroeder — Kerberos - Securing electronics transaction - IEEE 802.11 WiFi.

UNIT - III OPERATING SYSTEM ISSUES

(9)

Distributed file systems - Name services - Domain name system - Directory and discovery services - Peer to peer systems - Napster file sharing system - Peer to peer middleware routing overlays — Clocks Events and process states Clock Synchronization - Logical clocks Global states - Distributed debugging - Distributed mutual exclusion - Elections - Multicast communication.

UNIT - IV DISTRIBUTED TRANSACTION PROCESSING

(9)

Transactions - Nested transactions - Locks - Optimistic concurrency control - Timestamp ordering - Flat and nested distributed transactions - Atomic commit protocols - Concurrency control in distributed transactions - Distributed deadlocks - Transaction recovery - Overview of replication - Distributed shared memory and Web services.

UNIT - V DISTRIBUTED ALGORITHMS

(9)

Synchronous network model - Algorithms: leader election - maximal independent set - Asynchronous system model: I/O automata - operations on automata - fairness - Asynchronous shared memory model - Mutual exclusion: model the problem- stronger conditions - lockout - free mutual exclusion algorithms - lower bound on the number of registers - Asynchronous network model - Asynchronous network algorithms: leader election in a ring and an arbitrary network.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

ademic

S. Chairman (BOS)

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Explain the fundamental concepts, models, and	Understand
	communication mechanisms used in distributed systems.	a a a
CO2	Apply remote invocation techniques, inter-process	Apply
	communication, and security algorithms like Kerberos and digital signatures in distributed environments.	
CO3	Prepare the distributed applications using concepts like client- server architecture, RPC, and multithreaded processing.	Apply
CO4	Compare synchronization techniques, logical clocks, and election algorithms to coordinate processes in distributed systems.	Analyze
CO5	Distinguish the distributed transaction processing, concurrency control, recovery methods, and distinguish between different atomic commit protocols.	Analyze

REFERENCES:

- 1. George Coulouris, Jean Dollimore, and Tim Kindberg, "Distributed Systems Concepts and Design", 5th ed., Pearson Education, 2011.
- 2. Andrew S. Tanenbaum, Maartenvan Steen, "Distributed Systems Principles and Paradigms", 2nd ed., Pearson Education, 2006.
- 3. Andrew S. Tanenbaum, Maarten Van Steen," Distributed Systems, Principles and Paradigms", , 2nd Edition, PHI,2018.
- 4. Ajay D. Kshemakalyani and Mukesh Singhal ,"Distributed Computing, Principles, Algorithms and Systems", Cambridge, 2010.

COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2	, <u>.</u>	-		
CO2	3		2	, - ,	- H
CO3	3		2		
CO4	3		2	- **	-
CO5	3		2		_

S. Chairman (Bos)

M.Tech Info	rmation Technology			Regulo	ations .	2024	
170.4500	MULTIMEDIA COMMUNICATONS	Category	L	T	P.	o SL	
IT24E09	(PROFESSIONAL ELECTIVES – I and II)	PEC	45	0	0	45	:
PREREQUISIT							
	dge of basic programming concepts (prefera undamentals, and computer networks, in techniques.	79	2				
OBJECTIVES:		lalinom, af m		مانم			
	ntroduces the creation, management, and corms. It covers text and image formats, con						
codecs, and	popular video compression techniques on in multimedia systems and the role of mult	. Students	will	also	lear		
UNIT - I	INTRODUCTION	- 9				(9)	
Multimedia A	about Multimedia Information Represer pplications – Application and Network Termination Principles – Text. Image, Audio and Video	nology – Netv					

UNIT - II TEXT AND IMAGE COMPRESSION (9)

Compression Principles - Text Compression Techniques - Run length, Huffman, LZW - Document Image compression Techniques - T2 and T3 coding - Image Compression Techniques - GIF, TIFF and JPEG.

UNIT - III AUDIO AND VIDEO COMPRESSION (9)

Audio Compression – Principles, DPCM, ADPCM - Adaptive and Linear predictive coding - Code-Excited LPC - Perceptual coding - Video Compression Principles - MPEG and Dolby Coders Video Compression.

UNIT - IV VIDEO COMPRESSION STANDARDS (9)

Introduction about Video Compression — Different Standards - H.261, H.263, MPEG, MPEG 1, MPEG 2, MPEG-4 - Reversible VLCs - MPEG 7 Standardization Process of Multimedia Content Description - MPEG 21 multimedia framework.

UNIT - V SYNCHRONIZATION (9)

Need for Synchronization - Presentation Requirements, Reference Model for Synchronization - Introduction to SMIL - Multimedia Operating Systems - Resource Management, Process - Resource Management Techniques.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

Cuarman (Ros)

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Describe the structure and functions of different multimedia networks.	Understand
CO2	Apply suitable image compression methods like GIF, TIFF, and JPEG based on application requirements.	Apply
CO3	Examine the features and working of Code-Excited Linear Predictive Coding (CELP) and perceptual coding methods.	Analyze
CO4	Demonstrate the working of Reversible Variable Length Codes (RVLCs) in video compression.	Apply
CO5	Apply multimedia operating system concepts to manage resources and processes effectively.	Apply

REFERENCES:

- 1. Fred Halsall's "Multimedia Communications: Applications, Networks, Protocols, and Standards", Pearson Education, 2001.
- 2. K. R Rao, Zoran S. Bojkovic, Dragorad A. Milovanovic "Multimedia Communication Systems", Pearson Education, 2004.
- 3. Ze-Nian Li and Mark S. Drew"Fundamentals of Multimedia", Pearson, 2014.
- 4. Raifsteinmetz, Klara Nahrstedt, "Multimedia: Computing, Communications and Applications", Pearson Education, 2002.

	IV	lapping of COs w	ith POs and PSO	Os	
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2		3 - J - L	= 1	
CO2	3		2	-	
CO3	3	. .	2	,	-
CO4	3		2	-	
CO5	3	-	2	-	
-low, 2-medium	3-high			2	

IT24E10	INFORMATION RETRIEVAL TECHNIQUES	Category	L	Т	Р	SL	C
1124110	(PROFESSIONAL ELECTIVES – I and II)	PEC	45	0	0	45	3

A foundational understanding of data structures and algorithms is essential for efficient storage, indexing, and retrieval of information. Additionally, familiarity with databases and query languages such as SQL is important for comprehending data organization and access methods. Basic knowledge of search engines, web technologies, and HTML further supports the understanding of how content is retrieved and displayed on the web.

OBJECTIVES:

This course covers the basic concepts and challenges of information retrieval systems, including structural queries and their impact on performance. It explores document preprocessing techniques like clustering and text compression, data models and query languages for multimedia retrieval, and the indexing and ranking methods used by search engines.

UNIT - I	INTRODUCTION	(9)
Basic Conce	pts — Practical Issues - Retrieval Process - Open Source IR System	ns – Modeling –
Classic Info	mation Retrieval – Set Theoretic- Algebraic and Probabilistic Mode	els – Structured
Text Retriev	al Models – Retrieval Evaluation.	
UNIT - II	QUERYING	(9)
Languages -	- Key Word based Querying- Queries in IR Systems – Pattern Match	ning – Structural
Queries – C	uery Operations – User Relevance Feedback – Local and Global Ana	alysis – Text and
Multimedia	languages.	
UNIT - III	TEXT OPERATIONS AND USER INTERFACE	(9)
Document I	Preprocessing – Clustering – Text Compression – Indexing and Search	ching – Inverted
files – User	Interface and Visualization – Human Computer Interaction – Access P	rocess – Starting
Points – Qu	ery Specification – Context – User relevance Judgment – Interface for	Search.
UNIT - IV	MULTIMEDIA INFORMATION RETRIEVAL	(9)
Data Model	s – Query Languages – Spatial Access Models – Generic Approach – C	One Dimensional
Time Series	 Two Dimensional Color Images – Feature Extraction. 	

UNIT - V APPLICATIONS (9)

Searching the Web – Structure of the Web – Characterizing the Web- IR and web search – Search
Engines- Web Crawling and Indexing — Online IR systems – Online Public Access Catalogs –
Digital Libraries – Architectural Issues – Document Models – Representations and Access –

Prototypes and Standards.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Understand classic information retrieval models, including set- theoretic, algebraic, and probabilistic approaches.	Understand
CO2	Examine the role of query operations and their impact on retrieval effectiveness.	Analyze
CO3	Demonstrate effective user interface and visualization techniques to enhance human-computer interaction.	Apply
CO4	Apply various data models and query languages to organize and retrieve multimedia data effectively.	Apply
CO5	Design an efficient search engine and analyze the Web content structure.	Apply

REFERENCES:

- 1. Ricardo Baeza, Yate, Berthier Ribeiro, Neto, Modern Information Retrieval, Addison Wesley, 2011.
- 2. Daniel lurafsky and James H Martin, Speech and Language Processing, Pearson Education, International Edition, 2014.
- 3. Ricardo Baeza Yates, Berthier Ribeiro Neto, "Modern Information Retrieval: TheConcepts and Technology behind Search", ACM Press Books, Second Edition, 2016.
- 4. G G Chowdhury, Introduction to Modern Information Retrieval, Neal Schuman Publishers, Third edition, 2010.

		Mapping of COs v	vith POs and PSO	S	
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		-
CO2	3	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	2		"
CO3	3		2	x = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
CO4	3	14 120 0 - 11 12.	2		. 1 S
CO5	3		2		
low, 2-medium	n, 3-high			1 - 6 - 7 1 - 8 - 7	

Chairman (BoS)

1v1. 1 ech 1ng	ormation Technology		Ne.	guiui	ions 2	027	
IT24E11	DATA WAREHOUSING AND DATA MINING	Category	L	T	Р	SL	С
	(PROFESSIONAL ELECTIVES – III and IV)	PEC	45	0	0	45	3
					7. P	s ,	ω.
PREREQUISI [*]	TE	, - t - t	_1				
This course	helps the students to understand the overall arc	hitecture of	a dat	a w	areh	ouse	and
methods for	data gathering and data pre-processing using OL	AP tools. Th	ne diff	eren	t da	ta mii	ning
models and	techniques will be discussed in this course. D	ata mining	and o	data	war	ehou	sing
applications	in bioinformatics will also be explored.						
OBJECTIVES:				_	Ř		
This course	aims to provide a clear understanding of data w	arehousing	archit	ectu	res	and t	ools
used for sy	stematically organizing large databases to sup	port strate	gic de	ecisio	on-m	naking	g. It
imparts four	ndational knowledge of key data mining conce	pts and int	roduc	es e	esser	ntial o	lata
mining task	s along with preprocessing techniques. Studer	nts will lear	rn to	app	ly c	luster	ing,
classification	, and visualization methods to analyze real-world	datasets.					
UNIT - I	DATA WAREHOUSING AND ONLINE ANALYTICA	L PROCESSI	NG	9		(9)	
Basic Conce	pts of Data Warehousing – Data warehousing	Compone	nts –	Dat	a w	areho	use
Architecture	- Data Warehouse Schemas for Decision Supp	ort – Onlin	e Ana	alytic	al P	roces	sing
(OLAP) - Ch	aracteristics of OLAP - OLAP and Multidimensi	onal Data A	Analys	is –	Турі	ical C	LAP
Operations -	- OLAP and OTAP - Data Warehousing to Data Min	ing.			7 ×		
UNIT - II	INTRODUCTION TO DATA MINING					(9)	
Data Mining	- Knowledge discovery Process - Issues and Appl	lications - Da	ata M	ining	Tec	hniqu	ies -
Data Object	s and Attribute Types - Statistical Description	ns of Data	- Da	ta V	'isua	lizatio	n -
Measuring	Data Similarity and Dissimilarity - Data Prepi	rocessing -	Clea	ning	, Int	tegrat	ion,
Reduction, T	ransformation and discretization.					» ·	*
UNIT - III	DATA MINING – FREQUENT PATTERN ANALYSIS	5	1.5	į,		(9)	7 9
Basic Conce	ots of Mining Frequent Patterns, Associations, ar	nd Correlati	ons -	Freq	uent	Item	set
Mining Met	hods - Advanced Pattern Mining - Pattern Mini	ing in Multi	level,	Mu	ltidir	nensi	onal
Space - Cons	traint-Based Frequent Pattern Mining – Classificat	tion using Fr	eque	nt Pa	tter	ns.	
UNIT - IV	CLASSIFICATION AND CLUSTERING	5				(9)	×
Classification	n: Decision Tree Induction – Bayesian Classificatio	n – Rule Bas	ed Cla	ssifi	catio	on –Ba	ack
	- Support Vector Machines - Associative Classific						
	nd Selection - Techniques to Improve Classificatio						
	echniques: Cluster Analysis – Partitioning Method		ical m	etho	ds –	- Dens	sity
	ods – Grid Based Methods – Model Based Clusteri						
	tlier Detection.						
						101	

Wining Object — Spatial, Multimedia, Text and Web Data - Multidimensional Analysis and

Descriptive Mining of Complex Data Objects — Spatial Data Mining — Multimedia Data Mining —

Descriptive Mining of Complex Data Objects – Spatial Data Mining – Multimedia Data Mining – Text Mining – Mining the World Wide Web - Data mining tools - DB Miner – WEKA - Applications: Data Mining for Intrusion Detection and Prevention - Financial Data Analysis.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Discuss the basic concepts of data warehousing and Online	Understand
	Analytical Processing.	
CO2	Describe how different data mining techniques are applied to	Understand
	extract useful patterns from datasets.	
CO3	Assess the effectiveness of frequent pattern algorithms based	Evaluate
	on application requirements and dataset characteristics.	
CO4	Apply decision tree induction, Bayesian classification, rule-	Apply
	based classification, back propagation, support vector	
	machines, associative classification, and lazy learners to solve	
	classification problems.	
CO5	Demonstrate spatial, multimedia, text, and web mining	Apply
	approaches to extract meaningful patterns.	

REFERENCES:

- 1. Jiawei Han and Micheline Kamber" Data Mining Concepts and Techniques" 3rd Edition Elsevier Reprinted 2011.
- 2. Alex Berson and Stephen J Smith" Data Warehousing Data Mining & OLAP" Tata McGraw -Hill Edition 13th Reprint 2010.
- 3. Andrew H. Johnston, "Practical Machine Learning: A Beginner's Guide to Data Mining with WEKA", July 2018.
- 4. Paulraj Ponniah, "Data Warehousing Fundamentals Comprehensive Guide for IT Professionals, Wiley, 2010.

COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2		- <u>- 1</u>	-	- E
CO2	2		-		
CO3	3	· · · · · · · · · · · · · · · · · · ·	2		
CO4	3		2	-	
CO5	3		2		7 <u>-</u>

Chairman (BoS

IT24E12	NETWORK MANAGEMENT SYSTEM	Category	L	T	P	SL	С
1124612	(PROFESSIONAL ELECTIVES – III and IV)	PEC	45	0	0	45	3

Students should have a fundamental understanding of computer networks, including network architectures, protocols (such as TCP/IP), and basic network communication concepts. Knowledge of network devices like routers, switches, and firewalls is essential. Familiarity with operating systems and basic programming or scripting skills will help in managing and automating network tasks.

OBJECTIVES:

This course aims to provide students with a comprehensive understanding of data communication and network management principles, covering networking basics, hardware components, and key protocols. It focuses on the role and functioning of the MAC layer, including its security and performance aspects.

LIBUT	DATA COMMUNICATION AND NETWORK MANAGEMENT	(0)
UNIT - I	OVERVIEW	(9)

Networking basics – LANs and WANs – Network hardware components – Server-based networks – Peer to peer networks – Server based vs peer-to-peer networks – Specialized servers – Combination networks – Network packets – Addressing packets – Multiplexing – Protocols – The OSI reference model – Internet Protocol Stack.

UNIT - II MAC MANAGEMENT (9)

MAC Layer in Networking–Role and functions of the MAC layer – MAC addressing – MAC protocols – CSMA/ CD – Collision detection mechanism – CSMA/ CA – Hidden node problems – MAC layer security – Performance and optimization – Emerging trends in MAC management.

JNIT - III TCP/ IP NETWORKING (9)

OSI vs TCP/ IP Model – IPV₄ addressing and subnetting – IPV₆ Addressing and Configuring – VLSM – Address resolution protocol – DHCP – ICMP – Error reporting – TCP – UDP – Routing protocols.

UNIT - IV SNMP MANAGEMENT (9)

SNMPv1: SNMP network management concepts – SNMP management information – standard MIB – SNMP protocol specification – SNMP Group – SNMPv2 – Protocol operations – SNMPv2 Management Information Base – Conformance Statements – SNMPv2 Management Information Base – Conformance Statements.

UNIT - V SWITCHING AND ROUTING (9)

Traffic modeling and simulation – Self-similar and heavy tailed models – Buffering – Blocking – Fast Forwarding Internet traffic: Self-similarity – Ethernet traffic – World-Wide – Web traffic – IP Switching – IP multicast – Multicast routing.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

Chairman (805)

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Summarize the functions of common network protocols and	Understand
	the OSI and Internet protocol models	
CO2	Analyze security challenges and performance optimization	Analyze
	techniques in MAC layer management.	, a ₁ = - , , , , , , , , , , , , , , , , , ,
CO3	Configure IPv6 addressing and implement its features in	Apply
	network environments.	
CO4	Interpret SNMPv2 conformance statements to ensure	Apply
	compliance in network management systems.	
CO5	Demonstrate the characteristics of self-similar and heavy-	Apply
	tailed traffic models in real network environments.	* * * * * * * * * * * * * * * * * * *

REFERENCES:

- 1. Mani Subramanian, "Network Management Principles and Practice", Second Edition, Pearson Education, 2010.
- 2. William Stallings, "SNMP, SNMPN2, SNMPV3, RMON 1 AND 2", Third Edition, Pearson Education, 2009.
- 3. J. Richard Burke: Network management Concepts and Practices: a Hands-On Approach, PHI, 2008.
- 4. Morris, "Network management", 1st Edition, Pearson Education, 2008.

	IV	lapping of COs v	vith POs and PSC	Os	
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2		· · · .	-	
CO2	3		2		-
CO3	3		2		y -1 "
CO4	3		2		-
CO5	3		2		
-low, 2-mediu	m, 3-high		- , ,		g = 10 ° a

Chairman (BoS)

Wi. Tech In	formation Technology		Re	gulat	ions 2	2024	
IT24E13	OBJECT ORIENTED PROGRAMMING IN PYTHON	Category	L	T	Р	SL	C
	(PROFESSIONAL ELECTIVES – III and IV)	PEC	45	0	0	45	3
Spot at the second					2		
PREREQUISI			E4 .			т,	
Basic knowle	edge of Python - syntax, writing and invoking fund	ctions, creat	ting	varia	bles	, reac	din
inputs, and	generating outputs from the Python console, Fami	liarity with	usin	gat	text	edito	r o
IDE, Knowle	dge on how to execute a Python program, Python	keywords,	Knov	ving	how	v to ra	aise
exceptions in	n Python., reading and Writing Files, Understanding	of Modules	and	Libra	aries	; .	
OBJECTIVES:						N.	
This course a	aims to teach students how to design and impleme	nt software	usin	e OC)P n	rincin	عما
focusing on	concepts like classes, objects, inheritance, encaps	sulation, an	d po	lvm	ornh	ism	The
course will e	mphasize best practices for writing Pythonic code th	nat is easy t	a po a una	dersi	tand	mod	lify
and extend.					Larra	,	.,
UNIT - I	INTRODUCTION	7 9				(9)	u a
Need for ob	ject oriented programming - Procedural Language	es vs. Obje	ct or	ient	ed a	ppro	ach
Characteristi	cs Object oriented programming – Python Prog	ramming B	asics	: Ba	isic	Progr	am
Construction	- Operators - Control Statements - Manipulato	ors - Type	conv	ersi	on.	Funct	ion
Prototyping-	call by reference, return by reference - Inline functi	on- Default	argu	men	ıts -	Funct	ion
overloading.							
UNIT - II	OBJECTS AND CLASSES					(9)	
Objects and	Classes Simple Class - Constructors: Parameter	ized Constr	ucto	rs -	Mu	ltiple	
Constructors	in Class - Constructors with Default Arguments - Dy	namic Initia	ılizati	on c	of Ok	ojects	
- Copy and Dy	namic Constructors - Destructors - Structures and C	Classes - Arra	ays a	nd S	tring	gs.	
UNIT - III	OPERATOR OVERLOADING AND INHERITANCE		10			(9)	, II
Operator Ov	erloading : Need of operator overloading - C	verloading	Una	ary	Ope	rators	- ; -
Overloading	binary Operators - Overloading Special Operators	- Data Con	ivers	ion.	Inhe	eritan	ce:
Derived Class	and Base Class - Derived Class Constructors - Over	riding Mem	ber	Func	ction	s - Cla	ass
Hierarchies - I	Public and Private Inheritance - Levels of Inheritance	e - Multiple	Inhe	ritan	ice.		
UNIT - IV	POLYMORPHISM AND FILE STREAMS				7 0	(9)	
Polymorphisn	n and File Streams: Virtual Function - Friend Functio	on - Static F	uncti	on -	Ass	ignme	nt
and Copy Initi	alization - Memory Management: new and delete F	ointers to (Objec	cts -	this	Point	er-
Streams:Strin	g I/O - Character I/O - Object I/O - I/O with Multiple	Objects - F	ile Po	ointe	ers -	Disk I	/0
with Member	Functions - Error Handling in File I/O.						
	TEMPLATES AND EXCEPTION HANDLING				0	(9)	
emplates: In	troduction - Function Templates - Overloading Fu	nction Tem	plate	S - L	user	defin	ed
emplate - ar	guments - Class Templates - Exception Handling	- Syntax, n	nultir	ole 6	exce	ptions	5 -
exceptions wi	th arguments.	40 -0	A. A.				
						7	

S- Chairman (605)

regring. Tiruche ademic Course of a string
L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Understand and apply the correct syntax of control statements and perform type conversions in Python programs.	Understand
CO2	Explain the concept of constructors, their types, and demonstrate their usage in initializing objects and managing object creation processes in object-oriented programming.	Understand
CO3	Demonstrate the concepts of operator overloading and inheritance in object-oriented programming.	Understand
CO4	Summarize the concepts of polymorphism and file streams, and demonstrate their applications in developing flexible object-oriented programs and performing file input/output operations	Understand
CO5	Apply exception handling techniques in Python programs to identify, catch, and manage runtime errors, ensuring robust and error-resistant code execution.	Apply

REFERENCES:

- 1. Steven F.Lott, Dusty Phillips, Python Object Oriented Programming, 4th Edition, Packet, 2021.
- 2. Dusty Phillips, Python 3 Object Oriented Programming, 2nd Edition, Packet, 2015.
- 3. Mark Lutz, Learning Python, Fifth Edition, O'Reilly, 2015.
- 4. Steven F.Lott, Mastering Object Oriented Python, 1st Edition, Packet, 2014.

COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2	- 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-, ·	- >	1
CO2	2				1
CO3	2		a	- ; - , * ; .	1
CO4	2			* - 1	1
CO5	3	e se e e e e e e e e e e e e e e e e e	2	-	1

Chairman (BoS)

(9)

IT24E14	QUANTUM COMPUTING	Category	L	Т	Р	SL	C
	(PROFESSIONAL ELECTIVES – III and IV)	PEC	45	0	0	45	3

PREREQUISITE:

To know about linear algebra, quantum mechanics, classical computing fundamentals, probability theory, and programming skills in languages like Python or Qiskit.

OBJECTIVES:

This course aims to equip learners with a foundational understanding of the principles and potential of quantum computation. Key objectives include differentiating quantum computing from classical computing, grasping the concept of qubits, and understanding how quantum gates and circuits operate. The course also often delves into specific quantum algorithms, their applications, and the challenges of building and programming quantum computers.

UNIT - I FOUNDATION (9)

Basic Concepts of Quantum theory - Quantum Bits - The Leap from Classical to Quantum - Quantum state spaces - Single Qubit Systems - Multiple Qubit Systems - Quantum state transformations - Quantum mechanics - Application: super dense coding - Models for computation - The analysis of computational problems.

UNIT - II QUANTUM COMPUTATION (9)

Quantum Circuits - Quantum algorithms - Single Orbit operations - Control Operations - Measurement - Universal Quantum Gates - Simulation of Quantum Systems - Quantum Fourier transform - Phase estimation — Applications - Quantum search algorithms - Quantum Counting - Speeding up the solution of NP - complete problems - Quantum Search for an unstructured database.

UNIT - III QUANTUM ALGORITHMS

Deutsch's Algorithm - The Deutsch Jozsa Algorithm - Simon's Periodicity Algorithm - Grover's Search Algorithm - Shor's Factoring Algorithm - Quantum Parallelism - Quantum Fourier Transform - Machine models and Complexity Classes.

UNIT - IV QUANTUM INFORMATION THEORY (9)

Classical Cryptography - Distinguishing quantum states and the accessible information - Data compression - Classical information over noisy quantum channels - Quantum information over noisy quantum channels - Entanglement as a physical resource.

UNIT - V QUANTUM ERROR CORRECTION (9)

Introduction - Short code - Theory of Quantum Error-Correction - Constructing Quantum Codes - Stabilizer codes - Fault Tolerant Quantum Computation - Entropy and information Shannon Entropy - Basic properties of Entropy - Von Neumann - Strong Sub Additivity.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

Chairman (pos)

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Understand the fundamental concepts of quantum computing and explore its potential applications across various domains.	Understand
CO2	Describe the principles of quantum computation and its fundamental operations.	Understand
CO3	Analyze various quantum algorithms and evaluate their effectiveness in solving computational problems.	Analyze
CO4	Apply the principles of quantum information theory to Analyze and solve problems in various case studies.	Evaluate
CO5	Discuss the various quantum error correction techniques and their importance in preserving quantum information.	Create

REFERENCES:

- 1. Chris Bernhardt, Quantum Computing for Everyone, The MIT Press, Cambridge, 2020
- 2. Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000.
- 3. Eleanor G. Rieffel and Wolfgang H. Polak, Quantum Computing: A Gentle Introduction, MIT Press, 2011.
- 4. Noson S. Yanofsky and Mirco A. Mannucci, Quantum Computing for Computer Scientists, Cambridge University Press, 2008.
- 5. Chris Bernhardt, Quantum Computing for Everyone, MIT Press, 2020.

		Mapping of COs w	ith POs and PS	Os	3000
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2				1
CO2	2		. , ; + <u>-</u> *	-	1
CO3	3	· · · · · · · · · · · · · · · · · · ·	2		1
CO4	3		2		1
CO5	3		2	-	1

	BLOCKCHAIN TECHNOLOGY AND APPLICATIONS	Category	L	Т	Р	SL	C
T24E15	(PROFESSIONAL ELECTIVES – III and IV)	PEC	45	0	0	45	3
			5.5	1			
REREQU						on to a	r.
n underst echnique	y with databases and networking protocols, includin canding how decentralized systems operate. A basic es, such as public-key encryption and digital signatur gy relies heavily on these for ensuring data integrity	understand es, is crucial	ing of as blo	cryp	togra	ziii ne aphic	ıp
OBJECTIV				, , , , , , , , , , , , , , , , , , ,			
This cours	se provides conceptual understanding of how block	chain techno	ology	can k	e us	ed to	
UNIT - I	BLOCKCHAIN FOUNDATION					(9)	
	ents of Blockchain – Centralized - Decentralized and	Distributed	Jystei	115.		, a	
UNIT - II Cryptogra Types of Encryptic	cryptography IN BLOCKCHAIN aphy: Introduction - Cryptography in Blockchain - P Cryptography - Cryptography and Network Secon algorithms - SHA-1 Hash - RC4 Encryption Alg	Public and Prurity Princip	rivate oles - ash F	key Dat uncti	a En	crypt	phy ion
UNIT - II Cryptogra Types of Encryptic Security	cryptography IN BLOCKCHAIN aphy: Introduction - Cryptography in Blockchain - P Cryptography - Cryptography and Network Secon algorithms - SHA-1 Hash - RC4 Encryption Algorithm – Data Integrity in Cryptograph	Public and Prurity Princip	rivate oles - ash F	key Dat uncti	a En	togra crypt in Sy	phy ion sten
Cryptogra Types of Encryptic Security UNIT - III Crypto c Network	cryptography IN BLOCKCHAIN aphy: Introduction - Cryptography in Blockchain - Plockchain - Plockchain - Plockchain - Cryptography and Network Section algorithms - SHA-1 Hash - RC4 Encryption Algorithm - Data Integrity in Cryptograph	Public and Prurity Principgorithm - Hay: Digital Sig	rivate bles - ash F gnatur O) - E	key Dat uncti e.	ons n Pe	togra crypt in Sy (9	phy ion ster
Cryptogra Types of Encryptic Security UNIT - III Crypto c Network	cryptography In BLOCKCHAIN aphy: Introduction - Cryptography in Blockchain - Property - Cryptography and Network Sector algorithms - SHA-1 Hash - RC4 Encryption Algorithm - Data Integrity in Cryptography BITCOIN AND CRYPTOCURRENCY urrency- creation of crypto currency - Initial coin - Proof of Stake Mining Crypto currencies - Traution - Bitcoin in Public perception.	Public and Prurity Principgorithm - Hay: Digital Sig	rivate bles - ash F gnatur O) - E	key Dat uncti e.	ons n Pe	togra crypt in Sy (9	phy ion ster) Pee
Cryptogra Types of Encryptic Security UNIT - III Crypto c Network Outputs UNIT - IV Consens	cryptography In BLOCKCHAIN aphy: Introduction - Cryptography in Blockchain - Property - Cryptography and Network Sector algorithms - SHA-1 Hash - RC4 Encryption Algorithm - Data Integrity in Cryptography BITCOIN AND CRYPTOCURRENCY urrency- creation of crypto currency - Initial coin - Proof of Stake Mining Crypto currencies - Traution - Bitcoin in Public perception.	Public and Prurity Principgorithm - Hay: Digital Signoffering (IC) acking. Bitco	rivate ples - ash F gnatur O) - E pin: U	key Dat uncti e. Bitcoi Inspe	n Peent T	togra crypt in Sy (9 er to ransa (9 Algor	phy ion stern
Cryptogra Types of Encryptic Security UNIT - III Crypto c Network Outputs UNIT - IV Consens	CRYPTOGRAPHY IN BLOCKCHAIN aphy: Introduction - Cryptography in Blockchain - Proceedings of Cryptography and Network Section algorithms - SHA-1 Hash - RC4 Encryption Algorithm - Data Integrity in Cryptography BITCOIN AND CRYPTOCURRENCY urrency- creation of crypto currency - Initial coin - Proof of Stake Mining Crypto currencies - Trautxo - Bitcoin in Public perception. BITCOIN CONSENSUS us Algorithms in Block chain - Proof of Work (PoW) Stake (PoS) - Byzantine Generals Problem - Cryptography and Proof of Stake - practical Byzantine Fault Tolerance	Public and Prurity Princip gorithm - Hay: Digital Signory: Digital Signory	rivate ples - ash F gnatur O) - E pin: U urn Co Conse	key Dat uncti e. Bitcoi Inspe	n Peent T	togra crypt in Sy (9 er to ransa (9 Algor	Peeactio

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

Cnairman (Bob)

Cross border money Transfer - Insurance.

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Acquire knowledge of blockchain technology by	Understand
	understanding its architecture, working principles, types, and real-world applications in secure digital transactions	
CO2	Explain how these cryptographic algorithms are used in	Understand
	block chain and crypto currency systems	
CO3	Analyze Bit coin's market behavior, including factors that	Analyze
	drive its price fluctuations, investor interest	9
CO4	Gain insights into Practical Byzantine Fault Tolerance	Evaluate
	(PBFT), its role in achieving consensus in a decentralized	
	environment	* * * * * * * * * * * * * * * * * * *
CO5	Analyze the practical implications of Ethereum tools in real-	Analyze
	world industries,	

REFERENCES:

- 1. Amit Dua, Blockchain Technology and Applications : A systematic and Practical approach, Kindle Edition, August 2022
- 2. Asharaf S, Sivadas Neelima, Adarsh S., Franklin John, Blockchain Technology: Algorithms and Applications, Wiley publisher, December 2023
- 3. Blockchain Technologies Applications And Cryptocurrencies [Paperback] Ramesh, Prof. Gaikwad Anil Pandurang, Ravi Teja Bhamidipati, Dr. K. Sridharan, Kindle Edition, February 2022.
- 4. Peter Lipovyanov, Blockchain for Business 2019: A user-friendly introduction to blockchain technology and its business applications, Packt Publishing Limited, January 2019.

I.	/lapping of COs	with POs and PSO	S	
PO1	PO2	PO3	PO4	PO5
2			-	1
2			<u>2</u> · · · · · · · · · · · · · · · · · · ·	1
3		2		1
3		2	, <u>.</u>	1
3	1	2		1
				Mapping of COs with POs and PSOs PO1 PO2 PO3 PO4 2 - - - 2 - - - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 -

M. Tecn Info	M. Tech Information Technology			Regulations 2024					
IT24E16	DIGITAL FORENSICS Ca		L	T	Р	SL	С		
	(PROFESSIONAL ELECTIVES – III and IV)	PEC	45	0	0	45	3		
					-				
PREREQUISIT			1						
The students	should familiar with basic programming conce	epts in langua	ges s	uch a	s Pytl	າon, Ja	ava		
or C++, whic	h can aid in scripting and automation tas	ks within dig	gital	foren	sics a	and h	ave		

knowledge on malware, phishing, social engineering, and the basic measures to protect against these threats.

OBJECTIVES: This course aims to equip students with the knowledge and skills to investigate digital devices and networks, recover digital evidence, and analyze that evidence to support legal proceedings or incident response.

UNIT - I INTRODUCTION TO DIGITAL FORENSICS (9)

Cyber Crime and computer crime: Introduction to Digital Forensics - Definition and types of cybercrimes - electronic evidence and handling - electronic media- collection - searching and storage of electronic media - introduction to internet crimes - hacking and cracking - credit card and ATM frauds - web technology - cryptography - emerging digital crimes and modules.

UNIT - II **DIGITAL CRIME AND INVESTIGATION** (9)

Digital Crime – Substantive Criminal Law – General Conditions – Offenses – Investigation Methods for Collecting Digital Evidence - International Cooperation to Collect Digital Evidence.Cr.P.C and Indian Evidence Act - Cyber crimes under the Information Technology Act, 2000 - Cyber crimes under International Law - Hacking Child Pornography - Cyber Stalking - Denial of service Attack -Virus Dissemination - Software Piracy - Internet Relay Chat (IRC) Crime - Credit Card Fraud - Net Extortion- Phishing etc - Cyber Terrorism Violation of Privacy on Internet - Data Protection and Privacy - Indian Court cases

UNIT - III DATA ACQUISITION (9)

Data acquisition - understanding storage formats and digital evidence - determining the best acquisition method - acquisition tools - validating data acquisitions - performing RAID data acquisitions - remote network acquisition tools - other forensics acquisitions tools.

UNIT-IV PROCESSING CRIMES (9)

Processing crimes and incident scenes - securing a computer incident or crime - seizing digital evidence at scene - storing digital evidence -. Processing of digital evidence - digital images damaged SIM and data recovery - multimedia evidence - retrieving deleted data: desktops laptops and mobiles - retrieving data from slack space - renamed file - ghosting - compressed files.

UNIT - V **COMPUTER FORENSICS TOOLS** (9)

Current computer forensics tools - Types of Computer Forensics Tools - Tasks Performed by Computer Forensics Tools - software - hardware tools - validating and testing forensic software addressing data-hiding techniques- performing remote acquisitions - E Mail investigations investigating email crime and violations- understanding E-Mail servers- specialized E-Mail forensics tool.

L= 45, T=0, P=0, \$1=45, TOTAL: 90 PERIODS

R. College of Engineering 74 Applicable for Students admitted from 2024 - 2025 Onwards

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Acquire knowledge on digital forensics by understanding its	Understand
	fundamental concepts and investigating methods for digital	
	evidence.	
CO2	Gain knowledge about digital crimes and the investigation	Understand
	processes involved in identifying, analyzing, and addressing	
	cybercrime incidents using digital forensic techniques.	
CO3	Examine digital evidence by understanding and applying data	Analyze
	acquisition, identification, and analysis techniques for	
	effective investigation and presentation of digital forensic	
	findings.	- · · · · · · · · · · · · · · · · · · ·
CO4	Investigate digital crime scenarios by identifying, extracting,	Apply
	and analyzing digital evidence using appropriate forensic tools	Ta v x
	and techniques while ensuring legal and ethical standards are	
	followed.	ye i la la hair a
CO5	Gain knowledge about various computer forensics tools and	Understand
	their functionalities in acquiring, analyzing, and reporting	
	digital evidence during forensic investigations.	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

REFERENCES:

- 1. Bill Nelson, Amelia Phillips & Christopher Steuart, "Guide to Computer Forensics and Investigations", Cengage Learning, 6th Edition, 2018.
- 2. Linda Volonino, Reynaldo Anzaldua, and Jana Godwin, "Computer Forensics: Principles and Practices", Pearson, 2017.
- 3. Vacca, J, Computer Forensics, Computer Crime Scene Investigation, 2nd Ed, Charles River Media, 2020.
- 4. Altheide .C & Carvey .H,"Digital Forensics with Open Source Tools", Syngress, 2018.

	N	/lapping of COs v	vith POs and PSO	Os	
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2			- 1 - 1 - 1	
CO2	2				- * - +
CO3	3		2	-	-
CO4	3		2	_	7 J 1
CO5	2			· - , · · .	

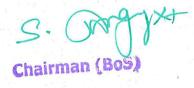
M.Tech Inj	formation Technology		Re	egulat	ions 2	2024	
IT24E17	SOCIAL NETWORK ANALYSIS	Category	L	Т	Р	SL	С
1124617	(PROFESSIONAL ELECTIVES – III and IV)	PEC	45	0	0	45	3
PREREQUISI	TE:		# 1 m			2	
The student	s should be familiar with Data Structure and Algo	orithms. Pytho	on Pro	gran	nmin	g.	
OBJECTIVES			-0	0		0.	
This course	aims to provide a comprehensive foundation	in web techi	nologi	es. s	ema	ntic v	web
	nd the rise of the social web and equip stude						
	or online social network data. Also, to learn ho						
N C SC S	actical problems across different domains. It ex						-
	lysis in real-time emotion detection, opinion mi						Ciai
		, and a con		.,			
UNIT - I	INTRODUCTION	200 a d				(9)	
Introduction	to Web - Limitations of Current Web - I	Development	of Se	emar	ntic	Web	_
	of the Social Web – Statistical Properties of Soci						
	t of Social Network Analysis – Key Concepts a						
59	line Communities – Web based Networks.						
UNIT - II	MODELING AND VISUALIZATION	5 0 3	5			(9)	
Visualizing C	Online Social Networks - A Taxonomy of Visu	ıalizations - G	iraph	Repr	reser	ntatio	n –
Centrality - 0	Clustering - Node Edge Diagrams - Visualizing	Social Netwo	rks w	ith N	/latri	x - N	ode
Link Diagran	ns – Hybrid Representations - Modeling and	Aggregating	Socia	l Ne	twor	k Dat	ta -
	ks and their Applications - Use of Hadoop and N						
UNIT - III	MINING COMMUNITIES	- 1				(9)	
Aggregating	and reasoning with Social Network Data - Ad	vanced Repre	senta	tions	5 – E	xtrac	ting
	Web Community from a Series of Web Archiv						-
	Evaluating Communities – Core Methods for	ey a la l					
10 10 10 10 10 10 10 10 10 10 10 10 10 1	of Community Mining Algorithms – Node Classi						
UNIT - IV	EVOLUTION	- T		Ť.		(9)	
Evolution in	Social Networks – Framework – Tracing Smoot	hlv Evolving C	Comm	uniti	es –		el .
	m for Social Influence Analysis – Social Sim						
	n in Virtual Marketing – Algorithms and Syst						
	Expert Location without Graph Constraint						
	- Expert Team Formation- Link Prediction in So						
Prediction.							ęń.
UNIT - V	APPLICATIONS	8 	×	1		(9)	
			X 5 1			(2)	

A Learning Based Approach for Real Time Emotion Classification of Tweets - A New Linguistic Approach to Assess the Opinion of Users in Social Network Environment – Scientific and Technical Emergence Forecasting – Social Network Analysis for Biometric Template Protection.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

Chairman (Bos)

K.S.R. College of Engineering 76 Applicable for Students admitted from 2024 - 2025 Onwards


At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Explain the evolution from the traditional Web to the	Understand
	Semantic Web and Social Web, recognizing the limitations of	
	earlier web architectures.	
CO2	Construct and interpret social network visualizations using	Understand
	node-edge diagrams, matrix representations, and node-link	
	layouts.	- J
CO3	Apply advanced data representations to enhance the accuracy	Apply
	and depth of community detection.	
CO4	Analyze models and algorithms for identifying smoothly	Analyze
	evolving communities within dynamic network data.	
CO5	Explain the evolution from the traditional Web to the	Understand
	Semantic Web and Social Web, recognizing the limitations of	
	earlier web architectures.	

REFERENCES:

- 1. Guandong Xu, Yanchun Zhang "Web Mining and Social Networking Techniques and Applications", Springer, 1st Edition, 2012.
- 2. Borko Furht, "Handbook of Social Network Technologies and Applications", Springer, 1st Edition, 2011.
- 3. Przemyslaw Kazienko, Nitesh Chawla, "Applications of Social Media and Social Network Analysis", Springer, 2015.
- 4. Charu C, Aggarwal, "Social Network Data Analytics", Springer, 2014.

		Mapping of COs w			205
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2		-		1. 1.
CO2	2			-	
CO3	3		2		-
CO4	3		2		
CO5	2	4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	<u>-</u>	-	. = .

IT24E18	BIG DATA AND ANALYTICS	Category	p. L	T	Р	SL	С
	(PROFESSIONAL ELECTIVES – III and IV)	PEC	45	0	0	45	3

The student should be familiar with database management systems and SQL which is essential for storing and querying large data sets. Also, they should have the understanding of basic statistics and data analysis techniques. This is useful for working with large datasets, performing data exploration, and deriving meaningful insights. Requires any basic programming knowledge for learning Hadoop.

OBJECTIVES:

This course covers foundational techniques and tools required for big data analytics. It focuses on concepts, principles and techniques applicable to any technology environment and industry and establishes a baseline for additional real-world experience. It provides in-depth knowledge on managing big data applications, giving insight on real-world big data management.

UNIT - I FUNDAMENTALS OF BIG DATA AND ANALYTICS (9)

Introduction to Big Data - Big Data Characteristics - Different Types of Big Data - Traditional Versus Big Data Approach - Big data Analytics Lifecycle - Enterprise Technologies and Big Data Business Intelligence - Big Data Challenges. Big Data Analytics: Classification of Analytics - Challenges - Importance of Big Data Analytics - Data Science - Data Scientist - Terminologies used in Big Data Environments - Top Analytics Tools.

UNIT - II STORING AND PROCESSING BIG DATA (9)

Big data Storage Concepts: Clusters – File Systems – Distributed File Systems – NoSQL – Sharding – Replication – CAP Theorem – ACID – BASE. **Big data Processing Concepts:** Parallel Data Processing – Hadoop – Processing Workloads – Processing in Batch mode - Processing in Realtime mode – On-Disk Storage Devices.

UNIT - III BIG DATA ANALYSIS & ANALYTICS TECHNIQUES (9)

Analysis Techniques: Quantitative Analysis - Qualitative Analysis - Statistical Analysis - Semantic Analysis - Visual Analysis - Case Study: Correlation - Regression - Time Series Plot - Clustering - Classification. Analytics Techniques: Predictive Analytics - Descriptive Analytics - Survival Analysis - Social Network Analytics.

UNIT - IV MONGODB, HADOOP AND MAPREDUCE PROGRAMMING (9)

Mongo DB: Why Mongo DB - Terms used in RDBMS and Mongo DB - Data Types - Mongo DB Query Language. **Hadoop**: Apache Hadoop & Hadoop Ecosystem, Moving Data in and out of Hadoop - Data Serialization. Map Reduce: Mapper - Reducer - Combiner - Partitioner - Searching - Sorting - Compression.

UNIT - V HDFS, HIVE AND HIVEQL, HBASE (9)

HDFS-Overview - Installation and Shell, Java API - Hive Architecture and Installation - Comparison with Traditional Database - HiveQL Querying Data - Sorting And Aggregating - Map Reduce Scripts, Joins & Sub queries - HBase concepts, Advanced Usage - Schema Design - Advance Indexing, PIG, Zookeeper - Build Applications with Zookeeper.

L= 45, T=0, P=0, \$L=45, TOTAL: 90 PERIODS

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Identify the type of data based on the characteristics of	Understand
COI	datasets, compare trivial data with big data and explain the	
	lifecycle of data analytics for real world applications.	
CO2	Discuss the storage and processing techniques for big data and	Understand
	apply them for a given scenario using Hadoop.	en en a ^{re}
CO3	Analyze big data using quantitative, qualitative and machine	Analyze
	learning approaches and implement regression, clustering and	
** 1	classification algorithm for a given big data application.	
CO4	Demonstrate the Map Reduce programming model to process	Apply
	the big data along with Hadoop tools.	
CO5	Apply Zookeeper's coordination services by building	Apply
	distributed applications with synchronization, configuration	
	management, and naming support.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

REFERENCES:

- 1. Michael Minelli Michelle Chambers and AmbigaDhiraj "Big Data Big Analytics: Emerging Business and Analytic trends for todaysBusiness", First Editionwiley, 2013.
- 2. Paul Buhler, Wajid khattak, Thomas Erl, "Big Data Fundamentals: Concepts, Drivers & Techniques", Second Edition, Prentiee Hall, 2016.
- 3. Seema Acharya, SubhashiniChellappan, "Big Data and Analytics", Wiley Publications, First Edition, 2015.
- 4. Dirk Deroos, Paul C.Zikopoulos, Roman B.Melnky, Bruce Brown, Rafael Coss, "Hadoop For Dummies", Wiley Publications, 2014.

COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2		- ,/, + ;	-	1
CO2	2			-	1
CO3	3	- 1. <u>-</u> 1 2. 1	2		1
CO4	3	-	2		1
CO5	3	_	2	j - 42	1

IT24E19	ONTOLOGY AND SEMANTIC WEB	Category	L	T	P	SL	С
	(PROFESSIONAL ELECTIVES – III and IV)	PEC	45	0	0	45	3

A basic understanding of logic, specifically propositional and predicate logic, is important, as it underpins the principles of knowledge representation and reasoning. Familiarity with markup languages like XML and HTML, as well as an understanding of web development technologies such as HTTP, REST, and web services, will be helpful.

OBJECTIVES:

This course aims to provide a foundational understanding of ontologies and knowledge representation techniques that empower the Semantic Web. Students will explore the evolution from traditional web systems to intelligent, machine-process able web frameworks using ontology languages, semantic services, and linked data principles. Through practical tools and real-world case studies, learners will gain the skills to model, query, integrate, and apply semantic data effectively across diverse domains.

UNIT - I	INTRODUCTION TO ONTOLOGIES AND KNOWLEDGE REPRESENTATION	(9)
Definition a	nd purpose of ontologies - Real-world applications - Ontology developn	nent -lifecycle -
Methodolog	gies for ontology design - Tools for ontology engineering - Basics	of knowledge
representati	on - Description Logic (DL).	
UNIT - II	SEMANTIC WEB FUNDAMENTALS	(9)
Vision and g	oals of the Semantic Web - Differences between the traditional web an	d the Semantic
Web - Resor	urce Description Framework (RDF) - SPARQL query language - RDF Prim	er and SPARQL
Query Langu	age Specifications.	
UNIT - III	ONTOLOGY LANGUAGES AND SEMANTIC WEB SERVICES	(9)
Overview of	OWL - OWL syntax and semantics - Using OWL for ontology modeling -	Introduction to
Semantic W	eb Services - OWL-S and other service ontologies.	
UNIT - IV	ONTOLOGY ALIGNMENT, INTEGRATION, AND LINKED DATA	(9)
Challenges of	of ontology alignment - Techniques for ontology matching and merging	g - Principles of
Linked Data-	Publishing and consuming Linked Data.	
UNIT - V	SEMANTIC WEB APPLICATIONS AND ADVANCED TOPICS	(9)
	of Semantic Web applications - Trends and future directions - Ontology ntology generation - Semantic search and query expansion - Machine	-

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

ering. Tiru

Chairman (Ros)

the Semantic Web.

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Describe the vision and goals of the Semantic Web, emphasizing its potential to enhance web intelligence and data interoperability.	Understand
CO2	Differentiate the Semantic Web from the traditional web, and apply core technologies such as RDF and SPARQL to represent and retrieve semantic data.	Understand
CO3	Apply OWL-S and related service ontologies to model and enhance interoperability of web-based services within semantic frameworks.	Apply
CO4	Demonstrate the ability to publish and consume Linked Data using appropriate tools and frameworks for real-world applications.	Apply
CO5	Analyze the role of machine learning in enhancing Semantic Web capabilities, such as reasoning, data linking, and intelligent service discovery.	Analyze

REFERENCES:

- 1. Dean Allemang and James Hendler, "Semantic Web for the Working Ontologist", 2020.
- 2. Asunción Gómez-Pérez, Mariano Fernández-López, and Oscar Corcho, "Ontology Engineering", 2018.
- 3. Toby Segaran, Colin Evans, and Jamie Taylor, "Programming the Semantic Web", 2011.

COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2	- 1.		<u>-</u>	1
CO2	2		-		1
CO3	3	_	2	=	1
CO4	3	, - · · · · · · · · ·	2		1
CO5	3		2		1

	AUGMENTED REALITY AND VIRTUAL	Category	L	T	Р	SL	С
IT24E20	REALITY PROFESSIONAL ELECTIVES – III and IV)	PEC	45	0	0	45	3
			9	9	9	1	

The students must knowledge in programming languages such as C, C++, Swift, Python, Java, and JavaScript. Skill at using game engines such Unreal Engine and Unity. Familiarity with programming tools such as Git. The ability to use animation and design tools such as 3DS Max, Blender, and Maya.

OBJECTIVES:

This course aims to explore the concepts of augmented, virtual, and extended reality technologies. Through hands-on experience with tools such as Blender, Unity, and Unreal Engine, students will gain practical skills in 3D modeling, animation, rigging, scene design, and interactivity.

INTRODUCTION TO AR/VR/XR UNIT - I

(9)

Overview of AR, VR, and XR technologies - Applications and use cases - Introduction to Blender and related tools - Definition and concepts of AR, VR, and XR - Historical evolution and current trends -Comparison of AR/VR/XR technologies - Potential applications and use cases - Discussing realworld examples of AR/VR/XR applications.

GETTING STARTED WITH BLENDER UNIT - II

(9)

Overview of Blender interface and workspace - Basic navigation and manipulation of 3D objects Introduction to modeling tools and techniques - Understanding Blender's workflow for asset - Basic modeling techniques - UV unwrapping and texturing - advanced modeling tools and modifiers.

ADVANCED MODELING IN BLENDER **UNIT - III**

(9)

Advanced modeling techniques (e.g., subdivision modeling, sculpting) - UV unwrapping and texturing fundamentals - Introduction to Blender's material editor - Exploring Blender's modifier stack for non-destructive modeling.

ANIMATION AND RIGGING UNIT - IV

(9)

Key frame animation principles - Rigging basics: bones, armatures, and constraints - Weight painting and skinning - Introduction to Blender's animation tools and timeline - Integrating Blender with Unity and Unreal Engine: Overview of game engines (Unity and Unreal Engine) -Exporting Blender assets for use in Unity and Unreal Engine - Basics of scene setup and importing assets - Introduction to scripting and interactivity.

TESTING AND DEBUGGING STRATEGIES UNIT - V

(9)

Principles of scene composition and layout - Lighting techniques for AR/VR/XR environments Material and texture optimization for real-time rendering - Implementing basic interactions and user Interfaces - Techniques for optimizing assets and scenes for real-time performance - Building and deploying AR/VR/XR applications for different platforms - Testing and debugging strategies.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Compare the core features and capabilities of AR, VR, and XR	Understand
	technologies and their relevance in solving real-world problems.	
CO2	Describe the Blender procedure used to prepare models	Understand
-	for real-time rendering and interactivity, including UV unwrapping and texturing.	
CO3	Apply advanced modeling techniques such as subdivision modeling and sculpting to create high-detail 3D assets.	Apply
CO4	Demonstrate foundational rigging techniques, including creating and manipulating bones, armatures, and constraints for character control.	Apply
CO5	Examine the strategies for asset and scene optimization, focusing on performance, memory efficiency, and responsiveness in real-time applications.	Analyze

REFERENCES:

- 1. The Essential Guide to Game Audio: The Theory and Practice of Sound for Games" by Steve Horowitz and Scott R. Looney, March 2014.
- 2. Jonathan Linowes "Unity Virtual Reality Projects: Learn Virtual Reality by Developing More Than 10 Engaging Projects with Unity", 2019.
- 3. Tomas Akenine-Möller, Eric Haines, and Naty Hoffman "Real-Time Rendering" August 2019.
- 4. Robert Scoble and Shel Israel,"The Fourth Transformation: How Augmented Reality & Artificial Intelligence Will Change Everything", kindle Edition, December 2016.

	M	apping of COs	with POs and PS	Os	ar although the second
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2	i e e Transi, i e			-
CO2	2		,		
соз	3	7 P 5 5 3 3 3 3	2	_	
CO4	3		2	= -	• • • •
CO5	3		2	-	_

	APPLIED CYBER SECURITY ANALYTICS AND	Category	L	Ī	Р	SL	С
IT24E21	RISK MANAGEMENT (PROFESSIONAL ELECTIVES – V and VI)	PEC	45	0	0	45	3

Prerequisite for Applied Cyber security Analytics and Risk Management includes networks, threats, and vulnerabilities. To the foundational knowledge of risk management principles and their application in cyber security contexts.

OBJECTIVES:

This course aims to provide foundational and advanced knowledge in cyber security analytics and risk management. It enables students to understand threats, vulnerabilities, and risk mitigation using frameworks and analytical techniques. Learners will explore data collection, threat intelligence, and machine learning applications in cyber security. The course also prepares students to develop risk management plans and adapt to emerging cyber security trends and compliance needs.

LIBUT	INTRODUCTION TO CYBERSECURITY ANALYTICS AND RISK	(9)
UNIT - I	MANAGEMENT	(3)

Overview of Cyber security Landscape - Importance of Cyber security Analytics - Introduction to Risk Management in Cyber security - Key Concepts: Threats - Vulnerabilities - Risks and Controls - Cyber security Frameworks.

UNIT - II CYBERSECURITY THREAT INTELLIGENCE AND DATA COLLECTION (9)

Threat Intelligence Lifecycle - Types of Threat Intelligence - Data Sources for Cyber Security Analytics - Tools for Data Collection - Data Preprocessing and Normalization - Ethical and Legal Considerations in Data Collection.

UNIT - III CYBERSECURITY ANALYTICS TECHNIQUES (9)

Developing a Cyber security Risk Management Plan - Incident Response and Recovery Planning - Role of Automation and AI in Cyber security - Emerging Threats - Privacy and Compliance - Future Trends in Cyber security Analytics and Risk Management.

UNIT - IV RISK ASSESSMENT AND MANAGEMENT FRAMEWORKS (9)

Risk Assessment Methodologies - Risk Identification, Analysis, and Evaluation - Risk Treatment Strategies - Cyber security Risk Metrics and KPIs- Continuous Monitoring and Risk Reporting - Integrating Risk Management into Organizational Processes.

UNIT - V APPLIED CYBER SECURITY RISK MANAGEMENT AND FUTURE TRENDS (9)

Developing a Cyber security Risk Management Plan - Incident Response and Recovery Planning - Role of Automation and AI in Cyber security - Emerging Threats - Privacy and Compliance - Future Trends in Cyber security Analytics and Risk Management.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

ering. Tiru,

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Understand the cyber security landscape, including key concepts	Understand
	such as threats, vulnerabilities, risks, controls, and frameworks	
	essential for effective cyber security analytics and risk management.	
CO2	Explain the threat intelligence lifecycle, types of threat intelligence,	Understand
	and ethical considerations involved in data collection and	
	preprocessing for cyber security analytics.	
CO3	Apply various cyber security analytics techniques including	Apply
	descriptive, diagnostic, predictive, and prescriptive analytics to detect, analyze, and mitigate cyber security threats.	
CO4	Understand and implement risk assessment methodologies,	Understand
	including risk identification, analysis, evaluation, and treatment strategies within organizational contexts.	
CO5	Develop and apply cyber security risk management plans, including	Apply
	incident response and recovery, while exploring the role of	*
	automation, AI, and emerging trends in enhancing cyber security	
	resilience.	x x x x x x x x x x x x x x x x x x x

REFERENCES:

- 1. Engemann, Kurt J. "Cyber security and Cyber Risk Management: Principles, Perspectives, and Practices".
- 2. Jarpey, Gregory, and Scott McCoy. "Applied Cyber security Operations: A Hands-On Guide to Intelligence-Driven Defense.
- 3. Jacobs, Jay, and Bob Rudis. "Data-Driven Security: Analysis, Visualization, and Dashboards.
- 4. Pompon, Raymond. "Risk Management for Cyber security and IT Managers."

		Mapping of COs wi	ith POs and PS	Os	
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2				
CO2	2				-
CO3	3		2		-
CO4	2				
CO5	3	,	2	-	-

IT24E22	DEEP LEARNING AND APPLICATIONS	Category	L	T,	P	SL	C
1124622	(PROFESSIONAL ELECTIVES – V and VI)	PEC	45	0	0	45	3
			-			- 1	
PREREQUISIT	re:						- 1
	for deep learning and applications includes						
	of machine learning fundamentals and un	derstanding	of ma	them	atics,	includ	nik
	a, calculus, and probability theory.	3 <u> </u>					
OBJECTIVES:						. V	
	aims to provide a strong foundation in d						
	eural networks, CNNs, RNNs, Transformers Il explore deep learning frameworks like						
	ion. The course also discusses emerging tr						
	acy-preserving Al.		.6				14
UNIT - I	INTRODUCTION TO DEEP LEARNING				÷,	(9)	
Basics of Ma	achine Learning and Neural Networks – His	tory and Evo	lution	of D	eep L	earnir	ıg
Artificial Neu	ural Networks (ANN) - Backpropagation an	d Optimizati	on Te	chniq	ues –	Grad	ier
	iants – Regularization Techniques – Van						
Solutions -	Hyper parameter Tuning and Model Sel	ection-Introd	luction	n to	Deep	Lear	nin
	Tensor Flow, PyTorch.				4		
UNIT - II	CONVOLUTIONAL NEURAL NETWORK				E	(9)	, .
Basics of Ir	nage Processing and Feature Extraction	- Convoluti	ional	Layer	s and	Poo	lin
Techniques-	CNN Architectures- Transfer Learning and	Pretrained	Mode	ls– Ol	oject	Detec	tio
Techniques:	R-CNN, Fast R-CNN, YOLO- Image Segmen	ntation: U-Ne	et, Ma	ask R	- CN	N – E)at
Augmentatio	n for CNNs - Challenges in Training CNNs	s & Solution	s – A	pplica	tions	of CN	IN:
Medical Imag	ging - Face Recognition.						
UNIT - III	RECURRENT NEURAL NETWORKS (RNN) AN	ID TRANSFO	RMER	S	177	(9)	
Introduction	to Sequential Data – Recurrent Neural Netw	vorks (RNNs)	– Тур	es of I	RNNs:	Stand	lar
RNN, LSTM,	and GRU - Challenges in RNNs: Exploding	g and Vanish	ing G	radier	nts –	Atten	tic
Mechanism -	- Introduction to Transformers – Popular Tra	nsformer Mo	dels:	BERT	and G	PT- D	ee
Learning for	Text Processing – Case Study: ChatGPT and La	arge Languag	e Mod	dels (L	LMs).		
UNIT - IV	GENERATIVE MODELS AND REINFORCEME	NT LEARNING	9	N		(9)	
Generative A	Adversarial Networks (GANs) – Variational A	Auto encode	rs (VA	Es) —	Appli	cation	S
GANs: Image	Synthesis - Style Transfer – Introduction to	Reinforceme	nt Lea	arning	(RL) -	- Dee _l	р (
Networks (D	QN) and Policy Gradient Methods – Acto	or - Critic Al	gorith	ms –	Reinf	orcen	ne
Learning App	olications: Robotics, Gaming – Ethical Consider	erations in Al	and D	Deep L	earnii	ng - Ai	ud
and video su	mmarization.						
					1		

UNIT - V FUTURE DIRECTIONS IN DEEP LEARNING (9)

Deep Learning in Healthcare and Medical Diagnosis – Autonomous Systems: Self Driving Cars and Robotics – Explainable AI (XAI) and Model Interpretability – Federated Learning and Privacy -

Preserving AI –Speech and Audio Processing with Deep Learning – AI for Drug Discovery and Smart Healthcare.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Discuss the Fundamentals of Deep Learning.	Understand
CO2	Analyse different convolution neural network (CNN) architectures and interpret their roles in image recognition and feature extraction tasks.	Analyze
CO3	Analyze the mechanisms of Recurrent Neural Networks (RNNs) and Transformers.	Analyze
CO4	Exploring Generative Models and Reinforcement Learning.	Evaluate
CO5	Apply Deep Learning to Real-World Problems and Emerging Trends.	Apply

REFERENCES:

- 1. Sebastian Raschka and VahidMirjalili, "Python Machine Learning: Machine Learning and Deep Learning with Python".
- 2. Michael Nielsen, "Neural Networks and Deep Learning".
- 3. Tarek S. S. A. A., "Deep Learning with Tensor Flow 2 and Keras".
- 4. John D. Kelleher "Deep Learning: Theories and Algorithms for Learning from Data".

	N	/lapping of COs v	vith POs and PS	Os	
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2				
CO2	3	-	2	-	, a
CO3	3	2 . F	2	-	
CO4	3		2		-
CO5	3	-	2		-

IT24E23	HUMAN COMPUTER INTERACTION	Category	L	T	Р	SL	С
1124623	TECHNIQUES (PROFESSIONAL ELECTIVES – V and VI)	PEC	45	0	0	45	3

Prerequisite for Advanced Algorithm includes Dynamic Programming methods, graph traversal techniques, brute-force and algorithms, NP-hard and NP-complete problems, probabilistic and randomized algorithms.

OBJECTIVES:

This course aims to introduce the principles of human-computer interaction and models of human information processing. It emphasizes user-centred design, usability engineering, and interface evaluation methods. Students will explore design principles, cognitive models, and interaction paradigms across diverse platforms. The course also covers collaborative systems, emerging interfaces like AR/VR, and adaptive support systems.

UNIT - I INTRODUCTION TO HUMAN-COMPUTER INTERACTION

(9)

The Human - Information Processing – The Computer – Information Processing – Human Computer Interaction –Models, theories and frameworks in HCI – Ergonomics – Interaction Styles – Interactivity – Context of Interaction – Strategies for building interactive systems – Paradigms of Interaction.

UNIT - II DESIGNING INTERACTIVE SYSTEMS

(9)

Introduction to basics of design — Process — User focus — Navigation — Screen design — Iteration and Prototyping — HCI in software process — Usability Engineering - Iteration and Prototyping — Design Rules — Principles — Standards — Guidelines — Golden rules and heuristics — Implementation support — Windowing systems — Programming in the application — Toolkits — User Interface Management Systems.

UNIT - III | EVALUATION AND UNIVERSAL DESIGN PRINCIPLES

(9)

Need for evaluation – Goals – Expert Analysis – User Participation and Feedback – Reporting Results - Choosing the evaluation method – Universal Design Principles – Multimodal Interaction – Designing for Diversity - Requirements for User support – Approaches - Adaptive help systems.

UNIT - IV | MODELS AND THEORIES

(9)

Cognitive Models – Goals & Task Hierarchies – Linguistic models – Challenges of the display based system – Physical – Device models – Socio- Organizational issues – Communication and collaboration – Face-to-face – conversation – text based – group working – Task analysis techniques – decomposition of task – knowledge-based analysis – entity-relationship based analysis – Dialog design model – design notations – graphical – textual – semantics – System models – formalisms – interactions – continuous behavior.

UNIT - V HCI IN COLLABORATIVE APPLICATIONS

(9)

Groupware — Computer — Mediated Communication — Meeting & Decision Support — Sharedapplications and artifacts — Frameworks — Synchronous groupware — Ubiquitous computing — Virtual and Augmented Reality — Information & Data visualization — Web — Hypertext — Findingthings — Issues — Static web — Dynamic web.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Gain knowledge in models, theories related to human-computer interaction.	Understand
CO2	Apply user-centered design principles and guidelines for interactive systems.	Apply
CO3	Utilize appropriate evaluation methods and techniques to assess the usability and user experience of interactive systems	Apply
CO4	Analyze various HCI models, such as task models and dialogue models, to design interactive systems.	Analyze
CO5	Design HCI solutions for collaborative applications including groupware, AR/VR, and dynamic web interfaces.	Create

REFERENCES:

- 1. Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, "Human Computer Interaction", Third Edition, Prentice Hall, 2004.
- 2. Preece, J., Sharp, H., Rogers, Y., "Interaction Design: Beyond Human-Computer Interaction", Sixth Edition, Wiley, 2022.
- 3. Jonathan Lazar Jinjuan Heidi Feng, Harry Hochheiser, "Research Methods Human Computer Interaction", Second Edition, Morgan Kaufmann, 2021.
- 4. Ben Shneiderman, Catherine Plaisant, "Designing the User Interface: Strategies for Effective Human-Computer Interaction", Sixth Edition, Addison Wesley, 2021.

		Mapping of COs w	ith POs and P	SOs	
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2				
CO2	3		2	*1 **1 **1 **2	· · · · · · · · · · · · · · · · · · ·
CO3	3		2	-	
CO4	3		2		
CO5	3		2	-	<u>-</u>

1724524	AWS CLOUD SOLUTION ARCHITECTURE	Category	L	T	Р	SL	С
IT24E24	(PROFESSIONAL ELECTIVES – V and VI)	PEC	45	0	0	45	3
			4				· .

Prerequisite for AWS course includes cloud computing fundamentals, networking concepts, virtualization, storage services, IAM roles and policies, serverless computing, and basic Linux and scripting knowledge.

OBJECTIVES:

This course introduces the foundational concepts of cloud computing and Amazon Web Services (AWS).It covers key AWS components like EC2, S3, IAM, serverless computing, and security management. Students will gain hands-on experience in deploying, configuring, and managing AWS services. The course also explores pricing models, automation, and application services for real-world cloud applications.

UNIT - I INTRODUCTION TO CLOUD COMPUTING AND AWS (9)

Introduction to Cloud Computing – Cloud service and deployment Models – various cloud computing products offered by AWS- AWS - AWS architecture and the AWS console - Virtualization in AWS – AWS EC2.

UNIT - II ELASTIC COMPUTE CLOUD (9)

Know Your EC2 Region — Discuss About SSH Key Pair — Launching Our First EC2 Instance Using Launch Wizard — Launching EC2 Instance Using Launch Template — Create Custom AMI — Know What is Private IP and Public IP — EC2 Instance Types & Pricing Models — EC2 Spot Instance - Reserved Instance and Host — EC2 Auto Scaling — AWS Graviton Instances.

UNIT - III AWS STORAGE (9)

Introduction to AWS Storage — Pre-S3 — online cloud storage — API - S3 consistency models - Storage hierarchy - buckets in S3 - Objects in S3 - metadata and storage classes - Databases and InMemory Data Stores - Amazon RDS - DynamoDB.

UNIT - SECURITY MANAGEMENT IN AWS (9)

Identity Access Management (IAM) – Various access policies across – AWS Services Security Token Services – AWS Resource Access Manager (RAM) – AWS Single Sign On (SSO) – AWS Cognito – AWS Security & Encryption: KMS - Cloud HSM – Shield – WAF – Guard Duty – API keys service access – Best practices for IAM – Access billing and create alerts on billing.

UNIT - V APPLICATION SERVICES (9)

AWS Simple Email Service (SES) – Implement SES – Demonstrate the working of SNS SQS: Work with SQS - ASG with SQS – Amazon MQ – Amazon Event Bridge – AWS Simple Notification Service (SNS) – AWS Simple Work Flow (SWF) – AWS Lambda AWS Serverless Application.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

Chairman (100)

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Discuss the core principles of AWS Cloud Computing, including service models, deployment types, and global infrastructure.	Understand
CO2	Configure and launch EC2 instances using the AWS Management Console and CLI, selecting appropriate instance types and settings.	Apply
CO3	Analyze various AWS storage services (S3, EBS, Glacier) and determine suitable data migration strategies based on performance, cost, and durability.	Analyze
CO4	Assign and manage IAM roles and permissions to control secure access for EC2 instances and other AWS resources.	Apply
CO5	Evaluate AWS tools and services (e.g., Elastic Beanstalk, Cloud Formation) to automate, deploy, and manage applications effectively.	Evaluate

REFERENCES:

- 1. Saurabh Shrivastava, Neelanjali Srivastav, Alberto Artasanchez, "AWS for Solutions Architects" 2023.
- 2. Theo H King, "AWS: The Ultimate Guide From Beginners To Advance For The Amazon Web Services", 2020 Edition.
- 3. Aurobindo Sarkar,"Learning AWS" Second Edition, 2018.
- 4. Learning Amazon Web Services (AWS): A Hands-On Guide to the Fundamentals of AWS Cloud 1st Edition by Mark Wilkins.
- 5. https://elearn.nptel.ac.in/shop/iit-workshops/completed/amazon-web-services-aws/?v=c86ee0d9d7ed.

	N	/lapping of COs v	vith POs and PSC)s	912
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2	. ', 	* - * - * - * - * - * - * - * - * - * -	, <u> </u>	-
CO2	3	-, -, -, -, -, -, -, -, -, -, -, -, -, -	2	= 1, -4	_
CO3	3		2		, . <u>.</u>
CO4	3		2		
CO5	3	73	2		77.

IT24E25	INTERNET OF THINGS	Category	, L.	Τ.	Р	SL	С
<u> </u>	(PROFESSIONAL ELECTIVES – V and VI)	PEC	45	0	0	45	3

The students should participate actively in creative thinking exercises. IOT is futuristic and will require students to understand other technologies and current uses where IOT can be integrated to make a make a quantum jump in the efficiencies in application. Also requires basic programming knowledge to build IoT related applications.

OBJECTIVES:

This course covers the fundamentals of IoT architecture and system design. Students learn to build IoT applications using Raspberry Pi and explore use cases in smart cities and healthcare.

UNIT - I INTRODUCTION TO IOT

(9)

Evolution of Internet of Things — Characteristics - Physical& Logical Design — IoT Enabling Technologies — IoT Levels& Deployment Templates — Domain Specific IoTs — Challenges in IoT - IoT System Management with NETCONF YANG — IoT Platforms Design Methodology — Fog, Edge, Cloud in IoT.

UNIT - II IOT ARCHITECTURE – STATE OF THE ART

(9)

Simplified IoT Architecture – Core IoT Functional Stack - IoT and M2M –SDN and NDF for IoT - M2M high level ETSI architecture – IETF architecture for IoT – OGC architecture – IoT reference model – Domain model – Information Model – Functional Model – Communication Model and API's.

UNIT - III IOT PROTOCOLS

(9)

Protocol Standardization for IoT - Efforts - M2M and WSN Protocols - SCADA and RFID Protocols - Unified Data Standards - Protocols - IEEE 802.15.4 - BAC Net Protocol - Mod bus - Zig bee Architecture - Network layer - 6LowPAN - CoAP - MQTT - AMQP - Bluetooth Low Energy - Zwave - Security.

UNIT - IV BUILDING IOT WITH RASPBERRY PI

(9)

Building IOT with RASPERRY PI – IoT Systems – Logical Design using Python – IoT Physical Devices & Endpoints – IoT Device – Building blocks – Raspberry Pi Board – Linux on Raspberry Pi – Raspberry Pi Interfaces – Python Programming with Raspberry Pi – Controlling output – Reading input from pins.

UNIT - V CASE STUDIES AND APPLICATIONS

(9)

Business models for the internet of things — Smart and connected Cities — Smart Traffic — Smart Parking — Smart Home Automation — Smart Agriculture — Smart Health — Smart Grid — Weather Monitoring.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Explain the fundamental concepts, components, and characteristics of the Internet of Things (IoT).	Understand
CO2	Discuss the architecture and layered design models of IoT systems.	Understand
CO3	Analyze various communication protocols and standards used in IoT networks.	Analyze
CO4	Develop basic IoT applications using Raspberry Pi and Python programming.	Create
CO5	Analyze real-time applications and use cases of IoT in different domains such as healthcare, smart cities, and industrial automation.	Analyze

REFERENCES:

- 1. Arshdeep Bahga Vijay Madisett, Internet of Things A hands on approach, Universities Press ,2015
- 2. Dieter Uckelmann Mark Harrison Michahelles Florian (Eds), Architecting the Internet of Things, Springer 2011
- 3. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things Key applications and Protocols", Wiley, 2012

COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2	_	-		2
CO2	2	, , , , , , , , , , , , , , , , , , ,		V	2
CO3	3		2	- '	2
CO4	3	- 1	2		2
CO5	3		2	_	

IT24E26	GPU COMPUTING	Category	L	Т	Р	SL	С
1124620	(PROFESSIONAL ELECTIVES – V and VI)	PEC	45	0	0	45	3

The students shall have the Knowledge of Programming in C Language and Python programming and also have the knowledge on Data Structure and also known about Computer architecture and operating systems concept.

OBJECTIVES:

This course introduces parallel computing and GPU architectures with a focus on CUDA programming. Students learn to develop optimized GPU-accelerated applications using tools like cuDNN and TensorRT.

UNIT - I INTRODUCTION TO PARALLEL COMPUTING AND GPU ARCHITECTURE (9)

Introduction to Parallel Computing: Concepts of parallelism - concurrency and distributed computing - Different parallel architectures (shared memory and distributed memory) - Amdahl's Law and performance analysis - Motivations for using GPUs - GPU Architecture: Overview of GPU architecture - Comparison of CPU and GPU architectures - Understanding the strengths and weaknesses of GPUs - GPU generations and trends.

UNIT - II CUDA PROGRAMMING MODEL (9)

CUDA Kernels: CUDA programming model – Threads - blocks and grids - Execution model: Warps and scheduling - Understanding thread execution and mapping to hardware - Memory Management: Memory types in CUDA-Memory allocation and deallocation on the GPU - Data transfer between CPU and GPU - Understanding the Single Instruction Multiple Thread (SIMT) execution model - Data parallelism and task parallelism on GPUs.

UNIT - III CUDA PROGRAMMING TECHNIQUES AND OPTIMIZATION (9)

Synchronization: Thread synchronization within a block (shared memory- barriers) . Atomic operations. Synchronization between blocks (global memory- streams) . Kernel Optimization: Profiling and performance analysis tools . Identifying and addressing performance bottlenecks . Loop unrolling - loop fusion and other optimization techniques . Introduction to profiling tools. Memory Coalescing and Bank Conflicts: Understanding memory access patterns and their impact on performance - Optimizing memory access for coalescing and avoiding bank conflicts in shared memory.

UNIT - IV PARALLEL ALGORITHMS AND APPLICATIONS (9)

Parallel Algorithms: Reduction- Scan (Prefix Sum)- Histogramming — Sorting — Searching - Implementing These Algorithms On Gpus. Matrix Operations: Parallel Matrix Multiplication - Vector Operations - Other Linear Algebra Operations On Gpus - Libraries For Linear Algebra (Cublas). Image And Signal Processing: Introduction To Image Processing Concepts - Implementing Basic Image Filtering And Manipulation Algorithms On Gpus.

UNIT - V DEEP LEARNING & GPU APPLICATIONS (9)

Introduction to GPU - Accelerated Deep Learning - Overview of deep learning frameworks (TensorFlow and PyTorch) - GPU acceleration in neural networks - Introduction to cuDNN and TensorRT. GPU Applications in AI & Scientific Computing: GPU in image processing and computer vision - Financial modeling and realtime analytics - GPU accelerated cryptography

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

Cnairman (805)

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Describe the principles of parallel computing and the architecture of modern GPUs.	Understand
CO2	Write and debug CUDA programs for parallel execution on GPUs.	Apply
CO3	Optimize CUDA code for performance using various techniques, including memory management and kernel optimization.	Apply
CO4	Develop and implement parallel algorithms using CUDA for various computational tasks, including matrix operations, image processing, and basic deep learning operations.	Analyze
CO5	Develop and implement a GPU-accelerated solution for a complex problem in a relevant domain.	Analyze

REFERENCES:

- 1. R. Chandra, L. Dagum" Parallel Programming for Multicore and Manycore Architectures".
- 2. Eli Stevens, Luca Antiga, and Thomas Viehmann"Deep Learning with PyTorch".
- 3. NVIDIA Developer Website: https://developer.nvidia.com/
- 4. CUDA C Programming Guide (Available on the NVIDIA website)

			ith POs and PSOs		200
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2			i i i	-
CO2	3	m m 7 - 1 - 2 - 2 - 1	2	-	_
CO3	3		2	= 1 -	
CO4	3		2	# <u>#</u>	
CO5	3		2		

IT24E27	INTERACTIVE AND DIGITAL MARKETING	Category	L	T	P	SL	С
	(PROFESSIONAL ELECTIVES – V and VI)	PEC	45	0	0	45	3
		= 2		· .	٠, .		
PREREQUISIT	Е:	- Y.			=	1 3	
	for Interactive and Digital Marketing includes I	Rasic Compi	ıtor a	nd Ir	ntarr	net Sk	ille
	gineering, familiarity with data analytics tool						
platforms.				1 %			- 9
OBJECTIVES:							
	covers the fundamentals of digital mark						and
	on strategies. Students learn to apply SEO, SEM, ital campaigns.	email, and	mobil	e ma	rket	ing w	nile
UNIT - I	BASICS OF DIGITAL MARKETING		Baron I h		(9)	
Evolution of	Digital Marketing - Digital Marketing an In	troduction	– Int	erne	(Table)		ing:
	echnology and Frameworks – Digital Marketing						
	etplace –Value Chain Digitization – The Consume						
Behavior on	the Internet – Evolution of Consumer Behavior	or Models	– Ma	nagii	ng C	onsu	mer
Demand – Int	tegrated Marketing Communications	* * *					
UNIT - II	SEARCH ENGINE OPTIMISATION	ata a mara			· (9)	
Search Engin	e optimization - Keyword Strategy- SEO Strateg	gy - SEO su	ccess	fact	ors	-On-P	age
Techniques -	Off-Page Techniques. Search Engine Marketing	g- How Sear	ch Er	igine	wo	rks- S	EM
components-	PPC advertising -Display Advertisement.		- × 2		2 1		1
UNIT - III	DIGITAL MARKETING PLANNING AND SETUP			, the part of the	(9)	4
Digital Marke	eting Communications and Channel Mix: Digital I	Marketing P	lannir	ng De	evelo	pmei	nt –
Designing th	e Communication Mix – Introduction to Di	gital Marke	eting	Char	nnels	s. Dig	gital
	perations Setup : Understanding Digital Marke						Veb
	and Management – User Experience, Usability, a	ind Service (Qualit	y Ele			
UNIT - IV	DIGITAL MARKETING EXECUTION		- 1-10			(9)	+
	eting Campaign Management: Basic Elements of						
	npaign Management – Implementing Intent – Bas						
	g Brand – Based Campaigns (Display Execution) -						
	Models – Campaign Analytics and Marketing						
	Managing Digital Marketing Revenue – Managin	ig Service D	eliver	y an	d Pa	aymer	nt –
	gital Implementation Challenges.		3 59	·			
UNIT - V	E- MAIL MARKETING					(9)	,
	keting - Types of E- Mail Marketing - Email Au						
	mail with Social Media and Mobile- Measuring						
	. Mobile Marketing- Mobile Inventory/channels-						
Coupons and	offers, Mobile Apps, Mobile Commerce, SMS Car	npaigns-Pro	Tiling	and	arge	eting.	

Chairman (105)

K.S.R. College of Engineering

96 Applicable for Students admitted from 2024 - 2025 Onwards

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Illustrate the basic concepts, strategies, and tools used in digital marketing.	Understand
CO2	Carry out various search engine optimization (SEO) techniques to improve website visibility and ranking.	Analyze
CO3	Illustrate the steps involved in digital marketing planning and campaign setup.	Analyze
CO4	Demonstrate the ability to manage and monitor digital marketing campaigns effectively across platforms.	Analyze
CO5	Apply suitable techniques and best practices for executing successful e-mail marketing campaigns.	Apply

REFERENCES:

- 1. Puneet Bhatia, "Fundamentals of Digital Marketing".
- 2. Vandana Ahuja, "Digital Marketing".
- 3. R S N Pillai, Bagavathi, "Modern marketing Priinciples and Practices".
- 4. Dominik Kosorin, "Introduction to Programmatic Advertising".
- 5. Philip Kotler," Marketing 4.0: Moving from Traditional to Digital".

2004) 2004	N	Mapping of COs	with POs and PSC)s	
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2		-	_	-
CO2	3	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	2		_
CO3	3		2	-	_
CO4	3	-	2		
CO5	3		2		_
L-low, 2-mediu	ım, 3-high		1		

IT24E28	COGNITIVE SCIENCE	Category	L	Т	Р	SL	С
1124220	(PROFESSIONAL ELECTIVES – V and VI)	PEC	45	0	0	45	3
			- 4		9		

Students are expected to have a foundational understanding of psychology, computer science, or neuroscience, along with basic knowledge of logic, mathematics, or statistics.

OBJECTIVES:

This course introduces the core concepts of cognitive science, integrating AI, psychology, neuroscience, and computer science. It covers learning, language, reasoning, decision-making, and emotions.

UNIT - I INTRODUCTION TOCOGNITIVE SCIENCE

(9)

The Cognitive view –Some Fundamental Concepts – Computers in Cognitive Science – Applied Cognitive Science – The Interdisciplinary Nature of Cognitive Science – Artificial Intelligence: Knowledge representation -The Nature of Artificial Intelligence - Knowledge Representation & Planning –Artificial Intelligence: Search, Control, and Learning. Planning and Acting in the Real World

UNIT - II COGNITIVE PSYCHOLOGY

(9)

Cognitive Psychology – The Architecture of the Mind - The Nature of Cognitive Psychology- A Global View of the Cognitive Architecture - Propositional Representation- Schematic Representation- Cognitive Processes, Working Memory, and Attention- The Acquisition of Skill - The Connectionist Approach to Cognitive Architecture.

UNIT - III COGNITIVE NEUROSCIENCE

(9)

Brain and Cognition Introduction to the Study of the Nervous System — Neural Representation — Neuropsychology- Computational Neuroscience - The Organization of the mind - Organization of Cognitive systems - Strategies for Brain mapping — A Case study: Exploring mind reading.

UNIT - IV LANGUAGE ACQUISITION, SEMANTICS AND PROCESSING MODELS, LEARNING

(9)

Milestones in Acquisition – Theoretical Perspectives- Semantics and Cognitive Science – Meaning and Entailment – Reference – Sense – Cognitive and Computational Models of Semantic Processing – Information Processing Models of the Mind- Physical symbol systems and language of thought- Applying the Symbolic Paradigm- Neural networks and distributed information processing. Knowledge in Learning, Reinforcement Learning

UNIT - V HIGHER-LEVEL COGNITION

(9)

Reasoning —Decision Making — Computer Science and AI: Foundations & Robotics — New Horizons- Dynamical systems and situated cognition — Challenges — Emotions and Consciousness- Physical and Social Environments— Applications.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

Chairman (bes)

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Explain the basics of Cognitive Science with focus on acquisition, representation and use of knowledge by individual minds, brains, and machines	Understand
CO2	Apply the role of neuro -science in the cognitive field	Apply
CO3	Apply the role of neuro-science in the cognitive field.	Apply
CO4	Compare the computational models for semantic processing.	Analyze
CO5	Discuss the role of reasoning in cognitive processing.	Analyze

REFERENCES:

- 1. Tom Heath, Christian Bizer, "Linked Data: Evolving the Web into a Global Data Space", Morgan & Clay pool Publishers, 2011.
- 2. David Wood, "Linking government Data", Springer Science&BusinessMedia, 2011.
- 3. Jure Leskovec ,Anand Raja Raman, Jeffrey David Ullman, "Mining of Massive Data sets", Cambridge University Press, 2014
- 4. Russell, Stuart J., and Peter Norvig. Artificial Intelligence: A Modern Approach. 2nd ed. Upper Saddle River, N.J.: Prentice Hall/Pearson Education, 2003. ISBN: 0137903952

	, N	lapping of COs	with POs and PSO	s	
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2	-		· · · · · · · · · · · · · · · · · · ·	
CO2	3	-	2	-,	-
CO3	3	,, -	2	-	-
CO4	3	-	2	, , , , , , , , , , , , , , , , , , ,	7 7- 18
CO5	3	1 1	2	-	<u> </u>
low, 2-mediu	m, 3-high			<u> </u>	· L

(9)

IT24E29	DATA VISUALIZATION	Category	L	T	Р	SL	C
	(PROFESSIONAL ELECTIVES – V and VI)	PEC	45	0	0	45	3

PREREQUISITE:

Basic knowledge of statistics, programming (Python/R), and data analysis

OBJECTIVES:

This course aims to provide a strong foundation in data visualization concepts and techniques. It helps students understand different data types, visual variables, and perception-based design.

UNIT - I INTRODUCTION TO DATA VISUALIZATION

Basics - Relationship between Visualization and Other Fields -The Visualization Process - Pseudo code Conventions - The Scatter plot. Data Foundation - Types of Data - Structure within and between Records - Data Pre-processing - Data Sets

UNIT - II FOUNDATIONS FOR VISUALIZATION (9)

Visualization stages - Semiology of Graphical Symbols - The Eight Visual Variables — Historical Perspective - Taxonomies - Experimental Semiotics based on Perception Gibson's Affordance theory — A Model of Perceptual Processing.

UNIT - III VISUALIZATION TECHNIQUES (9)

Spatial Data: One-Dimensional Data - Two-Dimensional Data - Three Dimensional Data - Dynamic Data - Combining Techniques. Geospatial Data: Visualizing Spatial Data - Visualization of Point Data - Visualization of Line Data - Visualization of Area Data - Other Issues in Geospatial Data Visualization Multivariate Data: Point-Based Techniques - LineBased Techniques - Region-Based Techniques - Combinations of Techniques - Trees Displaying Hierarchical Structures - Graphics and Networks- Displaying Arbitrary Graphs/Networks.

UNIT - IV INTERACTION CONCEPTS AND TECHNIQUES (9)

Text and Document Visualization: Introduction - Levels of Text Representations - The Vector Space Model - Single Document Visualizations - Document Collection Visualizations - Extended Text Visualizations Interaction Concepts: Interaction Operators - Interaction Operands and Spaces - A Unified Framework. Interaction Techniques: Screen Space - Object-Space - Data Space - Attribute Space- Data Structure Space - Visualization Structure - Animating Transformations - Interaction Control.

UNIT - V RESEARCH DIRECTIONS IN VISUALIZATIONS (9)

Steps in designing Visualizations – Problems in designing effective Visualizations- Issues of Data. Issues of Cognition, Perception, and Reasoning. Issues of System Design Evaluation , Hardware and Applications

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Discuss the Visualize of objects in different dimensions.	Understand
CO2	Analyze the process of data for Visualization.	Analyze
CO3	Apply the visualization techniques in physical sciences, computer science, applied mathematics and medical sciences.	Apply
CO4	Assess the virtualization techniques for research projects.	Evaluate
CO5	Identify appropriate data visualization techniques given particular requirements imposed by the data.	Apply

REFERENCES:

- 1. Matthew Ward, Georges Grinstein and Daniel Keim, "Interactive Data Visualization Foundations, Techniques, Applications", 2010.
- 2. Colin Ware, "Information Visualization Perception for Design", 4th edition, Morgan Kaufmann Publishers, 2021.
- 3. Robert Spence "Information visualization Design for interaction", Pearson Education, 2nd Edition, 2007.
- 4. Alexandru C. Telea, "Data Visualization: Principles and Practice," A. K. Peters Ltd, 2008.

	N	/lapping of COs v	vith POs and PSO	S	
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2	<u> </u>	, , , , , , , , , , , , , , , , , ,	** = ,-	-
CO2	3		2		-
CO3	3	- , -	2	-	
CO4	3	· · · · · · · · · · · · · · · · · · ·	2	-	***
CO5	3	~	2		-
low, 2-medium	. 3-high	8 8 T 10	x .		¥

IT24E30	ADVANCED BUSINESS ANALYTICS WITH R	Category	L	, T ',	Р	SL	C
	(PROFESSIONAL ELECTIVES – V and VI)	PEC	45	0	0	45	3

Basic knowledge of statistics, probability, and data analysis is required to understand analytical concepts in R Programming fundamentals and business or engineering applications will enhance practical learning and implementation.

OBJECTIVES:

This course equips students with advanced business analytics skills using R, covering data handling, visualization, and statistical modeling. It introduces predictive and machine learning techniques for real-world problem solving.

UNIT – I FUNDAMENTAL OF ADVANCED BUSINESS ANALYTICS IN R (9)

Introduction to Advanced Business Analytics - Types of Business Analytics: Descriptive, Predictive, and Prescriptive - R programming fundamentals - Data types, structures, and control statements - Data Wrangling and Pre processing - Data Visualization with R.

UNIT – II	STATISTICAL	METHODS	AND	PROBABILITY	FOR	BUSINESS	
OMIT - II	ANALYTICS						(9)

Descriptive Statistics: Mean, median, mode - Probability Distributions and Data Modeling: Normal, Poisson, Binomial, Exponential distributions - Regression and Predictive Modeling: Logistic regression and Generalized Linear Models (GLM).

UNIT-III PREDICTIVE MODELING AND MACHINE LEARNING IN R (9)

Introduction to Predictive Analytics - Regression Analysis in R - Logistic regression for classification - Classification Models in R: Decision Trees - Random Forest Classifier - Naïve Bayes Classifier - Model Evaluation Techniques - Performance metrics.

UNIT-IV	ADVANCED ANALYTICS AND TIME SERIES FORECASTING	(9)

Statistical Forecasting Models — Forecasting Models for Stationary Time Series — Time Series Analysis and Forecasting - Text Analytics and Sentiment Analysis - NLP in R.

UNIT – V BUSINESS APPLICATIONS & CASE STUDY IN ANALYTICS (9)

Business Applications of Analytics: Customer segmentation, campaign optimization - Marketing analytics-Fraud detection, credit scoring models - Financial analytics- Employee attrition prediction, workforce analytics -HR analytics- Demand forecasting, price optimization.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

Chairman (1905)

	At the end	of the course.	the students will	he able to
1	The circ circ	of the course,	the students will	be able t

COs	Course Outcome	Cognitive Level
CO1	Describe data pre-processing and visualization techniques in R for business insights.	Understand
CO2	Apply statistical methods and probability distributions for decision-making.	Apply
CO3	Apply predictive models using machine learning algorithms in R	Apply
CO4	Implement time series forecasting and optimization techniques for business applications.	Apply
CO5	Analyze real-world case studies in business analytics using R	Analyze

REFERENCES:

- 1. Data Science for Business and Decision Making Luiz Paulo Fávero & Patrícia Belfiore.
- 2. R for Data Science Hadley Wickham & Garrett Grolemund.
- 3. Business Analytics: Data Analysis & Decision Making S. Christian Albright & Wayne L. Winston.
- 4. Applied Predictive Analytics: Principles and Techniques for the Professional Data Analyst Dean Abbott.

COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2		<u> </u>	7 - 2	-
CO2	3	-	2		_
CO3	3	-	2		
CO4	3		2		
CO5	3	_	2		

IT24001	IOT FOR SMART SYSTEM	Category	L	T	Р	SL	C
	(OPEN ELECTIVE)	OEC	45	0	0	45	3
			- Te				
PREREQUISITE:							
Basic knowledg	e about electronics, microcontrollers (Arduino, Raspber	ry Pi),	netwo	orking	(Wi-F	i,
	ogramming (Python, C/C++).						
OBJECTIVES:			T L	1, ,	. 4		14
This course air	ms to provide a basic understanding	g of the Interne	et of	Things	s (loT) and	its
	e sensors, actuators, and processors.						
	wireless technologies.						
UNIT - I	NTRODUCTION TO INTERNET OF THING	GS		-	-11-	(9)	
	lware and software requirements for		nd acti	iator	. To		000
	ss drivers - Typical IoT applications - Tr			uator.		CIIIOI	Ug)
UNIT - II IC	OT ARCHITECTURE		- H	-	ur Ir	(9)	
Powering, Netw	nodel and architecture - Node Struct vorking - Topologies, Layer/Stack archit Bluetooth Low Energy beacons.						
UNIT - III PI	ROTOCOLS AND WIRELESS TECHNOLO	GIES FOR IOT PR	отос	DLS		(9)	e e
GPRS, small cell							
	plogies for IoT: WiFi (IEEE 802.11) - BI EEE 802.15.4) - 6LoWPAN - Proprietary				igBee	/ Zigl	3ee
UNIT - IV IC	OT PROCESSORS		1 2	,	× a	(9)	
Maintainability.	tes: Big-Data Analytics for IOT – Decessors for IOT: Introduction to Proceedings						•

UNIT - V CASE STUDIES (9)

Industrial IoT - Home Automation - smart cities - Smart Grid - connected vehicles - electric vehicle charging - Environment - Agriculture - Productivity Applications - IOT Defence.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

Chairman (Bos)

RASPERRY Pl and Arduino.

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Discover the concepts of IoT and its present developments.	Analyze
CO2	Compare and contrast different platforms and infrastructures available for IoT.	Analyze
CO3	Explain different protocols and communication technologies used in IoT.	Understand
CO4	Compare the big data analytic and programming of IoT.	Analyze
CO5	Implement IoT solutions for smart applications.	Apply

REFERENCES:

- 1. Arshdeep Bahga and Vijai Madisetti : A Hands-on Approach "Internet of Things", Universities Press 2015.
- 2. Oliver Hersent, David Boswarthick and Omar Elloumi "The Internet of Things", Wiley, 2016.
- 3. Samuel Greengard, "The Internet of Things", The MIT press, 2015.
- 4. Adrian McEwen and Hakim Cassimally "Designing the Internet of Things "Wiley, 2014.

COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	3		2	₩ .	-
CO2	3		2	-	- "
CO3	2				
CO4	3		2	* , 5 ")	-
CO5	3		2	14 2 -	_

	MACHINE LEARNING FOR INTELLIGENT	Category	L	Т	Р	SL	С
IT24002	MULTIMEDIA ANALYTICS	Category	_		P	3L	-
	(OPEN ELECTIVE)	OEC	45	0	0	45	3
		1 °					
PREREQUISI	TE:					2	
Students Sh	ould have a strong foundation in mathemat	tics (aspecia	llv li	noor	مامد	hra	224
	rogramming (ideally Python), and a good ur						
concepts.	good un	iderstanding	, 01	macı	IIIIE	leari	iiiig
		***	-		- "		
OBJECTIVES:							
-							
	aims to provide the integrates machine learning						
	analysis. It also explores advanced applications	in medical	imag	ging,	secu	rity,	and
	text detection.						8
UNIT - I	MULTIMEDIA DATA REPRESENTATION					(9)	
	to Multimedia- Multimedia Authoring and T						
	ons - Color in Image and Video- Fundamental C						
	media Data Compression: Lossless Compressio				Com	press	sion
	Image Compression Standards - Basic Video Comp		nniqu	e.			
UNIT - II	MULTIMEDIA COMMUNICATION AND RETRIEV			- 1		(9)	
	mputer and Multimedia Networks- Multiplexin						
	ipheral Interfaces - Multimedia Network Commu						
	ia Data Transmission - Multimedia over IP -						
	MPEG - 4Media On Demand - Wireless netwo	orks - Radio	Prop	agati	ion I	Mode	ls -
UNIT - III	over Wireless Networks.						и -
	MACHINE LEARNING FOR MULTIMEDIA ANALYS					(9)	
	to Bayesian Methods and Decision Theory - So						
Tochniques F	ension Reduction: Feature Transformation - Fe	eature selec	tion	- Da	ta C	lustei	ing
UNIT - IV	Basic Clustering Techniques - Modern Clustering T	echniques -	Self (Organ	izing	14 1901	١.
	GRAPH MODELS			4)	. x	(9)	
	of Graphical Models - Markov Chains and Monte						
	iibbs Sampling - Hidden Markov Models - Inf						
	odels - Discriminative Graphical Models: Maximu	ım Entropy l	Vlode	el and	l Cor	nditio	nal
	MAINTIMEDIA TECHNIQUES AND ITS ADDITIONS						ii.
UNIT - V	MULTIMEDIA TECHNIQUES AND ITS APPLICATION					(9)	
	modal Access with 2D and 3D Ears - Solving Image	Processing	Critic	al Pro	bler	ns Us	ing
"ACDINA LASK							

Framework for Multi - lingual Scene Text Detection Using K - means++ and Mimetic Algorithms - Brain Tumor Classification in MRI Images Using Transfer Learning.

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

Machine Learning - Recent Advancements in Medical Imaging: A Machine Learning Approach - A

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Describe the components of multimedia authoring tools.	Understand
CO2	Demonstrate the concepts of computer networks and their role in multimedia communication.	Understand
CO3	Experiment the results of Bayesian analysis and communicate findings effectively.	Analyze
CO4	Explain the performance of context-based methods using relevant metrics	Evaluate
CO5	Categories the various feature extraction techniques and 3D modalities.	Analyze

REFERENCES:

- 1. Ze-Nian Li and Mark S. Drew "Fundamentals of Multimedia", Pearson Education Inc, 2004.
- 2. MathieuCord. Padr aig Cunningham, "Machine learning Techniques for Multimedia", Springerpublication, 2008.
- 3. Pradeep Kumar, Amit Kumar Singh ,"Machine Learning for Intelligent Multimedia Analytics", Springer publication, 2021.
- 4. Vijayan Sukumaran, Zheng Xu, Shankar, Huiyu Zhou, "Application of Intelligent Systems in Multi- Modal Information Analytics, Springer Publication, 2019.

	N	Mapping of COs w	ith POs and PSOs	100	
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2				Ti=-)
CO2	2	. .	, s = " , s = - , x x s		7 - 1
CO3	3	e di la e e ji e sit	2	F-4 10	
CO4	3		2		
CO5	3	· ()	2		

Chairman (865)

IT24O03	DEVOPS AND MICROSERVICES	Category	L	,T	P	SL	(
1124003	(OPEN ELECTIVE)	OEC	45	0	0	45	:
PREREQUISI	TE:		*				
	es should have a solid foundation in severa on, automation, and architecture.	ıl areas of softw	are de	evelo	pmen	t, sys	te
OBJECTIVES			-		2.0	i i	
raditional a DevOps. It	ve of this course is to provide students and agile software engineering models, in aims to introduce the DevOps lifecycle, at and operations for faster and more reliable	ncluding the pri its significance	nciple , and	s an	d pra	ctices	s
JNIT - I	INTRODUCTION			4		(9)	
	gineering - Traditional and Agile process mod cycle process - need for DevOps –Barriers.	dels - DevOps -De	efinitic	n - Pi	ractic	es -	
II - TINU	DEVOPS PLATFORM AND SERVICES					(9)	
Centres - Op	atform - IaaS, PaaS, SaaS - Virtualization - Co eration Services - Hardware provisioning- so nning - security - Service Transition - Service	ftware Provision	ing - IT				
JNIT - III	BUILDING, TESTING AND DEPLOYMENT	· · · · · · · · · · · · · · · · · · ·				(9)	
Developmen	es architecture - coordination model - buildin t and Pre-commit Testing -Build and Integrat security - Resources to Be Protected - Identi	tion Testing - con	tinuo				in the second
VI - TINU	DEVOPS AUTOMATION TOOLS			0	8 0	(9)	
	e Automation- Configuration Management - t - Log Management -Monitoring.	Deployment Aut	omati	on - F	Perfo	rmand	ce
JNIT - V	MLOPS			. 9		(9)	O.
/ILOps - Do	efinition - Challenges -Developing Mode	els -Deploying t	o pro	duct	ion -	- Mc	d

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Demonstrate traditional and agile software process models, and explain the need, practices, and challenges of adopting DevOps.	Understand
CO2	Describe cloud-based platforms (laaS, PaaS, SaaS), virtualization, and operational services required for supporting DevOps.	Understand
CO3	Build the concepts of micro services, continuous integration, and deployment pipelines for effective software delivery and testing.	Apply
CO4	Utilize automation tools for infrastructure management, configuration, performance monitoring, and deployment in DevOps environments.	Apply
CO5	Apply MLOps practices to develop, deploy, and manage machine learning models effectively, addressing real-world challenges and ensuring model governance.	Apply

REFERENCES:

- 1. Len Bass, Ingo Weber and Liming Zhu, "DevOps: A Software Architect's Perspective", Pearson Education, 2016.
- 2. Joakim Verona "Practical DevOps" Packet Publishing, 2016.
- 3. Viktor Farcic "The DevOps 2.1 Toolkit: Docker Swarm" Packet Publishing, 2017.
- 4. Mark Treveil, and the Dataiku Team "Introducing MLOps" O'Reilly Media- 2020.

10000	r	Mapping of COs	with POs and PS	Os	
COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2		=		
CO2	2			-	- 11
CO3	3	-,	2	-	1 4 4 7
CO4	3	4	2		
CO5	3		2	y .' - ;	- ·
1-low, 2-mediu	m, 3-high				

	Transfer Technology		10	egulat I	10713 2	1024	T .
IT24O04	CYBER SECURITY AND DIGITAL AWARENESS (OPEN ELECTIVE)	Category OEC	L	T	P	SL	C
		OEC	45	0	0	45	3
PREREQUISI	TE:		9	-, 0			
The student	s shall have the Knowledge in Basic computer	operation.	Netw	ork	mana	agem	ent.
	g skills, Security tools and platform						٠٠,
OBJECTIVES:			5.0	5 i	<i>d</i>		-
threat lands such as mal	is to provide students with a practical understact capes, and digital awareness. It aims to expose ware, phishing, and advanced persistent threats, cifying and mitigating these attacks using industry-	learners to and to equ	comr ip th	non	cybe	r thre	eats
UNIT - I	APPLICATION OF CYBER SECURITY				0	(9)	i i
Introduction	to Cyber security: Overview of Cyber security	principles a	and o	once	pts	– Thr	reat
landscape ar	d current trends – Importance of cyber threat inte	elligence and	d Digi	tal av	ware	ness.	
UNIT - II	DIGITAL AWARENESS AND CYBER THREATS					(9)	e a
Malware: ty	pes, characteristics and propagation techniques	– Social E	ngine	erin	g: Pł	nishin	g –
spear phishir	ng and social media attacks - Ransomware attacks	- Man in th	e mic	ldle a	ittac	ks-De	nial
	DoS) and Distributed denial of service attacks (E						150
	ttacks – Keylogging - Packet Sniffing-Bug Bou						SQL
Injection - Pa	ssword Strength – Advanced Persistent Threats (A	PTs) and Ta	rgete	d Att	acks		
UNIT - III	APPLYING TOOLS IN CYBER SECURITY					(9)	e P
Tools and To	echniques to perform Packet Sniffing, SQL Injec	ction, Passw	ord	Stren	gth	Analy	/sis,
Discovery ar	nd risk detection in remote hosts by listening	open port	is –	Netw	ork	Secu	rity
Vulnerabilitie	es: Network Protocols and vulnerabilities – Wir	eless Netwo	ork V	ulne	rabil	ities a	and
attacks – Net	work Scanning and reconnaissance techniques - N	letwork sec	urity	moni	itorir	ng too	ols -
Encryption to	ools - Web vulnerability scanning tools.						
UNIT - IV	NETWORK EXPLORATION AND WEB VULNERABI	LITIES	2		a 8,1	(9)	9 ,
HTTP method	ds enumeration — HTTP proxy check — Discovering	g directories	in w	eb se	erver	s – U	lser
account enui	meration – Detecting XST vulnerabilities and De	tecting XSS	vuln	erabi	lities	– Br	ute
forcing DNS r	ecords.						
UNIT - V	WEB APPLICATION SECURITY	<u> </u>	e e			(9)	-
Common vul	nerabilities in web applications - Session hijackir	ng and Cros	s-Site	Req	uest	Forg	ery
(CSRF) attack	s - Security best practices for web developmen	it - Web ap	plica	tion	firev	valls a	and
	ng tools – Case Study(Cyber security)1 : SQL inj						
ime applicat	ions, Case Study(Digital awareness)2: Cyber se	curity attac	ks C	yber	crim	e fra	uds
and safety tip	os.						

L= 45, T=0, P=0, SL=45, TOTAL: 90 PERIODS

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Understand the fundamental principles, concepts, and current trends in cyber security and cyber threat intelligence.	Understand
CO2	Understand various types of cyber threats including malware, phishing, denial-of-service attacks, SQL injection, and other common attack vectors.	Understand
CO3	Apply cyber security tools and techniques such as packet sniffing, SQL injection testing, and password strength analysis to detect and analyze vulnerabilities.	Apply
CO4	Illustrate role of encryption tools and web vulnerability scanning tools.	Apply
CO5	Articulate the Concept of network exploration and web vulnerabilities.	Apply

REFERENCES:

- 1. Diogenes Y, Ozkaya E, "Cyber security—Attack and Defense Strategies: Counter modern threats and employ state-of-the-art tools and techniques to protect your organization against cybercriminals", Packt Publishing Ltd, 2019.
- 2. Vladlena Benson and John McAlaney, "Emerging Cyber Threats and Cognitive Vulnerabilities", Academic Press, Elsevier, 2020.
- 3. Hacking: Computer Hacking, "Security Testing, Penetration Testing, and Basic Security" Gary Hall, Erin Watson 2012.
- 4. Hadis Karimipour, Pirathayini Srikantha, Hany Farag, Jin Wei-Kocsis, "Security of Cyber-Physical Systems-Vulnerability and Impact", Springer Nature, 2020.

Mapping of COs with POs and PSOs							
COs/ POs	PO1	PO2	PO3	PO4	PO5		
CO1	2		·	-17/2	-		
CO2	2	-	ere into de la greca	<u> </u>			
соз	3		2				
CO4	3		2		n 3		
CO5	3	· · · · ·	2	-			

1-low, 2-medium, 3-high

AX24A01	DISASTER MANAGEMENT	Category	L	T	P	SL	С
		AC	45	0	0	45	0
	TE: A basic understanding of geography, environment for studying disaster management.	ntal science, ar	nd pu	blic	h	ealth	is
OBJECTIVES:			13				
huma descr	ummarize disaster basics, understand key concept enitarian response, illustrate policies and practi ibe standards and relevance in various disaster con nesses of disaster management approaches.	ces from mu	ltiple	ре	ers	pecti	ves
UNIT - I	INTRODUCTION					(9)	
	finition, Factors and Significance - Difference between the Disasters: Difference - Nature - Types and Magnit		d Dis	aste	r	- Nat	ura
UNIT - II	REPERCUSSIONS OF DISASTERS AND HAZARDS			¥)		(9)	
	- Volcanisms - Cyclones - Tsunamis - Floods - Droug Man-made disaster: Nuclear Reactor Meltdown - Ir						
Spills, Outbre	eaks of Disease and Epidemics - War and Conflicts.						ano
UNIT - III		- <u>1</u>			es	(9) - Ar	
UNIT - III Study of Seis	eaks of Disease and Epidemics - War and Conflicts. DISASTER PRONE AREAS IN INDIA smic Zones; Areas Prone to Floods and Droughts - Leading and Coastal Hazards with Special Reference to	andslides and	Avala	nch		- Ar	eas
UNIT - III Study of Seis Prone to Cyc and Epidemic UNIT - IV	paks of Disease and Epidemics - War and Conflicts. DISASTER PRONE AREAS IN INDIA Smic Zones; Areas Prone to Floods and Droughts - Leading and Coastal Hazards with Special Reference to the cost. DISASTER PREPAREDNESS AND MANAGEMENT	andslides and a Tsunami - Pos	Avala	nch	er	- Ar Disea	ea:
UNIT - III Study of Seis Prone to Cyc and Epidemic UNIT - IV Preparednes Application of	paks of Disease and Epidemics - War and Conflicts. DISASTER PRONE AREAS IN INDIA Emic Zones; Areas Prone to Floods and Droughts - Lelonic and Coastal Hazards with Special Reference to the coastal Hazards.	andslides and a Tsunami - Pos or Hazard -	Avala st-Dis	nch	er on	- Ar Disea (9) of R	rea
UNIT - III Study of Seis Prone to Cyc and Epidemic UNIT - IV Preparednes Application of	paks of Disease and Epidemics - War and Conflicts. DISASTER PRONE AREAS IN INDIA Smic Zones; Areas Prone to Floods and Droughts - Lelonic and Coastal Hazards with Special Reference to cs. DISASTER PREPAREDNESS AND MANAGEMENT Simplify Monitoring of Phenomena Triggering a Disaster of Remote Sensing - Data from Meteorological and	andslides and a Tsunami - Pos or Hazard -	Avala st-Dis	nch	er on	- Ar Disea (9) of R	eas
UNIT - III Study of Seis Prone to Cyc and Epidemic UNIT - IV Preparednes Application of Government UNIT - V Disaster Risk Situation, Te	DISASTER PRONE AREAS IN INDIA Smic Zones; Areas Prone to Floods and Droughts - Ledonic and Coastal Hazards with Special Reference to cs. DISASTER PREPAREDNESS AND MANAGEMENT S: Monitoring of Phenomena Triggering a Disaster of Remote Sensing - Data from Meteorological and all and Community Preparedness. RISK ASSESSMENT Concept and Elements - Disaster Risk Reduction - chniques of Risk Assessment - Green economy - Bluster and Warning - People's Participation in Risk Assessment - Green economy - Bluster Risk Reduction - Chniques of Risk Assessment - Green economy - Bluster Risk Reduction - Chniques of Risk Assessment - Green economy - Bluster Risk Reduction - Chniques of Risk Assessment - Green economy - Bluster Risk Reduction - Chniques of Risk Assessment - Green economy - Bluster Risk Reduction - Chniques of Risk Assessment - Green economy - Bluster Risk Reduction - Chniques of Risk Assessment - Green economy - Bluster Risk Reduction - Chniques of Risk Assessment - Green economy - Bluster Risk Reduction - Chniques of Risk Risk Reduction - Chniques of Risk Risk Risk Risk Risk Risk Risk Risk	or Hazard - Other Agencie Global and Na e economy - G	Avala st-Dis Evalues - N	nch lastic	on ia sa or	- Ar Disea (9) of R Repo (9) ster I perat	reas ases lisk: orts: Risk
UNIT - III Study of Seis Prone to Cyc and Epidemic UNIT - IV Preparednes Application of Government UNIT - V Disaster Risk Situation, Te	DISASTER PRONE AREAS IN INDIA Smic Zones; Areas Prone to Floods and Droughts - Leading and Coastal Hazards with Special Reference to the cost. DISASTER PREPAREDNESS AND MANAGEMENT Street Monitoring of Phenomena Triggering a Disaster of Remote Sensing - Data from Meteorological and all and Community Preparedness. RISK ASSESSMENT Concept and Elements - Disaster Risk Reduction - Chniques of Risk Assessment - Green economy - Blue	or Hazard - Other Agencie Global and Na e economy - G	Avala st-Dis Evalues - N	nch lastic	on ia sa or	- Ar Disea (9) of R Repo (9) ster I perat	reas ases lisk: orts: Risk

At the end of the course, the students will be able to:

COs	Course Outcome	Cognitive Level
CO1	Understand the definitions, differences, and classifications of disasters and hazards	Understand
CO2	Analyze the impact of natural and man-made disasters on economy, life, and environment	Analyze
CO3	Evaluate the implications of post-disaster diseases and epidemics.	Evaluate
CO4	Evaluate governmental and community preparedness strategies.	Evaluate
CO5	Analyze the concept and components of disaster risk, apply risk assessment techniques, and evaluate global, national, and community-based strategies	Analyze

REFERENCES:

- 1. Goel S. L., Disaster Administration and Management Text and Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi, 2009.
- 2. Nishitha Rai, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company, 2007.
- 3. Sahni, Pardeep et.al.," Disaster Mitigation Experiences and Reflections", Prentice Hall of India, New Delhi, 2001.
- 4. Sharma, R.K. and Sharma, G. "Natural Disaster Management: Causes, Effects and Mitigation", Deep & Deep Publications, New Delhi, 2005.

\ \ \	/lapping	of COs v	vith POs	and PSO	S
COs / POs	PO1	PO2	PO3	PO4	PO5
CO1	2	1	2	- 1	1
CO2	2	1	2	2	1
соз	2	1	2	2	2
CO4	2	1	2	2	2
CO5	2	1	2	1	2
Avg.	. 2	1	2	2	2

1-Low, 2-Medium, 3-High

0000

		VALUE EDUCATION	=	Category	L	T	Р	SL	С
AX24A02		(AUDIT COURSE)		AC	30	0	0	0	0
	14								1

Basic understanding of moral principles, social responsibilities, and a willingness to engage in Self-reflection and personal growth.

OBJECTIVES:

To foster self-development, strengthen human values, and promote overall personality growth and social empowerment through value-based education.

UNIT - I INTRODUCTION TO VALUE EDUCATION (6)

Values and self-development –Social values and individual attitudes- Work ethics- Indian vision of humanism- Moral and non- moral valuation- Standards and principles- Value judgments.

UNIT - II IMPORTANCE OF VALUES (6)

Importance of cultivation of values- Sense of duty- Devotion- Self-reliance- Confidence-Concentration- Truthfulness- Cleanliness. Honesty- Humanity- Power of faith- National Unity-Patriotism- Love for nature- Discipline.

UNIT - III INFLUENCE OF VALUE EDUCATION (6)

Personality and Behaviour development - Soul and Scientific attitude. Positive Thinking- Integrity and discipline- Punctuality- Love and Kindness- avoid fault Thinking- Free from anger- Dignity of labour- Universal brotherhood and religious tolerance- True friendship Happiness Vs suffering-love for truth.

UNIT - IV REINCARNATION THROUGH VALUE EDUCATION (6)

Aware of self-destructive habits- Association and Cooperation- Doing best for saving nature Character and Competence –Holy books vs Blind faith- Self-management and Good health-Science of reincarnation.

UNIT - V VALUE EDUCATION IN SOCIAL EMPOWERMENT (6)

Equality- Nonviolence- Humility- Role of Women- all religions and same message- mind your Mind- Self-control- Honesty- Studying effectively.

L= 30, T=0, P=0, SL=0, TOTAL: 30 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

Course Outcome	Cognitive Level
Gain knowledge of self-development.	Understand
Learn the importance of Human values.	Understand
Develop the overall personality through value education.	Understand
Overcome the self-destructive habits with value education.	Understand
Interpret social empowerment with value education.	Understand
	Gain knowledge of self-development. Learn the importance of Human values. Develop the overall personality through value education. Overcome the self-destructive habits with value education.

REFERENCES:

- 1. Satchidananda, M.K, "Ethics, Education, Indian Unity and Culture", Ajantha Publications, Delhi,
- 2. Das, M.S., Gupta, V.K. "Social Values among Young adults: A changing Scenario", M.D. Publications, New Delhi, 1995.
- 3. Bandiste, D.D., "Humanist Values: A Source Book", B.R. Publishing Corporation, Delhi, 1999.
- 4. Ruhela, S.P., "Human Values and education", Sterling Publications, New Delhi, 1986.

Mapping of COs with POs and PSOs

COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2		, '	- 4- 6	, hm•,le _
CO2	2	, - 2, A, B	. i <u>.</u>		1°. <u>-</u>
CO3	2	- · · · · · · · · · · · · · · · · · · ·			y <u>+</u> -
CO4	2			<u>.</u>	
CO5	2				, iv =

1-low, 2-medium, 3-high

AX24A03	CONSTITUTION OF INDIA	Category	L	T	Р	SL	
	(AUDIT COURSE)	AC	30	0	0	0	(
		-5-4		1			-
PREREQUI	SITE:						
Basic aw	vareness of Indian history, civics, and political s	ystem at the sch	ool le	vel, a	long	with	an
Interest	in understanding the democratic framework ar	nd governance o	of India	а.			
OBJECTIVE	:S:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* - V		- 3		
To provi	de a comprehensive understanding of the India	Constitution, in	ncludir	ng its	hasi		
	e, fundamental rights and duties, directive prin						nd
	vernments, and the electoral system.	, , , , , , , , , , , , , , , , , , , ,		,			
UNIT - I	INTRODUCTION TO INDIAN CONSTITUTION	1	*		-	(6)	
	estitution: Necessity of the Constitution- Soci		d afte	r the	Cor	(6)	tio
	Introduction to the Indian constitution- Ma						
	t Assembly.		31131110		1101	C 01	
UNIT - II	FUNDAMENTAL RIGHTS AND DUTIES					(6)	
Fundamen	tal Rights- Right to Equality- Right to Freedo	m- Right again	st Exp	loitat	ion-		t to
	f Religion- Cultural and Educational Rights- Rig					100	
	of State Policy- Fundamental Duties.						
UNIT - III	UNION GOVERNMENT		4			(6)	3
Parliament	ary System- Union Executive – President- Prime	e Minister- Unic	n Cab	inet-	Parli	amen	t -
LS and RS-	Parliamentary Committees- Important Parliam	entary Termino	logies.	Supr	eme	Cour	t of
India, Judic	ial Reviews and Judicial Activism.						
UNIT - IV	STATE GOVERNMENT					(6)	
State Gove	ernment – Structure and Functions – Govern	or – Chief Mir	nister	– Ca	binet	: – St	ate
	– Judicial System in States – High Courts and o						
UNIT - V	ELECTION COMMISSION			2.		(6)	
Election C	ommission: Role and Functioning. Chief	Election Comr	nissio	ner :	and	Elect	ior
	ners - Institute and Bodies for the welfare of SC						
		30, T=0, P=0, SI			30	PERIC	DDS
COURSE OU				4 *			
	of the course, the students will be able to:						
COs	Course Outcome		0	ognit	ive I	evel	4 2
CO1	Understand the basic structure of Indian Cons	titution.		Unde			
CO2	Remember their Fundamental Rights, DPSP's a		0 ·	Jilut	Sista	iiu .	
	F D (-5.1.)			Unde	ersta	nd	

COs	Course Outcome	Cognitive Level
CO1	Understand the basic structure of Indian Constitution.	Understand
CO2	Remember their Fundamental Rights, DPSP's and	
E 2 KE	Fundamental Duties (FD's) of our constitution.	Understand
CO3	Know about our Union Government, political structure &	
	codes, procedures.	Understand
CO4	Understand our State Executive of India.	Understand
↑ CO5	Understand our Elections system of India.	Understand

REFERENCES:

- 1. Brij Kishore sharma, "Introduction to the constitution india", PHI Learning Pvt. Ltd, New Delhi, Seventh Edition, 2015.
- 2. M. Laxmikanth, "Indian Polity", Tata McGraw Hill, New Delhi, Sixth Edition, 2017.
- 3. P. K. Agarwal, "Constitution of India", Prabhat Publishers, New Delhi, Second Edition, 2015.
- 4. M.P. Jain, "Indian Constitution Law", Lexis Nexis Publisher, New Delhi, 7th Edition, 2014.

Mapping of COs with POs and PSOs

COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2	es care to the man			1 1 1 1 1 2 1 1
CO2	2			. •	
CO3	2	<u> </u>	.		
CO4	2	, i - , i	· <u>-</u>	.	
CO5	2			,	. 8 J . 1

1-low, 2-medium, 3-high

Chairman (BoS)

AX24A04	INDIAN KNOWLEDGE SYSTEM	Category	L	T	Р	SL	С
e- 2 xx	(AUDIT COURSE)	AC	30	0	0	0	0
PREREQU Basic knov of knowled	SITE: vledge of Indian history and culture, and an interest in dge across disciplines such as science, technology, hur	n exploring manities, ar	tradi	tiona iloso	l syst	tems	# # # # # # # # # # # # # # # # # # #
To provide application	ES: an understanding of the historical evolution, key feans as of the Indian Knowledge System, encompassing its agineering, socio-religious practices, and the need for	tures, and contribution	multi ons to	disci _l	olina) *** ***
UNIT - I	INTRODUCTION TO INDIAN KNOWLEDGE SYSTEM					(6)	
System (Ik Aspects of UNIT - II Linguistics	e of Ancient Knowledge System- Definition- concept (S)- IKS based approaches on knowledge paradigms- IKS. TRADITIONAL KNOWLEDGE IN HUMANITIES AND Number and measurements - Mathematics- Che Crafts and Trade in India and Engineering and Technology	IKS in mode SCIENCES mistry- Ph	ern lı	ndia-	Som	e unio	que
UNIT - III			2			(6)	
	nning and architecture Construction- Health- wellne- Governance and public administration- United N	ess and P				1edici	
goals.	A STATE OF THE STA						
UNIT - IV						(6)	
Acts and Mills- Saci Indigenous	uals- Spirituals- Taboos and Belief System- Folk Stori Fraditional Narratives- Agriculture- animal husband red Water Bodies- Land- water and Soil Conserva Bio-resource Conservation- Utilization Practices a Bio-resource Conservation- Fiber Extraction and	ry- Forest- tion and n and Food I	Sacr nana Prese	ed G geme	rove ent F	s- Wa ractio	iter ces-
UNIT - V	PROTECTION OF INDIAN KNOWLEDGE SYSTEM	Costanies	-		2	(6)	
	ation and Preservation of IKS- approaches for conservation and strategies to protection and	conservati	on o	f IKS.		of nat	
	L= 30, 1=	:0, P=0, SL=	0, 10) I AL:	30	PERIC	DS
COURSE O	UTCOMES:						
At the end	of the course, the students will be able to:						
COs		-		Cogn	itive	Leve	# - F
75	of the course, the students will be able to:				itive	Leve l	* - * * * * * * * * * * * * * * * * * *
COs	of the course, the students will be able to: Course Outcome	numanities	0	Un		and	
COs CO1	of the course, the students will be able to: Course Outcome Explain the historicity of Indian Knowledge System. Explain the features of traditional knowledge in h	8	u	Und	derst	and	
COs CO1 CO2	Course Outcome Explain the historicity of Indian Knowledge System. Explain the features of traditional knowledge in I and sciences. Develop familiarity with science, engineering and to	technology		Und	derst	and and	

REFERENCES:

- 1. Kapil Kapoor, Avadesh Kumar Singh, "Knowledge Traditions and Practices of India", Vol. 1, DK Print World (P) Ltd., 2005, ISBN 81-246-0334.
- 2. D.N. Bose, S.N. Sen, B. V. Subbarayappa, "A Concise History of Science in India", Indian National Science Academy, New Delhi, 2009.
- 3. S. N. Sen, K. S. Shukla, "History of Astronomy in India", Indian National Science Academy, 2nd edition, New Delhi, 2000.
- 4. Dr. Ravindra Singh Rana, Indian Knowledge System of Materials in Science and Technology, Walnut Publication, 2023.

Mapping of COs with POs and PSOs

COs/ POs	PO1	PO2	PO3	PO4	PO5
CO1	2	· .	_	.	.
CO2	2	- -	-	, it Esten, i,	Trade in the
CO3	2		_	- :	* . T _2
CO4	2	-	<u>-</u>		
CO5	2	- 1			

1-low, 2-medium, 3-high

